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1 Introduction

Conjoint analysis is used in marketing and other …elds to quantify individuals’
trade-o¤s when they can choose between multidimensional alternatives. Re-
searchers ask the subjects to indicate their preferences for objects under a range
of hypothetical situations. They use these judgements to estimate preference
functions.

Conceptually, the researcher decomposes a respondent’s overall preference
judgements for objects de…ned on two or more attributes into part worths (par-
tial utility values) for distinct attribute levels. With the resulting preference
functions managers can predict the share of preference for any product under
consideration, relative to other products. In other words, conjoint measure-
ment procedures provide a methodological framework for the development of
appropiate “psychophysical” transformations that can be used to ascertain the
importance of classes of variables (e.g., color versus type of fragrance of soaps)
as well as the scale values for various factor levels, (e.g. ‡oral, lemon, medicinal)
(Green and Wind, 1972).

The method has been applied in virtually every conceivable product category,
including consumer durables (e.g., automobiles), nondurables (e.g., soft drinks),
industrial products (e.g., copiers), …nancial services (e.g., checking accounts),
and other services (e.g., hotel accommodation). Di¤erent algorithms are used,
according to the three forms of conjoint measurement: categorical, additive or
simple polynomial (Wittink, 1999).

The technique of correspondence analysis, also used in marketing research
and in many other …elds, can be understood as a method for …nding the associ-
ation between the categories of two or more categorical variables and presenting
this relationship in an easy visual format. This general de…nition has had dif-
ferent extensions that have led to the technique being applied in a wide range of
situations involving di¤erent types of categorical data, for example contingency
tables, indicator matrices, preferences, paired comparisons and ratings.

The conjoint analysis process can be divided into four phases: data collec-
tion, measurement scale for respondent judgments, parameter estimation meth-
ods and market simulation. The present work is concerned with the parameter
estimation method, or the third step in the process of a conjoint analysis. For
the particular case of full pro…le collection method and rating scale in the mea-
surement of respondent judgments, the nonmetric method used to analyze the
data is known as Categorical Conjoint Measurement (CCM). Our objective is to
show the equivalence between the CCM algorithm due to Carroll (1969) and a
particular case of correspondence analysis (CA). Once the equivalence is shown,
we try to see if the equivalence is maintained when interaction e¤ects are in-
cluded. Green and Wind (1972) say that one extension of CCM would be to
include the interaction e¤ects. The same idea is noted in Green (1973).
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We shall start by describing the objective and the results of a CCM analysis
followed by a brief introduction of canonical correlation analysis (CC). It is
useful as an intermediate stage, since the equivalence between CCM and CC
is already shown (Carroll, 1969). The equivalence between CC and CA has
been shown for the particular case where there is one attribute being related to
preference (see, for example, Greenacre 1984, chap.4). We will see what happens
when two or more attributes are being related to preference and …nally we will
compare the results obtained from the analysis of the data using CCM, CC and
CA. Later on, we will introduce the way to code the data so that CA can treat
interactions e¤ects. We will repeat the operation with CC as well as with CCM
to demonstrate the equivalence empirically.

The …rst data set is from the paper of Rao (1977). It comes from the situation
of an apartment-dweller planning to purchase a house that is already built in
a college town. The decision-maker has isolated the attributes of the house
considered most important in the decision. The attributes are three: size of the
house (3 levels), price of the house (4 levels) and general condition of the house
(3 levels) and the response variable has 4 levels. The second data set is from
an airline company. The objective in this case is to know the trade-o¤ value
between the di¤erent attributes o¤ered as well as possible interaction e¤ects
between them. The attributes are: airline company (5 levels), price (5 levels),
service (3 levels) and timetable (3 levels). The response variable has 4 levels.

2 Methods

2.1 Categorical conjoint measurement (CCM)

We are interested in the analysis of a matrix of dummy variables, called an
indicator matrix, of the following form:

2
6666666666664

Attrib.1 Attrib.Q
j = 1 j = 2 ... j = m1 ..... j = 1 j = 2 ... j = mQ

1 0 ... 0 ...... 1 0 ... 0
1 0 ... 0 ...... 0 1 ... 0
1 0 ... 0 ...... 0 0 ::: 1
: : ... : . : ::: .
: : ... : . : ... .
: : ... : . : ... .
0 0 ... 1 :..... 0 0 ::: 1

Response
k = 1 k = 2 ..... k = K

1 0 ..... 0
1 0 ..... 0
0 0 ..... 0
. : ..... :
. : ..... :
. : ..... :
0 0 ..... 1

3
7777777777775

where

mq: number of levels for the attributes q = 1; :::; Q.
K : number of response categories where k = 1; :::::;K:
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M ´ QQ
q=1 mq: number of all the possible combinations of the attribute

levels.

The above indicator matrix is made up of a matrix Z1 of dummy variables
representing the full pro…le (i.e., the indicator matrix has M rows) and another
matrix Z2 of dummy variables indicating one subject’s preferences for each
combination. For the additive case, the objective is to …nd an optimal additive
combination of scale values for the attribute levels Z1a maximally correlated
with the response categories assigned to each combination, Z2b.

Here b is the vector that collects the optimal scale values for the category
k of the response variable, and a is the vector with the optimal scores for allP

q mq levels of the attributes.

Carroll (1969) has shown that this analysis is equivalent to canonical corre-
lation analysis of the dummy variables. He also shows the equivalence between
applying canonical correlation and the following formulation which is the one
we are going to use to show the equivalence between CCM and CA.

First step De…ne:

sq;jq;k ´
r

mq

nkM
(nq;jq;k ¡ nk

mq
) (1)

where:
nq;jq;k ´ number of times kth response category value occurs in

jth
q level of attribute q:

nk ´ total number of times kth response category value occurs
(k = 1; :::;K):

Second step Let Sq be the mq £ K matrix whose general entry is sq;jq;k.
De…ne the K £ K matrix R as:

R =

QX

q=1

ST
q Sq (2)

Third step Determine the eigenvectors vl, for each dimension, of R and
then the optimal scores wl as:

wl =
vlp
nk

(3)

Notice that each attribute is initially treated separately, then combined in
the matrix R, which is decomposed in order to …nd scores for the response
categories only.
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The data set used is from Rao (1977), and has three attributes (Q = 3):

1: Size of house (number of bedrooms), where m1 = 3, with levels 2, 3 and
4.

2: Asking price (thousands of dollars), where m2 = 4; with levels 25, 30, 35
and 40.

3: Condition of the house, where m3 = 3; with levels E: Excellent, G: Good
and P: Poor.

The number of attribute combinations is M = 3 £ 4 £ 3 = 36. The response
has K = 4 categories: A: very high worth; B: just high worth; C: just low
worth; D: very low worth. The data are given in appendix I.

2.2 Correspondence analysis (CA)

In the simple CA of a two-way table, we are interested in explaining the asso-
ciation between the row and column categories, representing the association in
a low-dimensional space in the form of a map. The overall association is quan-
ti…ed by the chi-squared statistic divided by n++ (the total number of cases),
i.e. Â2=n++; called total inertia:

Â2

n++
=

1

n++

JX

j=1

KX

k=1

(njk ¡ nj+n+k=n++)2

(nj+n+k=n++)
(4)

where njk is the number of cases in a particular cell, nj+ the row total, n+k the
column total and n++ is the grand total.

The decomposition of this objective function is analogous to …nding the
largest principal component of a set of J observations on K variables with the
generalization to accommodate di¤erent weights, called masses. If we analyze
the row pro…le matrix, where each row of the table is divided by its total, the
row masses r, are the row totals divided by the grand total. Column pro…les
and the column masses c are similarly de…ned. The row pro…les have centroid
equal to c and the column pro…les have centroid r:

The row and column coordinates of the pro…les with respect to their re-
spective principal axes may be obtained from the singular value decomposition
(SVD) of the matrix N = (njk), transformed by double-centring and standaridz-
ing:

D
¡1

2
r [(1=n++)N ¡ rcT ]D¡ 1

2
c = UD®VT ; (5)

where UTU = VTV = I: The singular values are the square roots of the prin-

cipal inertias or eigenvalues: D®= D
1
2

¸ and Dr and Dc are diagonal matrices
with the row and column masses, respectively, in their main diagonal.

4



The principal axes of the row and column pro…les are the column vectors of

D
1
2
r V and D

1
2
c U; respectively. For example, the two-dimensional coordinates of

pro…le points (i.e., from the row pro…le matrix, each row becomes a point to be
represented in the map) and vertex points (i.e., each column is a vertex point
for the row pro…les points) in the dual problems are the rows of the …rst two
columns of the following matrices:

Row problem : row pro…les, D
¡ 1

2
r UD®; column vertices, D

¡ 1
2

c V: The rows
will be the points projected in a map interpreted in terms of the columns, which
have contributed the most to the orientation of the principal axes.

Column problem: column pro…les, D
¡ 1

2
c VD®; row vertices, D

¡ 1
2

r U: The
colums will be the points projected in a map interpreted in terms of the rows,
which have contributed the most to the orientation of the principal axes.

2.3 Canonical correlation (CC).

The geometry of canonical correlation is given by Greenacre, (1984, section
4.4) and also its relationship to the geometry of the correspondence analysis of
an indicator matrix, for the classical case where two categorical variables are
treated. As we noted before, since categorical conjoint analysis can be applied
to more than two attributes, the equivalence between this technique and the
correspondence analysis of an indicator matrix, via canonical correlation, is not
obvious. We will describe the basic geometry of CC and we will introduce the
new de…nitions and operations that will let us establish the connection.

The objective of CC is to …nd strong linear relationships between two sets
of variables (two-way table in CA) as observed across the sample of n++ cases.
If Z1 and Z2 are the data matrices corresponding to the two sets of variables,
this objective can be expressed formally as …nding linear combinations Z1a and
Z2b, which have maximum correlation ½ :

½ = (aTS12b)=((aTS11a)(bTS22b))
1
2 (6)

where S12;S11 and S22 are the covariance matrix between Z1 and Z2 and the
covariance matrices of Z1 and Z2 respectively.

The vectors ak and bk of canonical weights can be obtained from the left

and right singular vectors of the matrix S
¡ 1

2
11 S12S

¡1
2

22 (See for example, Greenacre
1984): The SVD of the matrix is:

S
¡ 1

2
11 S12S

¡ 1
2

22 = UD½V
T with UTU = VTV = I: (7)

where D½ is a diagonal matrix with the canonical correlations in the diagonal,
U and V are the left and right singular vectors.
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The matrices of canonical weights are:

A = S
¡ 1

2
11 U and B = S

¡ 1
2

22 V (8)

The standarization of the singular vectors of U and V to be orthonormal as
in (8) implies that A and B are standarized as follows:

AT S11A = BTS22B = I (9)

The usual standarization of the vectors of canonical scores is that all of
them have unit variance. At the same time it is also a set of identi…cation
conditions on the scale of the canonical weights and of the canonical scores. In
order to identify the origins of the vectors of canonical scores, their means are
conventionally set at zero, which is equivalent to each variable of Z1 and Z2

being centered with respect to its mean.
In this particular application, the …rst set of variables consists of 10 dummy

variables for the attribute levels and the second set consists of 4 dummy vari-
ables for the response categories. The rows are the 36 possible combinations of
attribute levels. Thus Z1 and Z2 have the following form:

Z1 =

2
6666666666664

s2 s3 s4 p1 p2 p3 p4 CE CG CP
1 0 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0 0 1
. . . . . . . . . .
. . . . . . . . . .

3
7777777777775

Z2 =

2
6666666666664

A B C D
1 0 0 0
1 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
. . . .
. . . .

3
7777777777775

For example, the …rst combination of attributes, two bedrooms in the house,
a price of $25.000 and excellent condition, gets a response of “very high worth”.
When an indicator matrix is analyzed, S11 and S22 are singular matrices, which
implies that they cannot be inverted. To be able to do our computations, the
last level for each attribute and the last response category will be eliminated.
This operation lets us to estimate the canonical weights.
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2.4 CA of a concatenated table and its connection with
CC.

The operation of eliminating the last level for each attribute and the last cate-
gory, lets us estimate the canonical weights.

The …rst important di¤erence with respect to Greenacre (1984, section 4) is
the data matrix to be analyzed. In this case, the matrix ZT

1 Z2 is a concatenated
table, whereas in previous work, Q = 1; that is there is only one categorical
variable in the …rst set and then ZT

1 Z2 is a single crosstabulation: for this
simpler case Greenacre (1984) shows how the CA results can be obtained from
the canonical weights by imposing the centring conditions of CA, using the
masses in the weighted averaging procedure. In the present case where Q > 1,
we again impose the CA condition to recover the standard coordinates for the
categories and the principal coordinates for the levels of the di¤erent attributes.
Finally we check that the coordinates obtained are identical to the ones obtained
in the correspondence analysis of the concatenated table T ´ ZT

1 Z2:
Canonical correlation analysis gives solutions, for each axis, of the form:

Attributes:

a¤
q = [a¤

q;1::::a
¤
q;mq¡1 0]T where q = 1; :::::; Q

Response:

b¤ = [b¤
1:::b

¤
K¡1 0]T

The correspondence analysis results are obtained from these, as follows (for
each dimension):

Attributes:
q = 1; :::::; Q

aq;mq =

mq¡1X

j=1

rq;jqa
¤
q;jq

aq;jq = a¤
q;jq

+ aq;mq j = 1; ::::;mq

Response:

bK =
K¡1X

k=1

ckb¤
k bk = b¤

k + bK k = 1; :::::::;K (10)

2.5 Results

From the CC numerical solution, which appears in appendix I, we recover the
values of the standard coordinates of the categories in CA by applying the above
transformation.

For example, for the …rst dimension, we obtain:

9(2:9321 + bK) + 12(2:0246 + bK) + 9(1:1488 + bK) + 6bK = 0

7



bK = ¡1:6951

Then,

b1 = 1:237

b2 = 0:3295

b3 = ¡0:5463

b4 = ¡1:6951

This operation is repeated for the second and the third principal axes, as
well as all the process for the attributes.

To corroborate the results, we ran the SimCA program (Greenacre, 1986)
to get the CA principal coordinates and then converted these to the following
standard coordinates (see appendix I):

Dim: 1 Dim: 2 Dim: 3
A 1:2545 0:7888 0:8966
B 0:3342 1:3029 ¡0:4367
C ¡0:5540 1:0485 ¡1:2624
D ¡1:7191 ¡0:1500 1:4220

The values agree with those recovered from CC once the correction factorq
M¡1

M =
q

35
36 is applied. This is due to the computation of unbiased variances

in CC.

3 Equivalence of CCM and CA

So far, we have established the relationship between CA of concatenated tables
and canonical correlation analysis where one set of variables is composed by
several categorical variables. We now look at the relationship between Carroll’s
CCM and CA, showing that there are simple scaling factor di¤erences in the
eigenvalues (principal inertias in CA) and the response category scores (standard
coordinates in CA). We show these relationships by detailing the CCM and CA
theory side by side.

3.1 Relation between the eigenvalues

First Step

Categorical Conjoint Measurement

sq;jq;k ´
r

mq

nkM
(nq;jq;k ¡ nk

mq
)
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where k is the response category assigned to the level jq of the factor q:

Correspondence Analysis.

From (5) the centered and standarized matrix can be written as:

tq;jq;k =

(
nq;jq;k

QM
¡ 1

Qmq
£ nk

M
)

r
1

Qmq
£

r
nk

M

=

1

QM
£

p
Q

p
mq

p
M

p
nk

£ (nq;jq;k ¡ nk

mq
) =

p
mqp

Q
p

M
p

nk

£ (nq;jq;k ¡ nk

mq
)

tq;jq;k =
1p
Q

£
r

mq

Mnk
£ (nq;jq;k ¡ nk

mq
)

Thus, there is only a scaling factor equal to
1p
Q

; linking the two approaches,

where Q is the number of attributes.

Second Step From the previous operations we obtain Sq;jq;k as well as Tq;jq;k

which corresponds to the CCM and CA matrices that collect the centered and
standarized data for each factor, for each level and for each one of the categories,
calculated previously. Then we follow with the operation,

CCM CA

R =
PQ

q=1 ST
q Sq TT T =

1

Q

PQ
q=1 TT

q Tq =
1

Q
R:

which gives the relationship

1

Q
¸CCM = ¸CA (11)

where ¸CCM and ¸CA are the eigenvalues obtained applying CCM and CA
respectively. This relation is corroborated with the data set. Thus the principal
inertias in CA are equal to the eigenvalues from CCM divided by Q.

Since the CA of a concatenated table is the average of the inertias of the
individual tables (Greenacre, 1994), the total variance in CCM is just the sum
of the inertias of the Q tables.
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3.2 Relationship between the coordinates of CCM and CA

We use the third step in Section 2.1 and the CA theory in Section 2.2. The
standard coordinates in CA are de…ned as

Y = D
¡ 1

2
c V (12)

where Y are the column standard coordinates, Dc are the diagonal matrix
with the column masses in the main diagonal and V are the right singular
vectors. Since ck =

nk

M
it follows from (12) that:

yl =

p
Mp
nk

vl

p
nk

ylp
M

= vl

Hence from (3),
ylp
M

are the response category scores in CCM.

Thus the response category scores obtained by CCM are the same as the
standard coordinates obtained when we apply CA to the concatenated table

but rescaled by the factor
1p
M

:

3.3 Results

For the …rst dimension, the values are the following:

CA standard coordinates CCM estimated coe¢cients
A 1:2545 ¡0:2091
B 0:3342 ¡0:0557
C ¡0:5540 0:0923
D ¡1:7191 0:2865

where the relation is equal to
1p
36

:

The relation between the eigenvalues is the following:

Eigenvalues CA CCM
¸1 0:4755 0:9501
¸2 0:2583 0:5166
¸3 0:0440 0:0880

In this case Q = 2 since the variable “size” was not included in the analysis
because it has zero inertia. We corroborate that the two sets of eigenvalues
di¤er by a factor of 2:
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4 Interaction E¤ects

As noted previously, Green and Wind (1973) have pointed out as future research
the possibility to introduce interaction terms explicitly in categorical conjoint
measurement. The same idea is re‡ected once again in Green (1973).

We now show how CA is able to handle interaction e¤ects. Furthermore, we
show the connection again with the analysis of interactions using CC and CCM.

We illustrate our approach using a study designed by an airline company. At
the beginning, the interest of the study was to examine if a particular respon-
dent, with a particular pro…le, had di¤erent perceptions between di¤erent airline
companies, di¤erent prices, service levels and timetables. The four attributes
are the following:

1. Airline company, where m1 = 5; with levels: TWA, IBERIA, KLM,
British Airways and TAP.

2. Price, where m2 = 5; with levels (in pesetas): Levels: P1 = 85.000, P2 =
100.000, P3 = 115.000, P4 = 130.000, and P5 = 145.000.

3. Service, where m3 = 3; with levels: S1 = bellow the mean, S2 = in the
mean and S3 = above the mean.

4. Timetable, where m4 = 3; with levels: T1 = 3 hours before of your
preferences, T2 = 2 hours before and T3 = 1 hour before.

4.1 Correspondence analysis. Results.

4.1.1 Analysis without interaction e¤ects

In this particular case, we have 5 £ 5 £ 3 £ 3 = 225 combinations. The analysis
is applied at the individual-response level, getting the utility model for this
person’s pro…le. We use the answers from one of the PhD students in the
Universitat Pompeu Fabra (Barcelona, Spain) as an illustration of the approach.

The output of the CA appears in appendix II. As shown in previous sections,
the data are coded as a concatenated table, obtaining the same results as a
conjoint analysis which has been suitably rescaled. The interpretation of the
map is the following (see …gure 1 in appendix II):

Prices:

The …rst principal axis contains 70:8% of the total information (total inertia
= 0:3123), and the …rst two principal axes contain 96:2%. This big concentration
of variance in the …rst principal axis is because of the type of data we are
analyzing. The response category points form a curve known as the “horseshoe”
or “arch” which is common for data on an ordinal scale. One extreme of the …rst
principal axis will indicate high levels of utility and the other extreme, low levels
of utility. The second principal axis normally di¤erenciates the attribute levels
depending on the distribution in the intermediate levels. Given the meaning
in terms of utility of the principal axes, we can …nd that the cheapest prices,
P1 and P2, very correlated with the …rst principal axis, are situated near the
category which represents the higher utility level. On the other hand, while P3
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is highly correlated with the second principal axis and near the high utility B,
P4 and P5, correlated also with the …rst principal axes, are situated near the
lowest level of utility, D.

Companies:

TWA, KLM and B.A. are all associated with high levels of utility. The
common characteristics among them are that they are non-national and have
a well-known reputation. TAP is the one that is most disliked, maybe because
it is not well known in Spain. IBERIA is di¤erenciated with respect to the
others. It has an important correlation with the second principal axis because
of the mixture of answers in the extreme categories. This is the only national
company.

Services:

The extreme levels, S1 and S3, are more identi…ed with the …rst principal
axis. The level representing “a service above the mean” is rated the best and
the one which represents “a service below the mean” the worst rated. The
intermediate level, S2, has a strong correlation with the second principal axis,
given a more equalized distribution of the answers between the di¤erent category
levels.

Timetable:

With a similar pattern as the service attribute, the extreme levels, T1 and T3,
have a high correlation with the …rst principal axis and so they are associated
with the extreme utility category levels. The di¤erence with respect to the
attribute of service is that the attribute level T2; which re‡ects the mean level,
totally explained by the second principal axis, is situated above the …rst principal
axis because of a bigger concentration of answers in the extreme categories.

At this point the analysis o¤ers, for a particular subject, the utility of each
attribute. But we do not stop here since further interests come with the following
idea. When a subject has to evaluate attributes referring to a long ‡ight it may
be possible that a combination of two variables generates a utility signi…catively
bigger or smaller that the sum of the utilities previously obtained. In applied
terms this can be translated as the possibility to sell special o¤ers that could
contain the lower level of price with adjustments in other attributes like the
service level (lower value) or the timetable (quite far from the preferences) or
even changing the airline company. These considerations imply perceptions
that are di¤erent from the linear combination of utilities previously estimated.
Since “price” is the variable with bigger inertia in the previous analysis, we
constructed an interaction variable composed of “price” and another variable.
The di¤erent levels of “airline company” have similar utilities, since in terms of
signals of quality, all of the companies are quite homogeneous. The exception
is TAP, and the reason can be the ignorance. The levels of “service” have small
inertia as well as their interactions with the rest of variables. The reason can
be a small real di¤erence between the levels of this variable. But the situation
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is di¤erent with the “timetable” attribute. The total inertia increases more and
the new results are adding interesting information (see appendix II).

4.1.2 Introduction of interaction e¤ects

The new variable, “price £ timetable” has 15 levels, which can be labelled as:
PT11, PT12, PT13, ... , PT51, PT52, PT53, where the letters indicate the original
variables and the subindices indicate the levels of the two attributes.

The data matrix to be analyzed and the results appear in appendix II. Once
again we code the data as a concatenated table. It includes three active variables
with their levels: the interaction variable (price £ timetable), airline company
and service. Further, the original variables, price and timetable, will be added
as supplementary points, being the centroids of the interactions. The reason is
not to repeat information. The interaction variables include the within (eg., the
utlilty of PT1j2 versus the one of PT1j

0
2
. The price label is the same in both

variables, but the timetable levels are di¤erent: j2 6= j
0
2) and the between inertia

(eg., PT1j2 and PT2j
0
2

where di¤erent levels for both attributes are taken) while
the main variables contribute only with the between inertia.

We are going to compare the new inertia and the one previously obtained, to
be able to quantify its increases and hence justify the inclusion of the interaction
terms:

Inertia without interactions: Between = 0:3123
Inertia with interactions: Between + Within = 0:6188

With the introduction of the interaction e¤ects, we double the total inertia.
We can interpret the results from the map that appears in appendix II (see
…gure 2). The …rst principal axis still di¤erenciates between the most and the
least preferred levels. The original levels (supplementary points) appear as the
centroids of the interactions. The interactions show us that for the lowest level
of the factor price, the variable timetable does not matter, in other words, if
the price is the cheapest one, it does not matter if the timetable of the ‡ight
is not adjusted to your preferences. The reason can be the fact that we are
treating transatlantic ‡ights where the attribute timetable is less important
than for shorter business travel where you might need to depart and return
in the same day. On the other hand, if the price is the highest one, you only
accept the timetable more adjusted to your preferences. We can see that once
prices increase, the timetable attribute takes e¤ect again, in such a way that
to mantain the same utility, a timetable more adjusted to ones preferences is
required. These trade-o¤ e¤ects are collected on the second principal axis. We
can conclude that as price increases, the interaction levels more correlated with
the second principal axis re‡ect the timetable level you require to compensate
the increase in price and to stay with an intermediate utility, B or C, and not
going to the D one.
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Finally we calculate the standard coordinates for the categories. Later we
will compare them with the ones obtained in CC to check the equivalence.

Dim:1 Dim:2 Dim:3
A 1:242 0:849 ¡0:506
B 0:427 ¡0:990 1:361
C ¡0:520 ¡1:347 ¡1:553
D ¡1:283 0:881 0:308

4.2 Canonical Correlation

When we include interaction e¤ects, the relation between CA and CC is less
obvious than in the previous case. We need one step more to understand the
previous equivalence. The scheme of the explanation will be the following. First
of all, we will describe the way to code the interaction in CC as a single dummy
variable, in order to obtain identical results to those of CA. Secondly, we will
show the equivalence between the results obtained with this approach and the
results obtained with the more customary way of handling categorical variable
interactions in linear models.

When we introduce an interaction variable, the type of data matrix to ana-
lyze in CA is still a concatenated table, in this case composed of 3 variables, one
with 15 levels (price£timetable) and the others with 5 levels (company) and 3
levels (service). It suggests immediately that CC has to be computed as before
and that we have to omit one of the PT levels, one of the company levels and
one of the service levels. We drop the last level of each one. Finally we recover
the CA results just as before.

We point out that the usual way of handling categorical variables plus their
interactions in linear models would be to drop one category of each one of the
main e¤ects and all categories of the interactions involving these levels (see the
example in the appendix II). In this case, the problem is how to be able to
recover all the coe¢cients, especially those of the interaction terms which are
not so obvious. The key point to realize is that even though this way of centering
in the old way could bring to us to the conclusion that each interaction set is
treated as a di¤erent variable, it is not like this in the calculations. All the
interactions belong to the same variable and so all the omitted coe¢cients take
the same value.

Once we consider the previous explanation, since the results should be the
same, we know that the new way collects in its coe¢cients both main and
di¤erential e¤ects, which should be obtained separately in the traditional way.

4.2.1 Operation of centering. New way.

We have 2 attributes composing the new interaction variable, where j1 =
1; :::;m1 and j2 = 1; :::;m2 are the levels for each attribute. To make the
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notation slilghtly easier and since we could be studying the interaction of any
pair of variables, we set: j1 ´ j , j2 ´ j

0
and m1 ´ m, m2 = m

0
: The total

number of levels for the interaction variable is equal to m £ m
0
: The operation

of centering to recover the coe¢cients will be the following,

dmm0 =
X

jj0 6=

X

mm0
rjj0 d¤

jj0

We consider all the coe¢cients, which correspond to all the possible interaction
combinations, except the one composed of the last level of each attribute. The
mass rjj0 , is in this case the total number of cases for a particular interaction

level, which is composed of the levels j for the …rst attribute and j
0

for the
second, and d¤

jj0 is the coe¢cient obtained from the CC estimation in the new

way, corresponding to level jj
0

of the interaction variable. Since in this case,
rjj0 = 1

m£m0 for all jj
0
,

1

m £ m0

X

jj0 6=

X

mm0

(d¤
jj0 + dmm0 ) +

1

m £ m0 dmm0 = 0

X

jj0 6=

X

mm0

(d¤
jj0 + dmm0 ) + dmm0 = 0

X

jj0 6=

X

mm0
d¤

jj0 + (m £ m
0
)dmm0 = 0

dmm0 =

PP
jj0 6=mm0 d¤

jj0

m £ m0

From here, we recover the coe¢cients as before:

djj0 = d¤
jj0 + dmm0

4.2.2 Operation of centering. Traditional way.

m¡1X

j=1

m
0¡1X

j0=1

rjj0 (e¤
jj0 + c) +

1

m £ m0 (m ¡ 1 + m
0
) c = 0

where e¤
jj0 is the coe¢cient obtained from the CC estimation in the tradi-

tional way, corresponding to the level of the interaction variable composed of
the levels j for the …rst attribute and j

0
for the second attribute and c is the esti-

mated coe¢cient corresponding to the interaction levels: (m1); (m2); :::::; (1m
0
); (2m

0
); ::::.
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Since rjj0 = 1
m£m0 ;

1

m £ m0

m¡1X

j=1

m
0 ¡1X

j0=1

(e¤
jj0 + c) +

1

m £ m0 (m ¡ 1 + m
0
) c = 0

(m ¡ 1)(m
0 ¡ 1)c +

m¡1X

j=1

m
0 ¡1X

j0=1

e¤
jj0 + (m ¡ 1 + m

0
) c = 0

c[(m ¡ 1)(m
0 ¡ 1) + (m ¡ 1 + m

0
)] +

m¡1X

j=1

m
0 ¡1X

j0=1

e¤
jj0 = 0

((m £ m
0
) ¡ m ¡ m

0
+ 1 + m ¡ 1 + m

0
)c +

m¡1X

j=1

m
0 ¡1X

j0=1

e¤
jj0 = 0

(m £ m
0
) c +

m¡1X

j=1

m
0¡1X

j0=1

e¤
jj0 = 0

c =
¡Pm¡1

1

Pm
0 ¡1

1 e¤
jj0

m £ m0

From here, we recover the coe¢cients (in this case di¤erentials with respect
to the main e¤ects) as always,

ejj0 = e¤
jj0 + c

From the traditional way,

a1;m + a2;m0 + c = fmm0

where a1;m; a2;m0 are the coe¢cients of the main e¤ects for two attributes and
their last levels and fmm0 is the interaction e¤ect corresponding to the last level
for each attribute.

From the centering of the main e¤ects in the traditional way we get

a1;m = ¡ 1

m

m¡1X

1

a¤
1;j

a2;m0 = ¡ 1

m0

m
0¡1X

1

a¤
2;j0

where a¤
1;j ; a

¤
2;j0 are the estimated coe¢cients of the main e¤ects for two at-

tributes and their levels.
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Then

fmm0 = ¡ 1

m

m¡1X

1

a¤
1;j ¡ 1

m0

m
0 ¡1X

1

a¤
2;j0 + c

Since dmm0 = fmm0 ; if we substitute this expression coming from the traditional
way to code into the restriction of the new way, we obtain,

X

jj0 6=

X

mm0

d¤
jj0 + (m £ m

0
)(¡ 1

m

m¡1X

1

a¤
1;j ¡ 1

m

m
0 ¡1X

1

a¤
2;j0 + c) = 0

X

jj0 6=

X

mm0
d¤

jj0 ¡ m
0

m¡1X

1

a¤
1;j ¡ m

m
0 ¡1X

1

a¤
2;j0 + (m £ m

0
)c = 0

m¡1X

j=1

m
0 ¡1X

j0=1

(d¤
jj0 ¡ a¤

1;j ¡ a¤
2;j0 + c) +

m
0¡1X

j0=1

(d¤
mj0 ¡ a¤

2;j0 + c) +
m¡1X

j=1

(d¤
jm0 ¡ a¤

1;j + c) + c = 0

and it is equivalent to the expression used in the traditional way,

m¡1X

1

m
0¡1X

1

(e¤
jj0 + c) + (m ¡ 1 + m

0
) c = 0

4.3 Results

In this particular example we have,

¸1CCM

¸1CA
=

0; 9353

0; 3117
¼ 3

¸2CCM

¸2CA
=

0; 5977

0; 1992
¼ 3

¸3CCM

¸3CA
=

0; 3234

0; 1078
¼ 3

The canonical correlation coe¢cients for the new and the traditional way of
coding the data are the following: 0:9671, 0:7731, 0:5687 and the standard
coordinates for the categories:

Dim:1 Dim:2 Dim:3
A ¡1:238 0.846 ¡0:505
B ¡0:426 ¡0:989 1:358
C 0.518 ¡1:343 ¡1:548
D 1:279 0.879 0.308

This agrees with the results reported in section 4.1.
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5 Conclusions and discussions

This paper proposed that when our objective is to analyze categorical conjoint
data to obtain the utility of di¤erent attribute levels, the results o¤ered by
CCM, which is the technique normally used in this context, are the same as
those o¤ered by the CA of a concatenated table. We have proved this idea
analytically, using CC as a bridge between them, and illustrated the equivalence
between the di¤erent methods.

A particular applied case, a study designed by an airline company, as well
as the relevant literature, suggested that to include interaction e¤ects could be
useful. We did the extension of CA and CC to be able to treat interaction
e¤ects and …nally to CCM. The equivalence was established theoretically and
illustrated with the airline data.

Given the results we can conclude that CA should be used more often in
this type of analysis since the results obtained are the same as those o¤ered by
CCM. Furthermore, CA o¤ers a map and this allows us to interpret the results
more rapidly and easily.

As future research, it could be interesting to apply the results of this paper
to more than one subject. In this new case, the matrices of dummy variables
should take the form of concatenated tables with all possible combination, as
before, but for all the subjects, one below the other, for the attributes as well
as for the response.

Another point to consider is what happens when we have more than one
interaction e¤ect. For the “new way” of coding, a problem appears when we
want to analyze two interactions which involve one common attribute, eg. P £T
and P £S since a double inclusion of the common attribute (in this case, price)
occurs.

From an applied point of view, even though we are speaking all the time
about one particular subject, from the …rst analysis without interactions, we
could get information like the fact that, for long distance travel, price is the
most relevant attribute. The company to travel with is not so important if it
is well known, maybe because it implies the required safety. Timetable is more
valued than service, maybe because it can be perceived as quite standard be-
tween the well known airline companies. Once interaction variables are included,
the information obtained can help to establish particular o¤ers from the travel
agencies, establishing the right trade-o¤ between the attributes, in other words,
doing optimal combinations that generate di¤erent utilities than the …rst one
obtained. If individual marketing was possible to do, to this particular person,
the good o¤er could include, for example, the cheapest price, the company and
the timetable that the travel agency prefers (except TAP), with ‡exilibity in
the level of service.
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7 Appendix I. Housing data.

7.0.1 Conjoint analysis (Carroll, 1968). Data matrix

House no.(M) SIZE (J1) PRICE (J2) CONDITION(J3) TASK(J0)

1 2 25 E A
2 2 25 G A
3 2 25 P C
4 2 30 E A
5 2 30 G B
6 2 30 P C
7 2 35 E B
8 2 35 G B
9 2 35 P D
10 2 40 E B
11 2 40 G C
12 2 40 P D
13 3 25 E A
14 3 25 G A
15 3 25 P C
16 3 30 E A
17 3 30 G B
18 3 30 P C
19 3 35 E B
20 3 35 G B
21 3 35 P D
22 3 40 E B
23 3 40 G C
24 3 40 P D
25 4 25 E A
26 4 25 G A
27 4 25 P C
28 4 30 E A
29 4 30 G B
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7.0.2 Results

(a) Category Values

SOLUTION 1 2 3
EIGENVALUES 0; 9501 0; 5166 0; 0880

A ¡0; 2091 ¡0; 1315 ¡0; 1494
B ¡0; 0557 0; 2172 0; 0728
C 0; 0923 ¡0; 1747 0; 2104
D 0; 2865 0; 0250 ¡0; 2370

(b) Attribute Functions by Solution

SOLUTION NUMBER
ATTRIBUTE LABEL 1 2 3

1: Size of house S2 0 0 0
S3 0 0 0
S4 0 0 0

2:Asking Price P1 = 25 ¡0:1086 ¡0:1459 ¡0:0295
P2 = 30 ¡0:0575 ¡0:0297 0:0446
P3 = 35 0:0584 0:1531 ¡0:0305
P4 = 40 0:1077 0:0225 0:0154

3: Condition CE ¡0:1324 0:0428 ¡0:0383
CG ¡0:0570 0:0320 0:0563
CP 0:1894 ¡0:0748 ¡0:0133

7.1 Canonical correlation

7.1.1 Results

Categories (Y)

Canonical weights 1st axis Canonical weights 2nd axis Canonical weights 3rd axis
A 2.9320 -0.9256 0.5180
B 2.0246 1.1368 1.8327
C 1.1488 -1.1817 2.6469

Attributes (X)
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Canonical weights 1st axis Canonical weights 2nd axis Canonical weights 3rd axis
s2 0 0 0
s3 0 0 0
p1 1.3124 -1.3858 -0.8953
p2 1.0022 -0.4293 0.5822
p3 0.2994 1.0752 -0.9152
CE 1.9524 0.9689 -0.4994
CG 1.4952 0.8799 1.2952

Canonical correlations: 0.9752 0.7188 0.2966

7.2 Correspondence analysis

Concadenated table

A B C D
s2 3 4 3 2
s3 3 4 3 2
s4 3 4 3 2
p1 6 0 3 0
p2 3 3 3 0
p3 0 6 0 3
p4 0 3 3 3
CE 6 6 0 0
CG 3 6 3 0
CP 0 0 6 6

Inertia and percentages of inertia

1 0.4755 61.14% **************************************************
2 0.2583 33.21% ***************************
3 0.0440 5.65% *****
---------
0.7778

Row Contributions

I|Name| QLT MAS INR| k=1 COR CTR| k=2 COR CTR| k=3 COR CTR|
1| p1 |1000 125 196| 0.6517 347 112| 0.8753 627 371| 0.1769 26 89|
2| p2 |1000 125 36 | 0.3449 535 31| 0.17810 143 15|-0.2675 322 203|
3| p3 |1000 125 161|-0.3502 123 32|-0.91863 844 408| 0.1829 33 95|
4| p4 |1000 125 71 |-0.6463 940 110|-0.13482 41 9|-0.0923 19 24|
5| CE |1000 167 161| 0.7944 841 221|-0.25708 88 43| 0.2299 71 200|
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6| CG |1000 167 54 | 0.3422 468 41|-0.19216 148 24|-0.3098 384 364|
7| CP |1000 167 321|-1.1366 861 453| 0.44924 135 130| 0.0798 4 24|

The attribute service does not appear given that its contribution is zero.

Column Contributions

Name|QLT MAS INR| k=1 COR CTR| k=2 COR CTR| k=3 COR CTR|
A|1000 250 304| 0.8651 792 393| 0.4009 170 156| 0.18803 37 201|
B|1000 333 214| 0.2304 106 37|-0.6622 877 566|-0.09157 17 64|
C|1000 250 161|-0.3820 292 77| 0.5329 568 275|-0.26474 140 398|
D|1000 167 321|-1.1854 937 493|-0.0762 4 4| 0.29820 59 337|

8 APPENDIX II. AIRLINE DATA

8.1 Correspondence analysis.

8.1.1 Data Matrix

A B C D
PT11 12 3 0 0
PT12 12 3 0 0
PT13 12 3 0 0
PT21 0 12 3 0
PT22 12 3 0 0
PT23 12 3 0 0
PT31 0 0 14 1
PT32 0 9 5 1
PT33 4 10 1 0
PT41 0 0 0 15
PT42 0 0 7 8
PT43 0 10 4 1
PT51 0 0 0 15
PT52 0 0 0 15
PT53 0 0 7 8
TWA 16 10 8 11

IBERIA 16 8 6 15
KLM 16 10 8 11
B.A. 16 10 9 10
TAP 0 18 10 17
S1 20 16 12 27
S2 20 21 15 19
S3 24 19 14 18

The previous attributes, price and timetable and their levels, appear in the
analysis as supplementary points.
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Row Contributions

I| NAME| QLT MAS INR| k=1 COR CTR| k=2 COR CTR| k=3 COR CTR|
1| PT11|1000 22 51| 1078 824 83| 480 164 26| -133 12 4|
2| PT12|1000 22 51| 1078 824 83| 480 164 26| -133 12 4|
3| PT13|1000 22 51| 1078 824 83| 480 164 26| -133 12 4|
4| PT21|1000 22 64| 238 32 4|-1062 630 126| 779 339 125|
5| PT22|1000 22 51| 1078 824 83| 480 164 26| -133 12 4|
6| PT23|1000 22 51| 1078 824 83| 480 164 26| -133 12 4|
7| PT31|1000 22 136| -570 86 23|-1197 378 160|-1428 537 420|
8| PT32|1000 22 38| -2 0 0| -985 904 108| 320 96 21|
9| PT33|1000 22 38| 581 318 24| -524 259 31| 669 422 92|
10| PT41|1000 22 90|-1282 653 117| 881 309 87| 309 38 20|
11| PT42|1000 22 43| -926 717 61| -158 21 3| -559 262 64|
12| PT43|1000 22 43| 61 3 0| -961 775 103| 514 222 55|
13| PT51|1000 22 90|-1282 653 117| 881 309 87| 309 38 20|
14| PT52|1000 22 90|-1282 653 117| 881 309 87| 309 38 20|
15| PT53|1000 22 43| -926 717 61| -158 21 3| -559 262 64|
16| TWA |1000 67 3| 130 645 4| 57 125 1| -78 229 4|
17| Iber|1000 67 6| 21 7 0| 240 964 19| -42 29 1|
18| KLM |1000 67 3| 130 645 4| 57 125 1| -78 229 4|
19| B.A.|1000 67 4| 147 604 5| 8 2 0| -119 394 9|
20| Tap |1000 67 45| -429 443 39| -363 316 44| 316 241 62|
21| S1 |1000 111 5| -123 519 5| 117 470 8| 18 12 0|
22| S2 |1000 111 2| 22 47 0| -97 933 5| 14 20 0|
23| S3 |1000 111 2| 101 876 4| -19 32 0| -33 92 1|

Supplementary points

IS| NAME| QLT MAS INR| k=1 COR CTR| k=2 COR CTR| k=3 COR CTR|
24| P1 |1000 67 152| 1078 824 249| 480 164 77| -133 12 11|
25| P2 |1000 67 72| 798 954 136| -34 2 0| 171 44 18|
26| P3 |1000 67 90| 3 0 0| -902 974 272| -146 26 13|
27| P4 |1000 67 57| -716 973 110| -79 12 2| 88 15 5|
28| P5 |1000 67 177|-1163 825 289| 535 174 96| 20 0 0|
29| T1 |1000 111 24| -364 992 47| -3 0 0| -33 8 1|
30| T2 |1000 111 4| -11 6 0| 140 922 11| -39 72 2|
31| T3 |1000 111 29| 374 855 50| -137 114 10| 72 31 5|

Column contributions

J| NAME| QLT MAS INR| k=1 COR CTR| k=2 COR CTR| k=3 COR CTR|
1| A |1000 284 299| 693 737 438| 379 220 205| -166 42 73|
2| B |1000 249 182| 238 126 45| -442 433 245| 447 442 461|
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3| C |1000 182 207| -290 119 49| -601 512 330| -510 369 439|
4| D |1000 284 311| -716 756 468| 393 228 221| 101 15 27|

8.2 Canonical Correlation. New way of coding.

Linear combinations for …rst canonical correlation. Number of obsservations =
225.

Response categories,

Coef. Std. Error t p> jtj
A ¡2:5174 :04683 ¡53:756 0:000
B ¡1:7052 :04847 ¡35:179 0:000
C ¡:7614 :05230 ¡14:369 0:000

Attribute levels,

Coef. Std. Error t p> jtj
TWA ¡:5770 :0581 ¡9:928 0:000

IBERIA ¡:4637 :0581 ¡7:977 0:000
KLM ¡:5771 :0581 ¡9:928 0:000
B.A. ¡:5946 :0581 ¡10:229 0:000
S1 :2303 :0450 5:116 0:000
S2 :0813 :0450 1:806 0:072

PT11 ¡2:0677 :1007 ¡20:537 0:000
PT12 ¡2:0677 :1007 ¡20:537 0:000
PT13 ¡2:0677 :1007 ¡20:537 0:000
PT21 ¡1:2007 :1007 ¡11:925 0:000
PT22 ¡2:0677 :1007 ¡20:537 0:000
PT23 ¡2:0677 :1007 ¡20:537 0:000
PT31 ¡:3674 :1007 ¡3:649 0:000
PT32 ¡:9530 :1007 ¡9:465 0:000
PT33 ¡1:5547 :1007 ¡15:442 0:000
PT41 :3674 :1007 3:649 0:000
PT42 0 :1007 0:000 1:000
PT43 ¡1:0180 :1007 ¡10:112 0:000
PT51 :3674 :1007 3:649 0:000
PT52 :3674 :1007 3:649 0:000

Canonical correlations:
0.9671 0.7731 0.5687

We recover the missing coe¢cients by centering:

Companies:

(a¤
TWA + aTAP ) + (a¤

IBERIA + aTAP ) + (a¤
KLM + aTAP ) + (a¤

B:A: + aTAP ) + aTAP = 0
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aTAP = 0:443

aTWA = ¡0:134

aIBERIA = ¡0:021

aKLM = ¡0:134

aB:A: = ¡0:152

Services:

(a¤
S1

+ aS3) + (a¤
S2

+ aS3) + aS3 = 0

aS1 = 0:126

aS2 = ¡0:023

aS3 = ¡0:104

Interaction variable PT:

(a¤
PT11

+ aPT53) + (a¤
PT12

+ aPT53) + ::: + aPT53 = 0

aPT53 = 0:955

We recover the true values:

aPT11 = ¡1:113 aPT21 = ¡0:245 aPT31 = 0:588 aPT41 = 1:322 aPT51 = 1:322
aPT12 = ¡1:113 aPT22 = ¡1:113 aPT32 = 0:002 aPT42 = 0:955 aPT52 = 1:322
aPT13 = ¡1:113 aPT23 = ¡1:113 aPT33 = ¡0:595 aPT43 = ¡0:063 aPT53 = 0:955

8.3 Canonical Correlation. Traditional way of coding.

Linear combinations for …rst canonical correlation. Number of observations =
225.

Response categories,

Coef. Std. Error t p> jtj
A ¡2:5174 :04683 ¡53:756 0:000
B ¡1:7052 :04847 ¡35:179 0:000
C ¡:7614 :05230 ¡14:369 0:000
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Attribute levels,

Coef: Std:Error t P > jtj
P1 2:0677 :10068 20:537 0:000
P2 2:0677 :10068 20:537 0:000
P3 1:5547 :10068 15:442 0:000
P4 1:0180 :10068 10:112 0:000

TWA :5771 :05813 9:928 0:000
IBERIA :4637 :05813 7:977 0:000
KLM :5771 :05813 9:928 0:000
B.A. :5946 :05813 10:229 0:000
T1 ¡:3674 :10068 ¡3:649 0:000
T2 ¡:3674 :10068 ¡3:649 0:000
S1 ¡:2305 :04503 ¡5:116 0:000
S2 ¡:0813 :04503 ¡1:806 0:072

PT11 :3674 :14238 2:581 0:011
PT12 :3674 :14238 2:581 0:011
PT21 ¡:5000 :14238 ¡3:509 0:001
PT22 :3674 :14238 2:581 0:011
PT31 ¡:8199 :14238 ¡5:758 0:000
PT32 ¡:2343 :14238 ¡1:646 0:101
PT41 ¡1:0180 :14238 ¡7:150 0:000
PT42 ¡:6506 :14238 ¡4:569 0:000

Canonical correlations: 0.9671 0.7731 0.5687

From the results we corroborate that the canonical correlation coe¢cients
are the same if we code the data in the new way and if we do it in the traditional
form. Further, the coe¢cients for the main e¤ects are also the same.

The remaining work is to …nd the values for the interactions in the new form.
The restriction to be applied in this case is the following:

(a
0
PT11

+ c) + (a
0
PT12

+ c) + c + (a
0
PT21

+ c) + (a
0
PT22

+ c) + c + ::: + 3c = 0

c = 0:141

Then, the true coe¢cients are recovered in the following way:

aPT11 = aP1 + aT1 + (a
0
PT11

+ c)

aPT11 = 1:113

which di¤er from the previous recovered values only in their sign. The operation
is repeated for all the other coe¢cients obtaining the following solutions:

aPT21 = 0:245 aPT31 = ¡0:588 aPT41 = ¡1:322 aPT51 = ¡1:322
aPT22 = 1:113 aPT32 = ¡0:002 aPT42 = ¡0:955 aPT52 = ¡1:322
aPT23 = 1:113 aPT33 = 0:595 aPT43 = 0:063 aPT53 = ¡0:955
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                      S1* * *TWA
  . . . . . . . . . *T1 .T2**BA. . . . .*P2. . . . .
              *P4       S2*S3   *T3
                          .
                  *TAP    .
                          .
                          .
                          .
                          .
                          *P3
                          .
                          .     *B
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Figure 1:

Correspondence Analysis ASCII Map by SimCA
Horizontal axis is dimension 1 with inertia = 0.2206 (70.5%)
Vertical axis is dimension 2 with inertia = 0.0821 (26.2%)
96.7% of total inertia is represented in the above map.
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   PT52                 .
PT51*PT41               .                   *A
    D                   .
                        .               PT13
      *P5               .             PT12*PT11
                        .             PT23 P1
                        .*IBERIA
                      T2*KLM
                    S1* TWA**B.A.
  . . . . . .*P4. .*T1.S2**S3 . . . .*P2. . . .
      PT53*PT42         .     *T3
                        .
                  *TAP  .
                        .         *PT33
                        .
                        .
                        *P3
                    PT32**PT43  *B
                        .   *PT21
               *PT31    .
                *C      .

Figure 2:

Correspondence Analysis ASCII Map by SimCA

Horizontal axis is dimension 1 with inertia = 0.3117 (50.4%)
Vertical axis is dimension 2 with inertia = 0.1992 (32.2%)
82.6% of total inertia is represented in the above map
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