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Abstract

This paper analyses the robustness of Least-Squares Monte Carlo, a technique re-

cently proposed by Longstaff and Schwartz (2001) for pricing American options.

This method is based on least-squares regressions in which the explanatory vari-

ables are certain polynomial functions. We analyze the impact of different basis

functions on option prices. Numerical results for American put options provide

evidence that a) this approach is very robust to the choice of different alternative

polynomials and b) few basis functions are required. However, these conclusions

are not reached when analyzing more complex derivatives.



1 Introduction

How much do you pay for a certain asset if you know its final pay-off but you

ignore when you will receive it? That is one of the main questions that academics

and practitioners interested in American derivatives try to answer. The difficulty

for answering this question arises because we do not know the exact time at

which we will receive the reward promised by the asset and, then, there exists

a possibility of early exercise. At each exercise time before maturity, the holder

of this asset must decide if he exercises the option or if he waits until a future

exercise date. This decision depends on the comparison, at each date, between

the (known) immediate exercise value and the (unknown) continuation value.

Closed-form expressions for derivative prices exist in a few special cases. One

example is an European option written on a single underlying asset whose price

was derived by Black and Scholes (1973) and Merton (1973). Analytical ex-

pressions for the price of American options have been found, but there are no

easily computable formulae currently available. Then, numerical methods such

as trees, finite difference schemes, quadrature routines or Monte Carlo simulation

are usually required.

The Monte Carlo approach simulates trajectories for asset prices. An esti-

mation of the option price is obtained by the (discounted) average of the option

cash-flows computed for each path. Monte Carlo simulation is appropriate to

price options with complex features (path-dependency, multiple stochastic pro-

cesses, random volatility, jumps, ...).

Although this technique is well suited for pricing European options, it has

not been widely applied to American derivatives, which are priced using other

numerical methods. Recently, Longstaff and Schwartz (2001) have developed an

algorithm in which the continuation value is estimated appropriately by a least-

squares regression jointly with the cross-sectional information provided by Monte

Carlo simulation. They name this technique Least-Squares Monte Carlo (LSM).
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Concretely, these authors propose to regress the (discounted) cash-flows expected

to be received in the future against a set of (basis) functions whose arguments

are the underlying asset prices. These authors claim that the choice of different

functions as well as the number of terms used have little effect on the solution of

the problem.

In this paper we analyze the robustness of the LSM approach for pricing

American derivatives. For a put option, we find that LSM is indeed very robust

to the choice of the basis functions and only three or four terms are usually

required to obtain a reliable price. We also study more sophisticated derivatives.

For the case of an option on the maximum of five assets, we find that the number

of terms and the choice of functions can have non-negligible effects on option

prices.

This article is organized as follows. Section 2 reviews option pricing models,

focusing on American-style derivatives. In Section 3, we briefly present the LSM

technique and we provide a numerical example. Section 4 describes the set of

basis functions used in this paper and we study the pricing of some American

derivatives. Finally, Section 5 concludes the paper.

2 A Review of Derivative Pricing Models

2.1 The Standard Black-Scholes / Merton Model

In the standard Black-Scholes / Merton model, the economy consists of an Eu-

ropean option, its underlying asset (the stock) and a risk-free asset. The model

assumes this market is frictionless, there is a continuous trading of assets and

there exists a constant risk-free rate, r, for lending and borrowing.1 Moreover,

the price of the underlying asset, S, is assumed to follow the GBM (risk-neutral)

1Thus, the amount Bt invested in the risk-free asset at time t follows the differential equation

dBt = rBt dt
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process

dS = r S dt+ σ S dz (1)

where σ is the (constant) volatility rate of the stock return and z is a standard

Brownian motion.

Sometimes, it is useful to reformulate this equation in terms of the natural

logarithm of the asset price, x = ln(S). With this new variable, equation (1)

becomes

dx = ν dt+ σ dz, ν = r − 1

2
σ2 (2)

with the advantage that we have now a constant term in both the drift and the

volatility of the stochastic process.

After building a riskless portfolio and applying no-arbitrage conditions, these

authors derive the following partial differential equation (PDE) for the option

price C(S, t)

1

2
σ2 S2 ∂2C(S, t)

∂S2
+ r S

∂C(S, t)

∂S
+

∂C(S, t)

∂t
= r C(S, t) (3)

The initial boundary condition is given by the final pay-off of the option. For

a call option, it is given by

C(S, T ) = max{ST −K, 0} (4)

If we use the variables x = ln(S), W (x, t) = C(S, t), we obtain a PDE with

constant coefficients for the partial derivatives

1

2
σ2 ∂2W (x, t)

∂x2
+ ν

∂W (x, t)

∂x
+

∂W (x, t)

∂t
= r W (x, t) (5)

This PDE, after a certain change of variables,2 is equivalent to the well-known

“heat equation” and its solution (the call price) is given by

C(S, t) = S N(d1)−K e−r (T−t) N(d2)

2See Black and Scholes (1973) for details.
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where N(.) is the cumulative normal distribution function and

d1 =
ln

(
S
K

)
+ ν (T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

For an European put option, we can use the put-call parity to obtain

P (S, t) = K e−r (T−t) N(−d2)− S N(−d1)

For an American option, the only difference is that, at each exercise time,

we must decide whether to exercise the option or to wait. The boundary which

separates the early exercise and the continuation regions is the optimal exercise

boundary which must be determined to price the option.

2.2 Numerical Methods for Pricing American Derivatives

We now summarize the main techniques that have been proposed in the literature.

Most of these methods are suitable just for some derivatives and there is no

consensus on which of these approaches is the “winner” one. We review analytical

solutions and numerical and analytical approximations.

Analytical solutions provide closed-form expressions for option prices. Al-

though this approach is the most elegant (and fastest) method for pricing deriva-

tives, it may happen that very strict assumptions can lead to an (empirically)

unrealistic model.

Analytical solutions for the case of an American call option with discrete

dividends have been derived by Roll (1977), Geske (1979) and Whaley (1981).

The solution for the infinite horizon case is provided by McKean (1965). Recently,

Ait-Sahlia (1996) and Ait-Sahlia and Lai (1996, 2000) have obtained closed-form

expressions for the optimal exercise boundary.

Other analytical solutions have been obtained by the method of lines (see

Rektorys (1982)) that is applied by Carr and Faguet (1996) and Carr (1998). Carr

and Faguet (1996) discretize the time derivative in the Black-Scholes PDE and
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then solve analytically the resulting sequence of ordinary differential equations.

In a similar way, Carr (1998) also discretizes the time derivative and proposes to

randomize the expiration date of the American option in order to price it. He

shows that this problem is equivalent to the infinite horizon case. Then, he uses

the results of McKean (1965) to obtain exact prices.

Analytical approximations are closed-form solutions for approximations to

the original problem. For American options, this technique has been used by

Johnson (1983), Geske and Johnson (1984), Barone-Adesi and Whaley (1987),

Bunch and Johnson (1992), Broadie and Detemple (1996) and Ho et al. (1997),

among others. See Ait-Sahlia and Carr (1997) and Ju (1998) for a comparison of

these techniques.

Johnson (1983) presents an interpolation method based on regressing option

prices against lower and upper bounds for these prices. A similar technique can

be found in Broadie and Detemple (1996), where the lower bound (LBA) and the

average of lower and upper bound (LUBA) methods are described. The results

depend strongly on the interpolation scheme and the accuracy of the bounds.

Geske and Johnson (1984) apply the Richardson extrapolation technique3 to

their compound option model. They obtain an expression involving an infinite

series with multidimensional cumulative normal distributions. Several modifica-

tions of this model have been suggested. Concretely, Bunch and Johnson (1992)

simplify its numerical computation, Ho et al. (1994) use an exponential ex-

trapolation and Ho et al. (1997) generalize the original technique to deal with

stochastic interest rates.

Barone-Adesi and Whaley (1987) have developed a very fast approximation

based on a simplification of the related PDE, but this technique is not very

accurate for long maturity options.

When the assets have complex features (multiple stochastic processes, non-

3This technique has also been used to accelerate valuation methods by Breen (1991), Huang

et al. (1996), Carr and Faguet (1996), Carr (1998) and Ju (1998).
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Markov property, ...), they cannot be priced, in general, by analytical methods.

In this case, numerical methods are used.

2.2.1 Trees / Lattices

Lattice methods are based on the discretization of the risk-neutral processes fol-

lowed by the relevant variables. Then, backward induction in time is used to

solve for the option price. The most popular methods of this class are binomial

and trinomial trees.

The binomial method was introduced by Cox et al. (1979) and Rendleman

and Bartter (1979). The method is based on the random walk approximation to

the Brownian motion and provides a simple and intuitive numerical solution.

In this method, the partition {t0 = 0, t1, t2, . . . , tN−1, tN = T} of the time
interval [0, T ] is considered. At each point of this partition, it is assumed that the

price of the underlying asset follows a multiplicative binomial process: it either

jumps up by a proportion u or goes down by a proportion d. Both proportions u

and d determine the mean and the volatility of the underlying asset.

According to this evolution of the asset price, the call option price goes either

to Cu = max{uS − K, 0} or to Cd = max{dS − K, 0}. As in the Black-Scholes
model, a riskless portfolio is built and the price of a call option with one period

to maturity is given by

C = e−r ∆t (p Cu + (1− p) Cd), p =
er ∆t − d

u− d
, ∆t = T/N

Thus, the call option price can be interpreted as the (discounted) expectation of

the future pay-offs under the risk-neutral probabilities.

Since the binomial model is an approximation to the continuous-time model

of the asset price, we choose the values of the jump parameters (u and d) and the

(risk-neutral) probability p to match the risk-neutral mean and variance of the

process given in equation (1). As we have two equations and three parameters,

we can freely choose one of them. Two specifications have been proposed in the
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literature: Cox et al. (1979) assume equality between jump sizes4 and Jarrow

and Rudd (1983) assume equal probability of up and down jumps.

To avoid numerical problems, the change of variable x = ln(S) is recom-

mended. Now, x can go either up to x + ∆xu or down to x + ∆xd with prob-

abilities p and 1 − p, respectively. Equating the mean and the variance of the

discrete and continuous processes, we obtain two equations and, as before, one

of the three parameters (∆xu, ∆xd or p) can be chosen in a free way.

For the specification based on S (x), we can build an asset price tree starting

from the initial value S0 (x0). At each node (i, j) in this tree, the asset price is

Si,j = S0 uj di−j (xi,j = x0 + j ∆xu + (i− j) ∆xd) and the call price is Ci,j.

We start at the final node of the tree at time T where we know the value of

the option (its final pay-off). Since we are in a risk-neutral framework, the value

of the option at each node at time T −∆t can be computed as the expected value

at time T multiplied by a discount factor

Ci,j = e−r ∆t (p Ci+1,j+1 + (1− p)Ci+1,j)

and, going back through all the nodes in the tree, we obtain the value of the

option at time zero, C0,0.

For an American option, the only difference is that, at each node, we have

to compare the gain obtained from early exercise with the one obtained if the

option is exercised later.

Generalizations of the binomial approach have been suggested by Breen (1991)

who proposes the “accelerated binomial method” with Richardson extrapolation

to reduce the number of steps, and Broadie and Detemple (1996) who propose

the following modifications:

1. BBS method: In the binomial model, the Black-Scholes formula replaces

the “continuation value” one time step before expiration of the option.

4Under this assumption, the binomial tree is recombining, a very desirable property from a

computational point of view.

7



2. BBSR method: It consists of the BBS method plus the Richardson extrap-

olation technique.

The binomial model is generalized by the trinomial tree model, originally

proposed by Parkinson (1977) and Boyle (1988).

This model assumes that the logarithm of the asset price, x, over a small

interval ∆t, can a) go up by ∆x, b) stay the same or c) go down by ∆x, with

probabilities pu, pm and pd, respectively. As in the binomial model, the values

of these probabilities are chosen to match the risk-neutral mean and variance of

the process (2).

Now, an asset price tree starting from the initial value x0 is built. Analogously

to the binomial method, the value of the option at each node (i, j) in this tree at

time T −∆t, Ci,j, is computed as the discounted expected value

Ci,j = e−r ∆t (pu Ci+1,j+1 + pmCi+1,j + pd Ci+1,j−1)

and backward induction leads to the current value of the option, C0,0.

The main advantage of trinomial trees is that, for a given number of time steps,

N , its convergence is faster than with binomial trees (although they require more

memory).

2.2.2 Finite Difference Schemes

An alternative technique is the “finite difference” method. The first step is to

introduce a grid of mesh points (t, x) = (ik, jh), i ∈ Z+, j ∈ Z where h and k are

mesh parameters as small as desired. Next, an approximate solution of the PDE

at these points is obtained by solving a problem in which the partial derivatives

are replaced with finite differences.

Depending on whether the difference expressions are centered around time

step i+1, i, or i+ 1
2
, we obtain the fully explicit5, fully implicit or Crank-Nicolson

5It can be seen that this explicit method is equivalent to approximate the diffusion process

by a discrete trinomial process. See Clewlow and Strickland (1998) for details.
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method, respectively.6

These algorithms can be compared in terms of consistency, convergence and

stability properties. Intuitively, these properties can be interpreted as follows:

1. Consistency: A model is consistent when it can be as close to the original

model as desired.

2. Convergence: The solution of the approximation converges to the solution

of the original problem.

3. Stability: Small changes in the original conditions do not imply big changes

in the results.

The following table summarizes these properties for the three methods:

Method Consistency Convergence Stability

Fully explicit O ((∆x)2 +∆t) Only if ∆x >
√
2 ∆t Only if ∆x >

√
2 ∆t

Fully implicit O ((∆x)2 +∆t) Unconditionally Unconditionally

Crank-Nicolson O
(
(∆x)2 +

(
∆t
2

)2
)

Unconditionally Unconditionally

The fully explicit method has the disadvantage that it is only stable and con-

vergent when the restriction ∆x >
√
2 ∆t is imposed. This restriction implies

that we can need many time steps to obtain the solution. This problem is avoided

by the other two methods which are unconditionally stable and convergent al-

though they require a more sophisticated calculation.7

Option valuation under finite difference methods is done by backward induc-

tion in time, as with lattices. Finite difference methods deal with European and

6The first two methods were introduced for option pricing in Schwartz (1977) and Brennan

and Schwartz (1977, 1978) while the Crank-Nicolson method was first used in this framework

by Courtadon (1982).
7In both cases, we have to solve a tridiagonal system of equations although it can be done in

a very efficient way by using the Thomas algorithm. See Morton and Mayers (1998) for details.

9



American derivatives, but it is difficult to extend them to path-dependent claims

or options with multiple stochastic processes.

For two or three dimensions, LOD (Locally One Dimensional) and ADI (Al-

ternating Direction Implicit) methods are developed.8 For higher dimensions,

Monte Carlo simulation is required.

2.2.3 Quadrature (Numerical Integration)

American options can also be priced without approximating the stochastic pro-

cess for the asset or the partial differential equation for the option price. This

is the case of quadrature techniques, which are based on approximating a cer-

tain integral. Using an arbitrage argument, Karatzas (1988) shows that, for an

European call option, the price Ct at time t ∈ [0, T ] is given by

Ct = EP̃
t

(
e−r (T−t) CT

)
(6)

where Et is the expectation operator at time t, P̃ is the risk-neutral probability

measure and CT is the value of this option at maturity (see eq. (4)). This call

price formula can be rewritten as

Ct =

∫ ∞

−∞
e−r (T−t) g(S) max{ST −K, 0} dS

where g(S) is the risk-neutral probability density function of the underlying asset.

In general, this integral can only be solved numerically. This integral can be

approximated by the sum of the integrand values at certain points, multiplied by

some weighting coefficients. Examples of this technique are the trapezoidal and

Simpson’s rules.

Numerical integration is commonly used to price European derivatives, al-

though Parkinson (1977) has used it for pricing American put options.

Some authors have worked with the so called “integral representation method”.

For instance, Kim (1990), Jacka (1991) and Carr et al. (1992) decompose the

8See Morton and Mayers (1998) for details.
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price of an American put into the price of an European put option plus the early

exercise premium. This premium is expressed as an integral where the early ex-

ercise boundary is involved. Once this integral is computed, the American put

price is easily obtained.

Different approximations of this integral have been proposed. Huang et al.

(1996) approximate the integrand with step functions to decrease the number of

early exercise points. After obtaining a sequence of approximated option prices,

a four-point Richardson extrapolation is used to yield the American put price.

Ju (1998) recognizes that the above integral does not depend critically on the

early exercise boundary and uses a multipiece exponential function as an approx-

imation of this boundary. This approximation jointly with the application of

Richardson extrapolation lead to a closed-form expression for this integral. The

approximation is shown to be exact in the extreme cases where the time to ma-

turity goes to zero or to infinity. Numerical results show that this approximation

together with the LUBA method in Broadie and Detemple (1996) and the ran-

domization technique by Carr (1998) are the most accurate methods for pricing

American options.

Recently, Bunch and Johnson (2000) have derived exact expressions for the

critical stock price function and the American put price in the perpetual and

finite cases. The key element of their derivation is that the critical stock price

can be interpreted as the highest value of the stock price at which the put price

does not depend on time to maturity. Finally, Ait-Sahlia and Lai (2000) propose

two different solutions based on a piecewise linear approximation of the early

exercise boundary.

2.2.4 Monte Carlo Simulation

This technique was introduced in finance by Boyle (1977). For a recent survey

see Boyle et al. (1997).
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As shown in equation (6), the value of an option is the risk-neutral expectation

of its discounted pay-off. This expectation is estimated by computing the average

of a large number of pay-offs. These are the main steps to be followed:

1. Simulate the risk-neutral process for the price of the underlying asset (see

eq. (1)) until maturity of the option and calculate the option pay-off. This

step is repeated M times.

2. Calculate the mean of these pay-offs.

3. Discount this average at the risk-free rate to obtain an estimate of the

option value.

The crucial point is to simulate appropriately the path followed by the un-

derlying asset. It is recommended to use the natural logarithm of the asset price.

In this case, equation (2) is approximated by

x(t+∆t) = x(t) + ν ∆t+ σ
√
∆t ε, ∆t = T/N

where ε is extracted from a standard normal distribution. This equation is used

to obtain the value of x(t) along the path between zero and T .

Monte Carlo simulation is suitable for path-dependent options and can be

extended to price option that depend on multiple stochastic processes, random

volatility, jumps,.... Its major disadvantage is that it is a computationally in-

tensive method, since it usually requires many simulations. With the aim of

solving this problem, variance reduction techniques, such as antithetic variables

and control variates, have been developed.

Tilley (1993) is the first who prices American options using this technique.

He proposes an algorithm in which, at each date, simulated paths are ordered by

asset price and bundled into groups. Then, for each group, an optimal exercise

decision is taken. As Broadie and Glasserman (1997a) indicate, there are no

convergence results for this algorithm, all the simulated paths must be stored at

one time and there is not a direct extension to deal with multiple state variables.
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Barraquand and Martineau (1995) propose to reduce the dimensionality of

the valuation problem, grouping the simulated values into a set of “bins”. The

transition probabilities between bins is determined by simulation and the option

valuation is performed using each bin as a decision unit.

Broadie and Glasserman (1997a) present an algorithm that allows them to

obtain point estimates and error bounds for American option prices. After show-

ing that, under certain assumptions, there are not unbiased estimates of these

prices, two (biased) estimates that converge asymptotically to the true price are

generated. Combination of both estimates leads to a confidence interval for the

American option price.

Broadie et al. (1997) and Raymar and Zwecher (1997) price American options

on the maximum of several assets improving the techniques presented by Broadie

and Glasserman (1997a) and Barraquand and Martineau (1995), respectively.

Ibañez and Zapatero (1998) suggest a general Monte Carlo simulation method

for computing the optimal exercise frontier as the fixed point of an algorithm.

To obtain this frontier, the values of all parameters but one are fixed and their

algorithm is used to converge to the value of the remaining parameter in the

optimal exercise frontier. Assuming that American derivatives can be exercised at

a finite number of times, they price put options and call options on the maximum

of two securities.

Finally, non-parametric methods can also be used to price American options.

This is the case of neural networks that tries to recover an unknown pricing

function given historical data. Once the network has “learned” from the data, it

is applied to out of sample data to determine the unknown price. These methods

allow us to price European and American derivatives with multiple stochastic

processes. See, for example, Hutchinson et al. (1994).
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3 The Least-Squares Monte Carlo Approach

As mentioned before, the main problem for pricing American options is that there

exist several possible exercise dates. Hence, the holder of the option must decide,

at each exercise time, whether to exercise the option or to wait. This decision

depends on the comparison between (a) the amount of money to be obtained

if the option is exercised (the immediate exercise value) and (b) the amount of

money he will obtain if the option is exercised at a future date (the continuation

value).

Therefore, the optimal exercise decision relies on the estimation of the contin-

uation value. Longstaff and Schwartz (2001) estimate this value by a least-squares

regression jointly with the cross-sectional information provided by Monte Carlo

simulation. In this regressions they use a set of basis functions whose arguments

are based on the underlying asset prices. The fitted values of these regressions

are taken as the expected continuation values. Comparing these estimated values

with the immediate exercise ones, they identify the optimal stopping rule. This

procedure is repeated recursively going back in time. Discounting the obtained

cash-flows to time zero, the price of the American option is found.

More formally, they assume a finite time horizon, [0, T ], in which they define

a probability space,9 (Ω, IF, P ), and an equivalent martingale measure, Q. Let

C(ω, s; t, T ), ω ∈ Ω, s ∈ (t, T ] denote the path of option cash-flows, conditional
on (a) the option being exercised after t and (b) the optionholder following the

optimal stopping strategy at every time after t.

The American option is approximated by its Bermuda counterpart, assuming

that there is a finite number of exercise dates 0 < t1 < t2 < . . . < tN = T . The

continuation value is equal, under no-arbitrage conditions, to the risk-neutral

9This is a triple consisting of Ω, the set of all possible sample paths (ω), IF, the sigma-algebra

of events at time T and P , a probability measure defined on the elements of IF.
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expectation of the future discounted cash flows C(ω, s; ti, T ):

F (ω; ti) = EQ

[
N∑

j=i+1

exp

(
−

∫ tj

ti

r(ω, s) ds

)
C(ω, tj; ti, T ) | IFti

]
, (7)

where r(ω, s) is the risk-free interest rate and IFti is the information set at time

ti.

The idea underlying the LSM algorithm is that this conditional expectation

can be approximated by a least-squares regression for each exercise date. At time

tN−1, it is assumed that F (ω; tN−1) can be expressed as a linear combination

of orthonormal basis functions (pj(X)) such as Laguerre, Hermite, Legendre or

Jacobi polynomials. That is

F (ω; tN−1) =
∞∑

j=0

ajpj(X), aj ∈ IR

that is approximated by

FM(ω; tN−1) =
M∑
j=0

ajpj(X), aj ∈ IR.

This procedure is repeated going back in time until the first exercise date.

Longstaff and Schwartz (2001) apply their algorithm to price a number of

American derivatives (American put option, American-Bermuda-Asian option,

etc).

3.1 A Numerical Example

To provide numerical intuition, Longstaff and Schwartz (2001) present a numer-

ical example. Here we include another numerical example that shows that, if we

use the LSM approach with a reduced number of simulated paths, an American

option can have a lower price than its European counterpart.

We price an American put option on a non-dividend stock. The strike price

is 1.1 and there are three possible exercise dates. The continuously compounded

risk-free interest rate is equal to 0.05.
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We simulate eight paths of the underlying stock price as shown in the following

table10

Path t = 0 t = 1 t = 2 t = 3 Pay-off at t = 3

1 1 0.917938 ∗ 1.272171 1.417021 0

2 1 1.133931 1.290983 1.669802 0

3 1 1.162833 0.917742 ∗ 1.228432 0

4 1 1.096706 ∗ 1.081163 ∗ 1.118280 0

5 1 1.056690 ∗ 0.871784 ∗ 0.818722 ∗ 0.281278

6 1 1.416442 1.672474 1.263264 0

7 1 0.937138 ∗ 0.945920 ∗ 0.861259 ∗ 0.238741

8 1 0.872576 ∗ 0.658605 ∗ 0.475270 ∗ 0.624730

The last column of this table shows the final pay-offs of an European option.

Discounting these pay-offs at time zero and averaging them, we obtain that the

price of this European option is equal to 0.123162.

For an American option, the LSM approach maximizes its value at each exer-

cise date along in-the-money (ITM) paths. For each date, X denotes the under-

lying price and Y represents the (discounted) cash-flows received at future dates

if the option is not exercised.

At time two, there are five ITM paths (all but the first, the second and the

sixth ones) and the values of X and Y are as follows

10The symbol ’*’ denotes the in-the-money paths. Focusing on this type of paths improves

the efficiency of the LSM method.
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Path Y X

1 — —

2 — —

3 e−0.05 × 0 0.917742

4 e−0.05 × 0 1.081163

5 e−0.05 × 0.281278 0.871784

6 — —

7 e−0.05 × 0.238741 0.945920

8 e−0.05 × 0.624730 0.658605

To decide whether to exercise or not, we must estimate the continuation value

and compare it with the immediate exercise value, 1.1 − X. The continuation

value is estimated by regressing Y on a constant, X and X2, which gives

E[Y | X] = 2.848474 − 4.6539 X + 1.871826 X2

and, then, the exercise decision are as follows

Path 1.1−X E[Y | X] Decision

1 — — —

2 — — —

3 0.182258 0.1539056 Exercise

4 0.018837 0.0048106 Exercise

5 0.228216 0.2138467 Exercise

6 — — —

7 0.154080 0.1210645 Exercise

8 0.441395 0.5952915 Wait

In this table, we see that we exercise the option in all the ITM paths except

the eighth one, in which 1.1 − X < E[Y | X]. Therefore, assuming that the

option is not exercised before time two, the cash-flows to the optionholder are

the following
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Path t = 1 t = 2 t = 3

1 — 0 0

2 — 0 0

3 — 0.182258 0

4 — 0.018837 0

5 — 0.228216 0

6 — 0 0

7 — 0.154080 0

8 — 0 0.62473

We repeat this procedure at time one, when we also have five ITM paths.

Now, to compute the variable Y , we use the cash-flows to be received at time

two or three (but not in both dates) for each path. The values of X and Y are

as shown next

Path Y X

1 e−0.05 × 0 0.917938

2 — —

3 — —

4 e−0.05 × 0.018837 1.096706

5 e−0.05 × 0.228216 1.056690

6 — —

7 e−0.05 × 0.154080 0.937138

8 (e−0.05)2 × 0.624730 0.872576

Estimating again Y on a constant and the first two powers of X, we obtain

E[Y | X] = 23.905695 − 47.1482 X + 23.23217 X2

which leads us to the following exercise decision
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Path 1.1−X E[Y | X] Decision

1 0.182062 0.202191 Wait

2 — — —

3 — — —

4 0.003294 0.1407488 Wait

5 0.043310 0.0255102 Exercise

6 — — —

7 0.162862 0.1244155 Exercise

8 0.227424 0.4539830 Wait

Consequently, the cash-flows paid by this American option at the three exer-

cise dates are the following

Path t = 1 t = 2 t = 3

1 0 0 0

2 0 0 0

3 0 0.182258 0

4 0 0.018837 0

5 0.043310 0 0

6 0 0 0

7 0.162862 0 0

8 0 0 0.62473

Thus, at time one, we exercise the option in the fifth and seventh paths. At

time two, we exercise the option in the third and the fourth paths and, at time

three, a non-zero cash-flow is received in the eighth path.

Obviously, all the cash-flows in the second and the sixth paths are null because

they are out-of-the money paths. For the first path, the cash-flows are also zero

even though, at time one, the option is ITM. This can be explained because the

optimal decision at this time was to wait.
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Finally, discounting these cash-flows to the initial date and averaging them

over all paths, we obtain that the price for the American option is 0.114473, a 7%

smaller than the corresponding European option. Of course, this is a consequence

of the reduced number of simulated paths. Increasing the number of simulated

paths leads to American option prices that are larger than European ones.

4 Numerical Results on the Robustness of LSM

An interesting question is to analyze what happens when we change the number

of terms of the basis functions or we use alternative functions. In this paper, we

use ten different polynomials with up to ten terms as basis functions.11

Name fn(x)

Powers Wn(x)

Legendre Pn(x)

Laguerre Ln(x)

Hermite A Hn(x)

Hermite B Hen(x)

Chebyshev 1st kind A Tn(x)

Chebyshev 1st kind B Cn(x)

Chebyshev 1st kind C T ∗
n(x)

Chebyshev 2nd kind A Un(x)

Chebyshev 2nd kind B Sn(x)

These polynomials can be expressed in three alternative ways:

1. Rodrigues’ formula:

fn(x) =
1

an g(x)

∂n

∂xn
[ρ(x) (g(x))n]

11See Demidowitsch et al. (1980) for details on T ∗
n(x) and Abramowitz and Stegun (1972)

for the remaining ones.
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2. Explicit expression:

fn(x) = dn

N∑
m=0

cmgm(x)

3. Recurrence law:

an+1 fn+1(x) = (an + bn x) fn(x)− an−1 fn−1(x)

The coefficients and functions included in these expressions are shown in Ta-

bles 1, 2, and 3, respectively.

[ Insert Tables 1, 2, and 3 about here ]

From a theoretical point of view, it would be desirable to use an orthonormal

basis of functions on which to project continuation values. This means that

∫ b

a

fn(x) fm(x) dx =


 0 n �= m

1 n = m

The values for the limits of this integral vary with the polynomials. See Abramowitz

and Stegun (1972) for details. In most of the cases, the range of underlying prices

(X) is different from the interval [a, b] so that the basis functions will no be or-

thonormal. Consequently, we should increase the number of terms used in the

regression.

4.1 Valuation of the Standard Put Option

The first derivative we price is an American put option on a non-dividend stock

with the following characteristics: σ = 0.2, r = 0.06, T = 1, S0 = K = 40. We

approximate this option, assuming that there are 70 exercise dates.

The value of the American option using the binomial method of Cox et al.

(1979) (with 1.000 iterations) is 2.31928. The value of the corresponding Eu-

ropean option, using simulation and the Black and Scholes (1973) formula, are

2.06193 and 2.06640, respectively.
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To avoid numerical problems, we standardize the option dividing by the strike

price and we use double-precision variables. We also employ the routine SVDFIT,

a Numerical Recipes routine that performs linear least-squares fits using the

singular value decomposition technique.

Results for the LSM algorithm with different basis functions and number of

terms are shown in Table 4. We use 100.000 simulations, half of them with

antithetic variables. Notice that this implies that we have to store (100.000×70)
matrices.

[ Insert Table 4 about here ]

For the ten polynomials, we obtain similar prices. We see that, typically,

the option value increases with the number of terms. However, using more than

four terms does not change significantly the prices. This result is common for

all the polynomials. Notice that the computed option prices are lower than the

value obtained with the binomial method. This is not surprising since we are

considering only 70 exercise dates.

4.2 Option on the maximum of five assets

We now turn our attention to a more sophisticated derivative: an American call

option on the maximum of five uncorrelated assets. The volatility of the asset

returns is taken as 0.2, the interest rate is 0.05, the dividend yield is 0.1, the

maturity of the option is three years, and there are three exercise times per year.

The strike price is 100 and the initial assets prices are also 100 for the five assets.

This option has been priced by Broadie and Glasserman (1997b), using the

stochastic mesh method. They find that the 90% confidence interval for the price

of this option is [26.101, 26.211].

Longstaff and Schwartz (2001) also value this option using the LSM approach

with 19 basis functions. These functions are a constant, five Hermite polyno-

mials in the maximum of the five assets, the second to the fifth maximums and
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their square values, the four products of consecutive pairs of maximums, and the

product of the five assets. Using 50.000 paths, they obtain that the value of the

option is 26.182, which is within the interval given by Broadie and Glasserman

(1997b).

As before, we use different basis functions to price this option. In Table 5, we

show option prices obtained when the Hermite polynomial is replaced by other

polynomials, with up to ten terms. This means that we use between 14 and 24

basis functions. We simulate 50.000 + 50.000 antithetic paths.

[ Insert Table 5 about here ]

We see that using less than two terms, we obtain values which are outside the

interval given by Broadie and Glasserman (1997b). We also obtain values outside

this interval using more than seven terms for the polynomials Pn(x), Hn(x), Tn(x)

and Un(x). For the remaining cases, the option values are inside the interval, and

increase up to four to five terms. For all the polynomials, using more terms,

option prices decrease (in some cases, these prices are lower than 24.0). This

result is against Proposition 1 in Longstaff and Schwartz (2001), that predicts

that option prices increase with the number of terms of basis functions. A final

remark is that using five Hermite polynomials, the option price is 26.187, which

is very close to the price given by Longstaff and Schwartz (2001).

As a reference, the value of the corresponding European option is 23.098, so

that the early exercise premium is higher than 3.

Now, we set the basis functions equal to Hen(x), and we change the remaining

ones. The results are shown in Table 6.

[ Insert Table 6 about here ]

The second column presents the prices obtained without including the square

values of the second to the fifth maximums. We see that dropping out those

values has little impact on the option price. As before, the option value increases

23



and then decreases with the number of terms. In the third column, we also

drop out the products of consecutive maximums. We observe that, in this case,

option prices are outside the interval, except when we use five terms. In the

following column, we work with the polynomials Hen(x), the second to the fifth

maximums, and their square values. Now, all the option prices are outside the

interval. Finally, the fifth column shows the prices obtained with the same basis

functions as in Table 5 plus the third powers of the second to the fifth maximums.

Compared to the sixth column of Table 5, we find that option prices are similar

in both cases.

5 Conclusions

Monte Carlo simulation is widely used for pricing European options. However,

application of this technique for valuing American derivatives is not straightfor-

ward.

Recently, Longstaff and Schwartz (2001) have developed the Least-Squares

Monte Carlo (LSM) technique, that uses simple regressions to price American

options. At each exercise date, they estimate the continuation value of the option

regressing the expected cash-flows on basis functions of the underlying asset price.

In this paper, we analyze the robustness of the LSM approach to the choice of

basis functions and to the number of terms used. We apply the algorithm to price

an American put option and an American call option on the maximum of five

assets. We consider ten different basis functions and up to ten terms. Numerical

results show that the technique is very robust for the simplest (American put)

case. However, for high-dimensional problems, the robustness does not seem to

be guaranteed and the choice of the basis functions to be used is not clear.

24



References

[1] Abramowitz, W. and I. Stegun (1972). Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables, Dover

Publications, Inc., New York.

[2] Ait-Sahlia, F. (1996). Optimal Stopping and Weak Convergence

Methods for Some Problems in Financial Economics. Ph.D. Dis-

sertation, Dept. of Operations Research, Stanford University.

[3] Ait-Sahlia, F. and P. Carr (1997). American Options: A Comparison

of Numerical Methods. In Numerical Methods in Finance, edited by

L.C.G. Rogers and D. Talay, Cambridge University Press.

[4] Ait-Sahlia, F. and T.L. Lai (1996). Approximations for American

Options, working paper, Cornell University.

[5] ——– (2000). A Canonical Optimal Stopping Problem for Ameri-

can Options and its Numerical Solution. Journal of Computational

Finance, 3, 2, 33–52.

[6] Barone-Adesi, G. and R.E. Whaley (1987). Efficient Analytic Ap-

proximation of American Option Values. Journal of Finance, 42, 2,

301–320.

[7] Barraquand, J. and D. Martineau (1995). Numerical Valuation of

High Dimensional Multivariate American Securities. Journal of Fi-

nancial and Quantitative Analysis, 30, 383–405.

[8] Black, F. and M. Scholes (1973). The Pricing of Options and Cor-

porate Liabilities. Journal of Political Economy, 81, 3, 637–654.

[9] Boyle, P. (1977). Options: A Monte Carlo Approach. Journal of

Financial Economics, 4, 323–338.

25



[10] Boyle, P. (1988). A Lattice Framework for Option Pricing with Two

State Variables. Journal of Financial and Quantitative Analysis. 22,

1–12.

[11] Boyle, P., M. Broadie and P. Glasserman (1997). Monte Carlo Meth-

ods for Security Pricing. Journal of Economic Dynamics and Con-

trol, 21, 1267–1321.

[12] Breen, R. (1991). The Accelerated Binomial Option Pricing Model.

Journal of Financial and Quantitative Analysis, 26, 153–164.

[13] Brennan, M.J. and E.S. Schwartz (1977). The Valuation of American

Put Options. Journal of Finance, 32, 449–462.

[14] ——– (1978). Finite Difference Methods and Jump Processes Aris-

ing in the Pricing of Contingent Claims: A Synthesis. Journal of

Financial and Quantitative Analysis, 13, 461–474.

[15] Broadie, M. and J. Detemple (1996). American Option Valuation:

New Bounds, Approximations and a Comparison of Existing Meth-

ods. Review of Financial Studies, 9, 1211–1250.

[16] Broadie, M. and P. Glasserman (1997a). Pricing American-Style Se-

curities using Simulations. Journal of Economic Dynamics and Con-

trol, 21, 1323–1352.

[17] ——– (1997b). A Stochastic Mesh Method for Pricing High-

Dimensional American Options, working paper, Columbia Univer-

sity.

[18] Broadie, M., P. Glasserman and G. Jain (1997). Enhanced Monte

Carlo estimation for American Option Prices. Journal of Derivatives,

5, 1, 25-44.

26



[19] Bunch, D. and H.E. Johnson (1992). A Simple and Numerically

Efficient Valuation Method for American Puts Using a Modified

Geske-Johnson Approach. Journal of Finance, 47, 2, 809–816.

[20] ——– (2000). The American Put Option and Its Critical Stock Price.

Journal of Finance, 55, 5, 2333–2356.

[21] Carr, P. (1998). Randomization and the American Put. Review of

Financial Studies, 11, 597–626.

[22] Carr, P. and D. Faguet (1996). Fast Accurate Valuation of American

Options, working paper, Cornell University.

[23] Carr, P., R. Jarrow and R. Mynemi (1992). Alternative Characteri-

zation of American Puts. Mathematical Finance, 2, 87–106.

[24] Clewlow, L. and C. Strickland (1998), Implementing Derivatives

Models, John Wiley & Sons Ltd., England.

[25] Courtadon (1982). A More Accurate Finite Difference Approxima-

tion for the Valuation of Options. Journal of Financial and Quan-

titative Analysis, 17, 5, 697–703.

[26] Cox, J.C., S.A. Ross and M. Rubinstein (1979). Option Pricing: A

Simplified Approach. Journal of Financial Economics, 7, 3, 229–263.

[27] Demidowitsch, B.P., I.A. Maron and E.S. Schuwalowa (1980).

Métodos numéricos de análisis. Ed. Paraninfo, S.A. Madrid.

[28] Geske, R. (1979). A Note on an Analytical Valuation Formula for

Unprotected American Options on Stocks with Known Dividends.

Journal of Financial Economics, 7, 375–380.

[29] Geske, R. and H.E. Johnson (1984). The American Put Option Val-

ued Analytically. Journal of Finance, 39, 5, 1511–1524.

27



[30] Ho, T.S.Y., R.C. Stapleton and M.G. Subrahmanyam (1994). A Sim-

ple Technique for the Valuation and Hedging of American Options.

Journal of Derivatives, 2, 52–66.

[31] ——– (1997). The Valuation of American Options with Stochastic

Interest Rates: A Generalization of the Geske-Johnson Technique.

Journal of Finance, 52, 2, 827–840.

[32] Huang, J.Z., M.G. Subrahmanyam and G.G. Yu (1996). Pricing and

Hedging American Options: A Recursive Integration Method. Re-

view of Financial Studies, 9, 1, 277–300.

[33] Hutchinson, J., A. Lo and T. Poggio (1994). A Nonparametric Ap-

proach to Pricing and Hedging Derivative Securities. Journal of Fi-

nance, 49, 3, 851–886.
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Table 1: Expressions of the basis functions using Rodrigues formula.

fn(x) an ρ(x) g(x)

Wn(x)
(2n)!

n!
x2n 1

Pn(x) (−1)n 2n n! 1 1− x2

Ln(x) n! e−x x

Hn(x) (−1)n e−x2
1

Hen(x) (−1)n e−x2/2 1

Tn(x) (−1)n 2n Γ(n+ 1
2)√

π
(1− x2)−1/2 1− x2

Cn(x) (−1)n 2n Γ(n+ 1
2)√

π

(
1− x2

4

)−1/2

1− x2

4

T ∗
n(x) (−1)n 22n−1 Γ(n+ 1

2)√
π

(1− x2)−1/2 1− x2

Un(x)
(−1)n 2n+1 Γ(n+ 3

2 )
(n+1)

√
π

(1− x2)1/2 1− x2

Sn(x)
(−1)n 2n+1 Γ(n+ 3

2 )
(n+1)

√
π

(
1− x2

4

)1/2

1− x2

4

The basis functions are especial cases of Rodrigues’ formula which is given by

fn(x) =
1

an g(x)

∂n

∂xn
[ρ(x) (g(x))n]

where n ≥ 0 denotes the degree of the polynomial.
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Table 2: Explicit expressions of the basis functions.

fn(x) N dn cm gm(x)

Wn(x) 0 1 1 xn

Pn(x) [n/2] 2−n (−1)m

 n

m





 2n− 2m

n


 xn−2m

Ln(x) n 1 (−1)m

m!


 n

n−m


 xm

Hn(x) [n/2] n! (−1)m 1
m! (n−2m)!

(2x)n−2m

Hen(x) [n/2] n! (−1)m 1
m! (n−2m)!

xn−2m

Tn(x) [n/2] n/2 (−1)m (n−m−1)!
m! (n−2m)!

(2x)n−2m

Cn(x) [n/2] n (−1)m (n−m−1)!
m! (n−2m)!

xn−2m

T ∗
n(x) [n/2] 2−n n (−1)m (n−m−1)!

m! (n−2m)!
(2x)n−2m

Un(x) [n/2] 1 (−1)m (n−m)!
m! (n−2m)!

(2x)n−2m

Sn(x) [n/2] 1 (−1)m (n−m)!
m! (n−2m)!

xn−2m

The basis functions are particular cases of the following expression

fn(x) = dn

N∑
m=0

cmgm(x)

where n ≥ 0 denotes the degree of the polynomial.
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Table 3: Recurrence law for the basis functions.

fn(x) an+1 an bn an−1 f0(x) f1(x)

Wn(x) 1 0 1 0 1 x

Pn(x) n+ 1 0 2n + 1 n 1 x

Ln(x) n+ 1 2n+ 1 −1 n 1 1− x

Hn(x) 1 0 2 2n 1 2x

Hen(x) 1 0 1 n 1 x

Tn(x) 1 0 2 1 1 x

Cn(x) 1 0 1 1 2 x

T ∗
n(x) 1 0 1 1/4 1 x

Un(x) 1 0 2 1 1 2x

Sn(x) 1 0 1 1 1 2x

The general expression for the recurrence law is given by

an+1 fn+1(x) = (an + bn x) fn(x)− an−1 fn−1(x)
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Table 6: Effect of basis functions on the American call option on the

maximum of five assets.

Number of terms Case I Case II Case III Case IV

0 25.75969 25.66929 25.36842 25.76960

1 25.86988 25.76343 25.84218 25.88012

2 26.07051 26.03418 26.05393 26.10515

3 26.15420 26.06087 26.06920 26.18469

4 26.16086 26.08385 26.09032 26.19798

5 26.16341 26.10152 26.08691 26.20064

6 26.14974 26.08556 26.07915 26.18932

7 26.15517 26.09288 26.07881 26.19892

8 26.14555 26.09031 26.07253 26.18422

9 26.14921 26.08191 26.07572 26.17811

10 26.11754 26.08579 26.07383 26.18058

The characteristics of the option are: σ = 0.2 (for the five assets), r = 0.05,

the dividend yield is 0.1, T = 3 years, K = 100, there are three exercise times

per year, and the initial assets prices are 100 for the five assets. In Case I we

use the following basis functions: a constant, the second to the fifth maximums,

the four products of consecutive pairs of maximums, and the product of the five

assets. Case II is the same as Case I but without the products of consecutive

maximums. Case III considers the second to the fifth maximums and their square

values. Finally, Case IV uses a constant, the second to the fifth maximums, their

square values, their third powers, the products of consecutive pairs of maximums,

and the product of the five assets. In all the cases, we also use the polynomials

Hen(x) with up to ten terms.

36


