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Abstract

We consider the joint visualization of two matrices which have common rows and

columns, for example multivariate data observed at two time points or split accord-

ing to a dichotomous variable. Methods of interest include principal components

analysis for interval-scaled data, or correspondence analysis for frequency data or

ratio-scaled variables on commensurate scales. A simple result in matrix algebra

shows that by setting up the matrices in a particular block format, matrix sum and

di®erence components can be visualized. The case when we have more than two ma-

trices is also discussed and the methodology is applied to data from the International

Social Survey Program.
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1 Introduction

Principal components analysis (PCA), correspondence analysis (CA) and canonical

variate analysis (CVA) are techniques based on the singular-value decomposition

(SVD). In each case the geometric interpretation of the SVD permits the data ma-

trix to be visualized in a low-dimensional Euclidean space (Greenacre and Underhill,

1982). This display, or \map", often contains points representing both the rows and

the columns of the matrix, in what is known as a \biplot" of the matrix (Gabriel

1971). In a biplot the columns, say, which are often variables, are depicted by direc-

tion vectors which can be calibrated according to the original scales of the variables.

The row points may then be projected onto these \biplot axes" in order to estimate

the values in the original data matrix (Gabriel and Odoro® 1990 ; Greenacre 1992;

Gower & Hand 1996). The success of the recovery of the data by their projections

is measured by the percentage of explained variance in the map.

Often we would like to interpret and compare two or more matrices of the same

size, which have rows and columns referring to the same entities (here we discuss the

case of two matrices, we shall consider the general case later on). For example, we

might have two cases-by-variables matrices where the ¯rst matrix contains observa-

tions at time point 1 and the second matrix contains observations on the same cases

at time point 2. Or the two matrices may contain averages, or frequency counts,

according to two separate subsets of the sample, for example males and females.

We refer to such data matrices in general as matched matrices, in the sense of being

repetitions over time or being split into subsamples.

One approach to the visual interpretation of matched matrices is to concatenate

them row-wise or column-wise and then apply the usual analysis, be it PCA or CA,

whichever is the more appropriate. In the ¯rst example mentioned above, a PCA,

say, of the two matrices, one stacked on top of the other, would result in two points

for each case. Each pair can be connected in the display to show that the data are

paired observations and to allow the interpretation of each case's change over time.

In the second example we would stack the male and female tables and a CA, say,

would lead to a set of male points and a set of female points. In a similar way,

male{female di®erences would be interpreted by comparing pairs of points for the

same row object: for example if the rows were education groups, then we would be

interpreting di®erences between males and females for each category of education.

Notice that although we have described the above joint analyses of the two ma-

trices as a study of di®erences, in neither of the analyses is this an explicit objective

of the visualization. The display optimally displays the individual points, which
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may or may not lead to an accurate display of the di®erences, which are the vec-

tors joining the pairs of points. Clearly, if the quality of display (i.e., percentage of

explained variance) is very high, then the points are accurately displayed and their

di®erence vectors as well. However, when the quality of display is not high, it can

often turn out that di®erences are poorly represented. In fact, it is our experience

that in this case the map concentrates more on the sum of the matrices than their

di®erences. We should be careful, therefore, in our interpretation of concatenated

matrices by also calculating measures of quality of the display of di®erences, just

as we measure qualities of display of individual points. If di®erences are of speci¯c

interest, then it would be appropriate to perform a separate analysis of the matrix of

di®erences. For both PCA and CA analyzing the matrix di®erence implies perform-

ing an uncentred analysis, an option which is generally not available in PCA and

CA software packages. Fortunately, we will show that an analysis of the sum and

the di®erence between two matrices can be achieved in a single application of PCA

or CA, with the usual centring, where the two matrices are set up in a certain block

format. This requires no extra calculations or special software, only a versatile text

editor to prepare the data. We will also show how the block matrix idea generalizes

to more than two matrices, depending on the nature of the repetitions.

In Section 2 we summarize the basic mathematical result which serves as the

basis for our methodology, and show how this result can be exploited in a principal

component analysis and a correspondence analysis. In Section 3 we discuss an

application to data concerning attitudes to whether women should stay at home

or work after they get married, comparing responses from men and women across

several countries. In Section 4 we discuss how the method extends to more than

two matched matrices.

2 A simple result with many applications

2.1 SVD of a block matrix

A general result which we use throughout is the following:

If A and B are two n£m matrices, then the SVD of the sum A+B and

the di®erence A¡B can be recovered in the SVD of the block matrix:

"
A B
B A

#
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It is easily veri¯ed that if the SVDs of A+B and A¡B are respectively:

A+B = UD®V
T A¡B = XD¯Y

T (1)

then the SVD of the 2n £ 2m block matrix is (up to an ordering of the singular

values and corresponding singular vectors):

"
A B
B A

#
=

1p
2

"
U X
U ¡X

# "
D® 0

¹
0
¹

D¯

#
1p
2

"
V Y
V ¡Y

#T
(2)

Notice the following:

1. The left and right singular vectors are all orthogonal to one another thanks to

the orthogonality of the vectors in the SVDs (1) and the change in sign of the

matrices X and Y.

2. The presence of the factor 1=
p
2 multiplying the left and the right singular

vectors ensures the correct normalization of the solution: for example, since

UTU = I, we have for the corresponding columns of the left singular vectors

in (1):

1p
2

"
U
U

#T
1p
2

"
U
U

#
=
1

2
UTU+

1

2
UTU = I

Hence the left and right singular vectors in (2) are orthonormal.

3. The SVDs of the sum A + B and of the di®erence A ¡ B do not appear

separated as indicated in (1), but interleaved according to the magnitude of

the corresponding singular values. In the SVD of the block matrix it is easy

to distinguish the solution

vectors corresponding to the sum and the di®erence: left and right singular

vectors corresponding to the sum have two identical copies of a vector stacked

on top of each other, whereas singular vectors corresponding to the di®erence

have a vector stacked on top of the negative of the vector.

The total sum-of-squares in the block matrix is thus decomposed into two compo-

nents, one component due to the matrix sum and one due to the matrix di®erence:

2
X

i

X

j

a2ij + 2
X

i

X

j

b2ij =
X

i

X

j

(aij + bij)
2 +

X

i

X

j

(aij ¡ bij)2 (3)
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2.2 Principal component analysis

If the columns of A and B are interval-scaled variables, then PCA would be the

method of choice for visualizing the matrices. A and B are optionally standardized

prior to analysis, depending on the variables' measurement scales and their inherent

variances. The average row of A is ¹aT = (1=n)1TA and the average row of B is
¹bT = (1=n)1TB. Centring in the joint analysis of A and B is with respect to the

average of A and B: ¹c = (1=2)(¹a + ¹b). Performing the PCA of the block matrix

involves centring with respect to the row
h
¹cT ¹cT

i
:

"
A¡ 1¹cT B¡ 1¹cT
B¡ 1¹cT A¡ 1¹cT

#
(4)

The sum-of-squares decomposition corresponding to (3) is thus:

2
X

i

X

j

(aij ¡ ¹cj)2+2
X

i

X

j

(bij ¡ ¹cj)2 =
X

i

X

j

(aij ¡ ¹cj+ bij ¡ ¹cj)2+
X

i

X

j

(aij ¡ bij)2

(5)

so that the matrix sum component is in centred form and the component corre-

sponding to the matrix di®erence is in uncentred form.

Notice that the factor 1=
p
2 in (2) only appears in the intermediate calculations

of the PCA and disappears in the graphical display when one imposes the usual

scaling on the principal coordinates to have variance equal to the corresponding

squared singular value. Since there are 2n rows in the block matrix, each row has

an identical weight of 1=(2n). The principal coordinate matrix F is thus:

F =
p
2n

1p
2

"
U X
U ¡X

# "
D® 0
0 D¯

#

which gives identical principal coordinates to those obtained in the analyses of the

matrix sum and matrix di®erence, where there are n points, each with weight 1=n,

leading to principal coordinates
p
nUD® and

p
nXD¯ respectively. In all cases the

variance of the points (2n points in the case of the block matrix, n points for the

sum and n points for the di®erence) is equal to the squared singular value.

2.3 Correspondence analysis

Apart from the fact that points have di®erent weights in CA and there is an inherent

standardization in the form of the chi-square metric, everything goes through in

an analogous fashion. Principal coordinates of row points and column points of

the block matrix recover exactly the row and column points of the centred matrix
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sum and the uncentred matrix di®erence. However, it is the substantive issue in

CA which is more relevant here. If A and B are two cross-tabulations based on

di®erent subsamples (e.g., males and females), then A +B is the accumulation of

the two subsamples and A¡ B is the di®erence, cell by cell, of the frequencies. If

the subsamples di®er in overall frequency, or in marginal frequencies, then these

di®erences will be displayed in the analysis of the matrix di®erence. For example, if

there are many more males than females in the data set, then the matrix di®erence

will mostly re°ect this di®erence in sample sizes, not the di®erences between the

male and female responses. It would be preferable here to reweight the samples or to

analyse the data at the pro¯le level, that is expressed in row or column percentages.

Studies where the subsamples are of equal size do not present such a di±culty,

especially when the data have been collected according to some ¯xed design which

gives the matrix di®erence a substantive interpretation. For example, suppose that

the rows of the tables are education groups and that the columns are the responses

to a question in an opinion survey. If equal numbers of males and females in each

education group are included in the survey, then we have no di®erence in the row

margins and the matrix di®erence re°ects gender di®erences in responses and not

di®erences in education. Of course, if we were interested in educational di®erences

as well, we would only impose the restriction that the overall sample sizes be equal.

3 Application: PCA of male{female attitudes across

countries

To illustrate the approach, consider the data in Table 1 extracted from the Interna-

tional Social Survey Programme (ISSP) database. The data are percentage reponses

to four questions related to woman staying at home or working after marriage and

at di®erent points of time in their married lives. The response percentages have

been calculated separately for males and females.

The usual way to display these data is to analyze the 16£ 4 table, for example
using PCA1. The two-dimensional map of the data is given in Figure 1 (all ¯gures are

in the Appendix). The row points are country{gender points, for example Germany{

female and Germany{male are indicated by Df....m. Each pair of points has been

connected and the di®erences generally coincide with the horizontal axis, with male

1Since these are percentages, we might want to apply some transformation to the data before
performing PCA, for example a logarithmic or arcsine transformation (e.g., Aitchison 1986). Here
we apply PCA directly to the data, without any standardization, to simplify the illustration of our
approach.
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points on the left and female points on the right. The four columns are depicted

by vectors showing the directions of the biplot axes, with points 1 and 4 more in a

vertical direction and 2 and 3 contributing strongly to both axes (the contributions

could be con¯rmed more formally by looking at the column contributions to the

principal axes).

Table 1

Male and female views of working wives in eight countries (ISSP, 1989)

Country Should wife stay at home...? (response percentage)
...before ...after ...when ¯rst child ...when all children
¯rst child ¯rst child is at school are at school

D 6.3 78.3 51.4 14.6
GB 3 74.7 15.3 4

M USA 7.6 61.1 16.2 7.1
A A 5.1 75.4 45.7 12.2
L H 18.9 58.4 22.1 8.7
E NL 3 60 17.3 3.6

I 11.1 49.6 23.6 21.7
IRE 7 56.4 33.5 9.2
D 6.1 73.9 47.7 14.5

F GB 2.4 66.6 10 1.9
E USA 4 50 10.3 3.8
M A 2.9 69.4 40.5 7.3
A H 7.2 46.5 14.9 3.4
L NL 1.5 52.2 10 2.3
E I 3.8 38.3 12 10

IRE 5.8 54.6 20.7 5.9

Each value is the percentage of respondents who are in favour of the wife

staying at home in the following four periods: (1) before the ¯rst child is

born; (2) after the birth of the ¯rst child; (3) after the ¯rst child has gone to

school; and (4) after all children are at school. For example, 6.3% of German

males in the sample do not want their wives to work after they are married

(before the ¯rst child), while 6.1% of German females do not want to work

just after they are married.

The interpretation would thus be as follows. Irrespective of gender of the respon-

dents, Germans and Austrians more frequently want women to stay at home, while

the British distinguish themselves by their high frequency of responses in favour of

women staying at home in the early years of the ¯rst child. As far as male{female
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di®erences are concerned, men always want their wives to stay at home more than

the wives themselves do. In some countries these di®erences are greater than others,

for example the Italian and Hungarian di®erences look larger than the Austrian and

German di®erences. It is not easy in this map to diagnose any strong tendency for

the di®erence to be concentrated in any particular period. t does look like the Irish

have a male{female di®erence which is along the vector (3) and not along vector

(2). Looking at Table 1 we can con¯rm that there is a very small di®erence between

males and females about whether a wife should work after the ¯rst child is born

(males: 56.4%, females: 54.6%), but they disagree somewhat when the ¯rst child

goes to school (males: 33.5%, females: 20.7%).

To clarify the quality of display of the di®erences we calculated the sums of

squares corresponding to equation (3), where the aij 's and bij 's are centred with

respect to the overall mean:

11878 = 10364 + 1514

Of the total sum of squares on the left, the joint map explains a total of 11090, that

is an explained variance of 11090/11878, or 93.4%, which seems an excellent result

at a ¯rst glance. However, by calculating the sum of and di®erence of each pair of

vectors in the map and computing their sums of squares separately we see that the

explained amount of 11090 has a component of 9934 explaining the sum and 1153

explaining the di®erence. This gives the following results for the sum and di®erence

respectively:

sum : 100£ 9934=10364 = 95:9% di®erence : 100£ 1153=1514 = 76:2%

The component of the total sum of squares due to the matrix sum is much larger

than that due to the di®erence, and the solution is clearly dominated by this fact.

The overall quality of 93.4% is a combination of a 95.9% explanation of the larger

sum component and a 76.2% explanation of the smaller di®erence component.

If we are specially interested in the di®erences, which is usually the case in a

study like this one, then a speci¯c analysis of the di®erences should be carried out.

There are two ways of executing the analysis. The ¯rst way is to calculate the matrix

di®erence and then perform an uncentred PCA of this di®erence. Clearly we do not

want to remove the average di®erence from each column of the di®erence matrix,

but we want to analyze and thus visualize the male{female di®erences in a space

where the origin refers to the value zero, not the average of the di®erences. The

second way is to apply the convenient result of Section 2, setting up the male and
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female matrices twice each in the 2 £ 2 block format and then perform a standard

PCA of this 16£ 8 block matrix. There is some super°uous computation involved
in this latter approach, but the great advantage is that no special data preparation

or additional programming is required.

We thus illustrate the second approach and show the complete results of the

SVD of the block matrix in Table 2.

Table 2

SVD of 16£ 8 block matrix of male and female data

DIMENSION 1 2 3 4 5 6 7 8
SINGULAR VALUES

89.35 44.55 36.39 15.39 12.63 10.30 7.60 5.05
LEFT SINGULAR VECTORS

0.47775 0.07196 -0.09808 -0.04665 -0.19901 0.05281 0.24409 -0.05367
-0.07161 -0.50671 -0.17897 -0.11884 -0.28202 0.01612 0.32953 0.14185
-0.19302 -0.08330 -0.25178 -0.00014 -0.01181 -0.14144 0.28653 0.06735

FIRST 0.35262 -0.01539 -0.18301 -0.00683 0.20322 0.02646 -0.02169 0.24145
BLOCK -0.15466 0.12845 -0.34560 0.55586 -0.20904 -0.36809 -0.17683 -0.43645

-0.18635 -0.15312 -0.19809 -0.10391 0.39216 0.09579 0.31663 -0.10909
-0.21515 0.41173 -0.40427 -0.38957 -0.20777 0.04213 -0.32753 0.36381
-0.00958 0.14638 -0.19836 0.11007 0.31428 0.57428 -0.10225 -0.28182
0.47775 0.07196 0.09808 -0.04665 -0.19901 -0.05281 -0.24409 0.05367
-0.07161 -0.50671 0.17897 -0.11884 -0.28202 -0.01612 -0.32953 -0.14185
-0.19302 -0.08330 0.25178 -0.00014 -0.01181 0.14144 -0.28653 -0.06735

SECOND 0.35262 -0.01539 0.18301 -0.00683 0.20322 -0.02646 0.02169 -0.24145
BLOCK -0.15466 0.12845 0.34560 0.55586 -0.20904 0.36809 0.17683 0.43645

-0.18635 -0.15312 0.19809 -0.10391 0.39216 -0.09579 -0.31663 0.10909
-0.21515 0.41173 0.40427 -0.38957 -0.20777 -0.04213 0.32753 -0.36381
-0.00958 0.14638 0.19836 0.11007 0.31428 -0.57428 0.10225 0.28182

RIGHT SINGULAR VECTORS
-0.02333 0.17371 -0.24637 0.54362 -0.41684 -0.34932 -0.37862 -0.41704

FIRST 0.39287 -0.52517 -0.44946 -0.01754 -0.26372 -0.30802 0.43078 0.13244
BLOCK 0.58004 0.31295 -0.40974 0.10429 0.23397 0.53145 0.02071 -0.22190

0.09308 0.30999 -0.26343 -0.43964 -0.44940 0.02561 -0.41310 0.50921
-0.02333 0.17371 0.24637 0.54362 -0.41684 0.34932 0.37862 0.41704

SECOND 0.39287 -0.52517 0.44946 -0.01754 -0.26372 0.30802 -0.43078 -0.13244
BLOCK 0.58004 0.31295 0.40974 0.10429 0.23397 -0.53145 -0.02071 0.22190

0.09308 0.30999 0.26343 -0.43964 -0.4494 -0.02561 0.41310 -0.50921

Notice the block form of the singular vectors, as given by (2). Looking at the

relative signs only of the left (or right) singular vectors, and marking the sign of the

¯rst block throughout as positive, the vectors are arranged in the following pattern:

"
+ + + + + + + +
+ + ¡ + + ¡ ¡ ¡

#
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Hence dimensions 1, 2, 4 and 5 correspond to the matrix sum component and di-

mensions 3, 6, 7, and 8 correspond to the matrix di®erence. This is what we meant

previously when we said the components would be interleaved in the solution of the

block matrix.

The total sum of squares due to the sum and di®erence components are thus,

respectively:

sum : 89:3492 + 44:5482 + 15:3942 + 12:6342 = 10364

di®erence : 36:3932 + 10:2972 + 7:59972 + 5:0462 = 1514

which are the components we obtained before by direct calculation. Thus separate

maps of dimensions 1 and 2 together and dimensions 3 and 6 together visualize the

sum and di®erence components in their respective optimal planes (Figures 2 and 3).

Figure 2 gives the overall view of the countries, irrespective of the gender dif-

ferences, and here we see the general picture we saw in Figure 1 of Germany and

Austria separating out to the right and a vertical spread of the other countries on

the left with Italy at the top, generally more in favour of women staying at home in

the early and later periods of marriage, and Great Britain below in favour of women

staying at home after the birth of the ¯rst child. Notice the similarity of the biplot

vectors in this Figure compared to Figure 1. The percentage of variance explained

of the total variance (11878) is 83.9%, which if expressed as a percentage of the sum

component (10364) rises to 96.2%.

Figure 3 shows us a more accurate map of the di®erences, which we did not see

before. Notice that the biplot vectors are in di®erent positions now, all positive

on the horizontal axis, but opposing the third period mainly against the ¯rst two

along the vertical axis2. Since we are looking at male{female di®erences all the

positive scalar products formed by the countries with the vectors show us that all

the di®erences are positive. Here Ireland is maybe the sole exception since it is

practically orthogonal to the ¯rst two variables, which indicates very little male{

female di®erence here, already notices in Figure 1 in the case of the second variable.

We also seee again that Irish males show a strong di®erence on the third period. The

biggest male{female di®erences are for Italy and Hungary, since these countries are

furthest from the centre. Hungarian males are particularly di®erent from females

with respect to the ¯rst two periods. This map explains 94.5% of the sum-of-squared

di®erences, which is 12.0% of the total variance.

2The three ¯gures in this study would all bene¯t from axis rotation. After rotation in Figure
3 the ¯rst two variables would coincide with one axis, the third variable with the other, with the
fourth variable more or less equally loaded on both axes.
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In summary, the two maps explain a total of 95.9% of the variance, or 96.2% of

the sum component and 94.5% of the di®erence component. Notice that interpret-

ing more than two dimensions in a PCA is normally a complicated exercise because

the later dimensions need to be interpreted remembering what has already been

accounted for in the previous dimensions. But in this case, by separating out the

variance into sum and di®erence components, the interpretation is compartmental-

ized and thus easier to manage and comprehend, even though the sum and di®erence

components are not orthogonal in multidimensional space.

4 Special case: square matrices

Previous work by Greenacre (2000) is a special case of the present one. Let N be

a square asymmetric matrix. The SVD of of the symmetric part of N, 1
2
(N +NT)

and the skew-symmetric part, 1
2
(N¡NT), can be recovered in the SVD of the block

matrix:

A =

"
N NT

NT N

#

In this case, matrices A and B are the square matrix N and its transpose NT

respectively.

5 Doubling of preferences in correspondence anal-

ysis

Greenacre and Torres (1999) have investigated di®erent ways of analyzing prefer-

ences, or ranking data, and other types of so-called \dominance data", using cor-

respondence analysis. Suppose that K is a table of rankings, where the rows are

respondents and the columns are the n ranked items, and the ranks are from 1 to

n where 1 indicates most highly preferred item. Greenacre and Torres have shown

that the correspondence analysis of the \doubled" matrix:

"
L
M

#

where

Lij = Kij ¡ 1 and Mij = n¡ 1¡ Lij;

gives a solution equivalent to that of dual scaling (Nishisato, 1980). The equivalence

lies in the fact that dual scaling is the analysis of the di®erence M ¡ L, called
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the \dominance table" by Nishisato. This analysis is in turn equivalent to a row-

centred principal component analysis of the matrix H with general element Hij =

(n + 1) ¡ Kij, so that the item with value n is the one most preferred, and 1 is

the least preferred. Note that H and K di®er from M and L respectively by 1, the

former ranging from 1 to n and the latter from 0 to n¡1. It is the latter form which
is used in correspondence analysis (see Greenacre and Torres 1999).

It is clear that we could obtain the same solution by applying the usual column-

centred principal component analysis to either of the following block matrices:
"
H K
K H

#
or

"
M L
L M

#

In both cases the sum part will be constant (yielding zero eigenvalues) and the

di®erence part will be exactly the dominance matrix.

6 More than two matched matrices: two sets of

matched pairs

The above ideas can be generalized to two sets of matched matrix pairs. Consider

the case where a matched pair of matrices is itself matched with another matched

pair. This could be, for example, two matrices summarizing results in a survey for

males and females, and both of these repeated at another time point. LetA1 and B1

be the data for males and females at time point 1 and A2 and B2 the corresponding

results at time point 2. We can set up the four data matrices in a 2£2 block format
with each block itself a 2£ 2 block matrix { we call this a nested block matrix:

2
6664

A1 B1 A2 B2
B1 A1 B2 A2

A2 B2 A1 B1
B2 A2 B1 A1

3
7775

Applying the result of Secftion 2 to the \major" blocks, we recover the SVDs of the

sum and di®erence matrices
"
A1 +A2 B1 +B2
B1 +B2 A1 +A2

#
and

"
A1 ¡A2 B1 ¡B2
B1 ¡B2 A1 ¡A2

#

And then , applying the result a second time to each of these \minor" block matrices,

we recover the SVDs of four di®erent matrices:

(1) A1 +A2 +B1 +B2

(2) (A1 +A2)¡ (B1 +B2)

13



(3) (A1 +B1)¡ (A2 +B2)

(4) (A1 ¡B1)¡ (A2 ¡B2)
The ¯rst matrix consists of the overall results irrespective of sex or time of the

survey. The second matrix is the di®erence between males and females irrespective

of time points (data from the two points are aggregated for each sex). The third

matrix is the di®erence between the time points irrespective of sex (the male and

female data are aggregated at each time point). The fourth matrix is the change

in the male{female di®erence from time point 1 to time point 2. In this way the

di®erent components of variance, a main e®ect, a marginal e®ect for time and a

marginal e®ect for sex, and ¯nally a time{sex interaction e®ect, are separated in the

analysis.

The special case of square matrices has been dealt with by Greenacre and Clavel

(1998). If we have two square matrices N and M, for example, two transition

matrices between di®erent time points, or two transition matrices for two groups

(e.g., males and females), then we can analyze the 4£ 4 block matrix:
2
6664

N NT M MT

NT N MT M
M MT N NT

MT M NT N

3
7775

which is equivalent to the analysis of the two block matrices:

"
N+M NT +MT

NT +MT N+M

#
and

"
N¡M NT ¡MT

NT ¡MT N¡M

#

which, in turn, is equivalent to the analysis of the four matrices:

(1) N+M+NT +MT

(2) (N+M)¡ (NT +MT)

(3) (N+NT)¡ (M+MT)

(4) (N¡NT)¡ (M¡MT)

The ¯rst matrix can be called the average symmetric component; the second, the

average skew-symmetric component; the third, the di®erence between symmetric

components; and the fourth, the di®erence between skew-symmetric components.

7 Further results

We can also look at generalizations of the idea to the case of three or more matched

matrices.
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For example, consider the case of three matched matrices: A1, A2 and A3. We

set up the following 3£ 3 block matrix:

A =

2
64
A1 A2 A3

A3 A1 A2

A2 A3 A1

3
75

which is called a block circulant matrix.

Then it can be shown3 that the analysis of A yields a component corresponding

to the sumA1+A2+A3 and the remaining components corresponding to the matrix

of di®erences:
2
64
A1 ¡ 1

3
(A1 +A2 +A3) A2 ¡ 1

3
(A1 +A2 +A3) A3 ¡ 1

3
(A1 +A2 +A3)

A3 ¡ 1
3
(A1 +A2 +A3) A1 ¡ 1

3
(A1 +A2 +A3) A2 ¡ 1

3
(A1 +A2 +A3)

A2 ¡ 1
3
(A1 +A2 +A3) A3 ¡ 1

3
(A1 +A2 +A3) A1 ¡ 1

3
(A1 +A2 +A3)

3
75

which can also be written as:

2

3

2
64
A1 ¡ 1

2
(A2 +A3) A2 ¡ 1

2
(A1 +A3) A3 ¡ 1

2
(A1 +A2)

A3 ¡ 1
2
(A1 +A2) A1 ¡ 1

2
(A2 +A3) A2 ¡ 1

2
(A1 +A3)

A2 ¡ 1
2
(A1 +A3) A3 ¡ 1

2
(A1 +A2) A1 ¡ 1

2
(A2 +A3)

3
75

that is, the block circulant matrix of di®erences between each submatrix and the

average of the other two submatrices.

Furthermore we can show that the dimensions of the di®erence components occur

in \bimension" pairs, i.e. pairs of dimensions with equal singular values, and the

coordinates of the rwo and column points in the form of equilateral triangles.

This result generalizes to four and more matrices in a surprising way. One might

expect that for four matrices, the di®erence components would be \trimensions"

with the points forming tetrahedra, but they still occur in bimension pairs, with

the points forming squares. For ¯ve matrices, they form pentagons still in two

dimensions, and so on.

3This is the subject of another research report in preparation.
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Figures

Figure 1

Principal Component Analysis of Table 1 stacked

93.4% variance explained
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Figure 2

Principal Component Analysis of Sum Component

96.2% variance explained
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Figure 3

Principal Component Analysis of Di®erence Component

94.5% variance explained
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