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Abstract

The problems arising in commercial distribution are complex and in-
volve several players and decision levels. One important decision is related
with the design of the routes to distribute the products, in an efficient and
inexpensive way.

This article deals with a complex vehicle routing problem that can be
seen as a new extension of the basic vehicle routing problem. The pro-
posed model is a multi-objective combinatorial optimization problem that
considers three objectives and multiple periods, which models in a closer
way the real distribution problems. The first objective is cost minimiza-
tion, the second is balancing work levels and the third is a marketing
objective. An application of the model on a small example, with 5 clients
and 3 days, is presented. The results of the model show the complexity
of solving multi-objective combinatorial optimization problems and the
contradiction between the several distribution management objectives.
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1 Introduction

The growing number of problems that firms are facing nowadays with relation
to the distribution of their products and services, has lead logistics to be of
primary concern to many industries.

The importance of good distribution strategy in today’s competitive markets
can not be overstressed. In many industries an important component of the
distribution systems is the design of the routes of vehicles to serve their client’s
demand.

New trends in the supply-chain management are, as pointed out by some
industry leaders, “.better customer service...greater customer sophistication”
(OR/MS Today, August 2000). Customer service is becoming more important,
clients demand more than a product, they demand a product arriving on time,
an easy ordering system or a just-in-time distribution.

In this work, we will explore the decision making problems in distribution
management related with the delivery of products to customers, on a given pe-
riod of time, using a fleet of vehicles. The decisions on how to assign customers
to drivers and to design the routes made by each vehicle constitute the Vehicle
Routing Problem (VRP).The motivation to work on this VRP arises by the
distribution problems faced by the food and beverage industry.

Vehicle routing problems have been explored both in the management and
operations research literature. The models found in the latter literature are
often away from reality, since they do not consider issues present in real dis-
tribution, as for example multiperiod planning. To get closer to real world
problems and to reflect the multitude of concerns in distribution management
we will extend the basic VRP. The final result of this extension will be a multi-
objective model that takes into consideration three different objectives. These
objectives are:

1- Cost objective

2- Human resource management objective,

3- Marketing objective

The idea is to do a cross-function planning in the supply-chain management
by including in the model decisions that belong to different areas of a firm.

The first objective is the classical objective of VRP, which consists of min-
imizing total cost. However, this objective is often object of criticism by the
users and planners, since it does not take into consideration other strategies of
the company as, for example, customer service. The second objective expresses
the need for balancing work levels. This objective is related with the human
resources management which is a growing source of competitiveness in today’s
firms. The third expansion of the model is the one that tries to implement
a marketing policy. In a growing competitive environment many firms adopt
strategies of tight relationships with their customers where loyalty and friend-
ship play a key role. As stated by Lee & Ueng (99), “in planning vehicle rout-
ing transportation, companies are pursuing an all win strategy (organization-
employees-customers) adding the employee work load-balancing factor”.

The present article is organized in the following way: In the next section we



will present a review of the VRPs and a formulation of the basic model. Section
3 will discuss the extensions of the basic model and an approach for the multi-
objective VRP. In section 4, we will show the implementation of the model
on a small example and the results obtained are analyzed. The difficulty to
solve these problems on a real world case leads us to the need for an heuristic
approach. This approach will be the subject of our future research and is
explained in section 6. Finally, in the fifth chapter the conclusions of the work
are presented.

2 Vehicle routing problems

Vehicle routing decisions are extremely important within a company to maintain
its competitiveness an allow it to best exploit the available resources and to
distribute its products at the lowest possible cost.

Significant amount of research efforts have been dedicated to VRP, see for
example Crainic & Laporte (98). The most well known is a basic VRP which
can be briefly defined as the following: given a set of customers with known
demand and location, define a set of routes, starting and finishing at one depot,
that visits all customers with minimal cost. A more detailed formulation will be
presented next, since the basic VRP model is the starting point for any study
in VRP.

Despite the research efforts in academic research on VRP, there still exists
a considerable gap in the application in practical problems of the models and
techniques developed on the academic side.

After, we will briefly review different models and solution techniques for the
VRP.

2.1 The basic model for the VRP.

The basic model of the vehicle routing problem considers a set of nodes, rep-
resenting retailers or customers, at a known location, that must be served by
one depot. Each node has a known demand. A set of vehicles K, with equal
capacity is available to serve the customers. The routes must start and finish
at the depot. The objective is to define the set of routes to serve all customers
with minimal cost.

For each pair of nodes, a fixed known cost is associated. We assume this
cost matrix is symmetric and can represent a real cost, distance or time. The
main constraints of the problem are that all the demand must be satisfied and
the vehicles capacity can not be exceeded.

There are several formulations of the classical VRP in the literature, for
some of these formulations see Fisher & Jaikumar (78) (81), Kulkarni & Bhave
(85) and Gouveia (95). The integer linear programming formulation described
next was proposed by Fisher & Jaikumar (78) and Fisher & Jaikumar (81).
Consider the following data:

I=1,..n set of nodes, that correspond to the different locations of the
customers, node 1 corresponds to the depot.
K=1,..m set of vehicles;



Q capacity of each vehicle;
Qi demand of customer i, ¢ =1,...,n;
Cij cost of going fromitoj,i=1,...,n;j=1,...,n.
This formulation considers two types of variables:
1, if vehicle k visits customer j immediatly after customer ¢
Tijk = { 0, otherwise
?
[ 1, if customer ¢ is visited by vehicle &k
Yik = 0, otherwise
The formulation of the problem is as follows:

Objective Function

n n m
Min Z Z Cij Lijk

i=1 j=1 k=1
Subject to

m
Zyik =1, Vi=2..n (1)
k=1

Zylk =m, (2)
k=1

dayk<Q,  Vk=1,..m (3)
=2

n n
szjk = Zwﬁk = Yik,
j=1 j=1

Vi=2,...,nk=1..m (4)
> wir <181 -1,
§,i€8

¥ S non-empty subset of {2, ey n} ik=1,....m (5)
zige €{0,1}5 yar € {0, 1},
Vi=1,...,mk=1,....m (6)

Constraint (1) ensures that each customer is visited by one vehicle only.
Constraint (2) guarantees that all vehicles visit the depot. Constraint (3) rep-
resents the vehicle capacity constraint. For each vehicle k, we guarantee that
the sum of the demand of the nodes that the vehicle covers is less or equal to
its maximum capacity. Here we assume that none of the clients has a daily
demand that exceeds Q. The fourth constraint ensures that if a vehicle visits a
client it also has to leave the client.

Constraint (5) is the sub-tour elimination constraint. This constraint implies
that the arcs selected contain no sub-cycles. It states that for every vehicle, the
following holds: for every non-empty subset S of {2,..,n}, the number of arcs
that are in the route of this vehicle, with both nodes belonging to S, has to be
less or equal to the number of elements of .S minus 1.



The last constraint defines the variables = and y as binary. The objective
function is minimizing the total distance(or cost) of the routes.

The basic VRP is a generalization of the Traveling Salesman Problem, where
more than one vehicle is available, for TSP references see for example Lawer et
al.(85).

The TSP belongs to the class of NP-hard (non-deterministic polynomial
time) problems, and so does the basic VRP and extensions. This means that
the computational complexity of the problem grows exponentially with its size,
i.e., it grows exponentially with the number of clients and vehicles.

Therefore, most of the work on the basic and extensions are on developing
optimization models and algorithms and heuristic approaches to solve them.
There are several works where extensions of basic VRP, new formulations and
models are presented within the context of vehicle routing. And, other works
where exact methods or heuristic approaches are described. Due the complex-
ity of the VRP usually exact methods are only able to solve small instance,
meanwhile, for larger instances heuristic techniques are applied. Next we will
present a brief review of VRP related research.

The review will not be exhaustive, for a more complete analysis see the
survey articles on VRP by Laporte and Osman (95), Laporte (92), Desroisers
et al (96) and Fisher (96) and the book of Crainic and Laporte(98). An ex-
tensive list of VRP research papers can be found on http://www.imm.dtu.dk/
“orgroup/VRP _ref/.

2.2 Extensions of the basic VRP

Next we review some important work on the area of vehicle routing. The VRP
was first proposed by Dantzing and Ramser (59).

One way to classify the extensions of the VRP could be to divide them into
the following types:

e Single depot

e Multiple depot

e Time windows

e Multiple use of vehicles
¢ Backhauls

e Heterogeneous fleet

e Satellite facilities

e Open VRP

e Stochastic VRPs

The single depot model represents the basic formulation of the VRP pre-
sented before. If a set of depots is considered we are in the presence of a



Multi-depot Vehicle Routing problem (MDVRP), see for example, Dell’ Amico,
Fischetti & Toth (93). Another generalization of the VRP is the introduction
of time windows constraints. In the VRP with time windows we have to ensure
that the service at any customer starts within a given time interval, called a
time window, (see Desrochers, Desrosier and Solomon (92)) Kohl, Desrosiers,
Madsen, Solomon and Soumis (99) proposed an optimization algorithm to this
problem. Another version of this extension is the VRP with soft time win-
dows, where vehicles can arrive before a lower bound or after an upper bound.
Taillard et al.(97) propose a heuristic for this specific problem.

The basic version assumes that a vehicle can be loaded only once during a
period of time. The elimination of this assumption leads us to what is known
as the VRP with multiple use of vehicles. In this model, the vehicle can be
used more than once in a time period. Taillard, Laporte and Gendreau (96)
and Brand&o and Mercer (97) proposed several heuristics to solve this problem.

The VRP with Backhauls consists of a VRP where the customers are divided
into two subsets: the linehauls and the backhauls. Backhauls customers have
to be visited after linehaul customers. Mingozzi et al (99) review the literature
on these problems.

Another type of problems is the VRP with heterogeneous fleet, where, ny
vehicles of type k are available, d;;, represents the cost of traveling from one
node to another with vehicle k£, and the use of a vehicle of type & implies a
fixed cost fi. Different vehicle types will reflect different fixed costs. The goal
is to determine a fleet of vehicles such that the sum of fixed and travel costs
is minimized. Ochi et al (98) and Taillard (96) have developed algorithms to
solve this problem.

In some cases firms may have apart from the depot other facilities that
can be used to fill the vehicles. This satellite replenishment allows drivers to
continue making deliveries without returning to the depot. This problem is
known as VRP with satellite facilities and can be found in Bard, Huang and
Jaillet (98).

Many firms decide to subcontract part or all of their transportation services.
In these cases the constraint that forces the vehicles to go back to the depot
may make no sense. The formulation of this problem has been presented by
Sariklis and Powell (00) and is known as the Open Vehicle Routing Problem
(OVRP).

All the above versions are based on the assumption that all the parameters of
the model are known in advance. But, in many cases, there can be elements that
have some degree of uncertainty. These cases are referred to in the literature
as Stochastic Vehicle Routing Problems (SVRP). In some cases firms can only
know the demand when they have arrived to a client location. So, the problem
is in not satisfying a client or in coming back to the depot to avoid going out of
stock. There are also problems where customer locations are stochastic. Others
consider uncertainty in travel times. This applies, for example, in distributing
inside a city, depending on the hours we are traveling, travel time may vary. See
Gendreau, Laporte and Séguin (96) for a summary of the scientific literature
on SVRP.

Another important reference is the work by Lee and Ueng (99), where they



extend the basic VRP to a multi-objective model, with two objectives: Mini-
mizing cost and balance workload.

All the above extensions try to approximate models to reality. Fach firm
faces specific distribution characteristics making it impossible to explore all the
variations of a routing problem. Nevertheless, we can find some works on real
applications of the VRP. The work of Golden and Wasil (87) about vehicle
routing on the soft drink industry and the work of Atkinson (98) on VRP with
time windows applied to the distribution of school meals within a large urban
area, among others.

In this article we will try to get closer to the management concerns and
extend the VRP to solve a specific distribution problem, considering routing
decisions for several periods on a three objectives approach.

As mentioned, the motivation was distribution problems arising in food
and beverage industry. In this industries, the distribution plan is usually done
weekly. Also, the relationship customer driver has a great importance to im-
prove sales and create a good image of the company. As far as we know, none
of these aspects have been treated properly in the VRP literature.

3 The multi-period distribution problem

3.1 Definition

The idea is to create a multi-objective VRP that models in a closer way the real
distribution problems, since the basic model is rarely applied in real problems
due to its simplicity.

The basic model has an objective function that is centered in cost minimiza-
tion. Distribution costs are, for many industries a significant portion of their
total costs, but, they are not the only source of concern. In real business envi-
ronments, companies face a complex variety of problems and the solutions for
these problems are, in many cases, contradictory. There are conflicts of interest
that must be managed and the way the conflicts are solved may be crucial for
the success of the distribution policies.

Here we will try to reflect these concerns of a firm when designing its distri-
bution strategies. We assume that the firm is responsible for the distribution of
its own products. Therefore, there are no questions of outsourcing to be han-
dled. Another assumption is that these firms face the pressures of a competitive
market making them concerned both on consumer satisfaction and internal ef-
ficiency.

As far as we know, the only multiple objective VRP model considered in the
literature is the one by Lee and Ueng (99). These authors developed an integer
linear model that searches for the shortest travel path and balances driver’s load
simultaneously. The work is measured in terms of traveling and loading time.
The objective function is the weighted sum of the two objectives. This second
objective minimizes the difference between the working time of each vehicle
and the working time of the vehicle with the shortest working time. Our paper



introduces a different measure of work and of balance, multiple periods and a
third objective.

3.2 The multi-objective model

In this section the motivation for the three objectives will be explained and also
the assumptions of the model.

The classical VRP considers only one period and chooses the optimal routes
for that period. Here we will introduce more periods by considering a week
length of analysis. Each day we have a different set of clients to serve and
quantities to deliver. The reason for this assumption is that in many industries
we see that customers have low demands in terms of quantities but demand
very frequently, tending to maintain low levels of stock. The just-in-time distri-
bution is a tendency in many businesses to lower stock handling costs. This is
particularly trueon the food and beverage industry. Since they may distribute
their products to bars, small stores or larger supermarkets, these companies
face very different types of customers. Some place orders almost every day and
others place fewer orders but order higher quantities each time. Some days
might also have higher demand like Fridays or Mondays.

As we will show later on, considering a multi-period model is essential to ap-
proach reality. In our model one of the objectives will be to minimize worklevels
along several periods and not on a one period basis.

Other assumptions of the model are:

e All the demand is satisfied in the same day that it is required and not on
any other day of the week.

e Only unload is done at each client.

e The number of vehicles is fixed and there are no fixed costs associated
with the use of the vehicles. They all have the same capacity. Moreover,
the number of vehicles available is enough to satisfy all the demand.

e Another assumption is that the cost matrix is known and fixed, indepen-
dently of the day or the quantity loaded. The location of the clients is
known.

e Each vehicle is assigned to a driver. For now we consider that they work
every day in the period in question.

e One vehicle can only be used once a day and the time it takes to deliver
the full capacity is less than a working day.

e Finally, we assume that each vehicle is driven always by the same driver.
If we minimize differences in vehicles load we will balance employers work.

The way we measure work is not in terms of distance traveled but in quan-
tities delivered. This way of dealing with work is based on the assumption that
the work effort is centered on the unloading of the truck at the clients location,
and not so much on the distance traveled. This measure could be changed into



travel and unloading time. The choice of the type of measure will strongly
depend on the specific industry we are facing. Our assumption makes sense for
cases where products are distributed in a city versus others where distribution
is through countries.

In the next sections the objectives and its formulations will be presented in
detail. The following data is considered on the formulation:

1,1 index and set of nodes, I = 1,...,n where 1 is the depot and 2 to n
are the clients locations;

k, K index and set of vehicles, K =1, ...,m;

t, T index and set of days which represent the period, T'=1, ..., p;

T; set of days where client ¢ has a demand that is greater than zero,
T =2,...,M;

q demand of customer ¢ on day ¢ with¢=1,...,nand t =1, ..., p;

Cij the cost of going from ¢ to j, this is a fixed matrix with i = 1,...;n
and j =1,...,n;

Q capacity of a vehicle.

The variables of the model are:
. 1, if vehicle k visits customer j immediatly after customer ¢ on day ¢

Lijk = 0, otherwise
¢ | 1, if customer 7 is visited by vehicle k on day ¢
Yik = 0, otherwise

3.2.1 Objective A: Minimizing Cost

Cost reduction is one of the biggest concerns in transportation and distribution
management, but not the only one as we will see later. We want to find the
route for each of the vehicles that will pass through the demand points in such
a way as to satisfy all the demand with the smallest cost(or distance).

The formulation of this objective will be the same as the one used for the
basic model but with a new parameter, ¢, representing the day of the week.



Objective function

P n n m
{2
Mind > > e i

t=1 i=1 j=1 k=1

Subject to
m
dy=1, Vi=2..,n; (€T (1)
Zy;‘k:m, VieT; i=1 (2)
ZQZyzk = Vk= 17 -eey T = 17 - P (3)
ngjk = Zmizk = Yk
j=1 j=1
Vi=2,...n k=1,...m; t=1,....p (4)
Z mﬁjk < |S| =1, V S nonempty subset of {2,...,n};
jies
E=1,..m; t=1,...p (5)
w;‘fjk € {07 1}7 yfk € {07 1}7
Vi=1,..nk=1,..m; t=1,...,p (6)

Constraints (1) to (6) are similar to the ones in the basic model.

Constraint (1) ensures that in the days where the clients have a positive
demand, that client is visited by only one vehicle.

The second constraint forces that each day all vehicles go to the depot.
Constraint (3) ensures that, the daily loading of a vehicle does not exceed its
capacity.

Constraint (4) guarantees that if the vehicle enters a node, on day ¢, it also
has to leave that node, on the same day.

Finally constraint (5) avoids subtours, but now not only for each vehicle but
also for each day. The subtour elimination constraint represents an exponential
number of constraints.

The problem with this constraint is that its number grows exponentially
with n. Therefore, as it is usually done in the basic model, a weak form of
the subtour elimination constraint is introduced to be able to solve it by a
commercial software.

Desrochers & Laporte (91) presented a weak form of the subtour elimination
constraint for the TSP, this relaxation does not guarantee the elimination of
subtours for large problems. Here, we will transform this weak form so that it
can be applied to the VRP. The weak form proposed by Desrochers & Laporte
(91) for the TSP, is the following:

Consider the variable u; which represents the position of node j in the tour,
assume that every tour starts at 1. Let x;; be the binomial variable that equals

10



1 if the salesman goes from ¢ to j and 0 otherwise. Then the constraint is:

ujZui—i—xij—(n—2)(1—mij)—|—(n—3)xji Vi,j:j#iandj>1

and these other two, which are specific for the TSP:

n—1—(n—2)x; Vi, 5 >1
1+(n=2zn  Vj,j>1

U <
U >
Transforming the previous for our VRP model we have:
Let uzk be the position of node j in the tour made by vehicle k£ on day ¢.
The new constraint is:

uh, > ufy +aly, — (n—2)(1 — af) + (n— )by,
Vi# dand j>1,t€T and ke K

This restriction holds even if ¢ and j are not in the same route. If ¢ and j
are not on the same route on day ¢ then, the variable xz will equal 0 (wf]k =0
and x?zk = () and the constraint becomes:

ub > ufp +0—(n—2)(1-0)+(n—3) x0

uzk >ub, +2-n

This is always true, the position of a node is always higher or equal than 1.
In the worst case all the n nodes are in this tour and node 7 is the last to be
visited, uf, =n —1 and uzk > 1.

With this weak formulation we reduce the number of constraints and enable
a commercial software to solve the problem.

The last constraints (6) define all variables as binary.

3.2.2 Objective B: Balance Worklevels

The second objective function, seeks to balance the work between vehicles. The
idea of making a multi-objective model that balances the work and minimizes
cost has already been explored in the work of Lee and Ueng (99). In that paper
the way the work is balanced is by minimizing the difference between the work
of each vehicle and the work of the vehicle with the lowest work level, where
the work was measured in terms of traveling and loading time.

In our model we considered the measure of the work related with the volume
transported during all periods. Ths is particularly important in industries, like
food and beverages, where is everyday more common to have a percentage of
the remuneration related with the amount of sales and distributed products.
Therefore, to measure the equilibrium of the routes we will consider a statistic,
the standard deviation, since it is a well known measure of deviations or spread
around the mean.
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The standard deviation of the work of each vehicle at the end of the period
is minimized. The model allows a vehicle to work more than another on a given
day as long as the total work of a vehicle at the end of the period is balanced.
The problem of using the standard deviation as an objective function is that
we no longer have a linear function and this adds complexity to the model.

The total work of each vehicle will be represented by wy, where:

p
wkzzzn:qufk Vk=1,...m

t=1 i=1
and, the objective function will be:

m 2 m 2
Min {StdDev} = Min \/Zkl Wi (Zk:l wk)
m

m

Constraints (1) to (6) in this objective are the same as in the previous model
and we add a new constraint:

STyh=0, Vv i=2_..nandt¢T (7)
k=1

Constraint (7) prohibits a vehicle to visit a client on a day where he has zero
demand. In the first objective we did not need this constraint since the objective
was to minimize distance and the solution did not go through empty nodes.
Now, distance is not included in the objective and going into a node with no
demand is not penalizing the objective function B.

3.2.3 Objective C: Marketing Objective

In this model, each driver will try to serve always the same customer. This
marketing policy is giving emphasis to the personal relationship between drivers
and customers as a way to improve customer service. Since we have other
constraints such as capacity and number of vehicles, we want this to happen
the maximum number of times possible. This requirement may have to be
sacrificed but we will try to enforce this at least to the best clients. Therefore,
the idea is: the better the client is the more interest we have in maintaining the
same driver. This policy is becoming relevant in many industries, in particular
the food and beverages, since the driver also performs commercial tasks.

In terms of mathematical formulation, the third objective works as follows:
For each client we have a set of pairs of days with positive demand, T;, for each
pair of days (g, h) in T; (with g # h) we want to minimize the difference in the
assignment to a vehicle k. The objective is to minimize ‘yfk — yfk‘

The objective function will be:

12



n

MinZi

i=1 k=1 (g,n)eT;

q h
Yir — Yik

The importance is given by the total demand in the period, therefore a weight is
introduced by the total amount ordered by each client. The objective function
becomes:

The importance of a customer is measured in terms of sales. In some cases
other measures could be used to classify the goodness of a client. For example,
frequency of orders, credit history.

This objective function is again non linear. Constraints are the same as in
section 3.2.2.

g R
Yi — Yik

3.2.4 Summary of the complete model.

As mentioned before, when designing the distribution routes the three objectives
can be important, an appropriate model is a multi-objective one, which can be
described as:

13



Min(total cost); Min(# in work levels) and Min(# in client service)

A B
Objective function
P n n m

A Minz Z Z Cij Z;Ugjk;
k=1

t=1i=1 j=1

2
- \/zz;w,%_(mlwk) |
m Y

m

n

m P
C Min ZZ Z [(Zq,) X
i=1 k=1 g,he}fll} t=1
g<

g R
Yir — Yik

|

Subject to

m

dyk=1, Vi=2..,n; (€T,
k=1

m

Zyik:m, vteT

k=1

n

=1

n n
t to_ .t
E Lijk — E Liik = Yik»
j=1 j=1
Vi=2,...,n k=1,...,m; t=1,..,p

Z nglc < |S] =1, V S nonempty subset of {2,...,n}
jies
k=1,...m;t=1,...,p

wﬁjk € {07 1}; yfk € {07 1}
Vi=1,...,mk=1,..m; t=1,...,p

m
Sy =0, Vi=2..,nt¢T
k=1

P n
and Zquyfk:wk Vk=1,...m
t=1 i=1

To guarantee that the assumption on the number of the vehicles holds we
can calculate the number of vehicles required.

m = [Max(Z?l qg o D Qf)—‘

Ideally, we would like to find the solution that would be optimal for the three
objectives at the same time. In multi-objective programming this solution point

14



rarely exists. So, we would like to find solutions that are closer to this ideal
point.

In the multi-objective optimization an important relation is the dominance
relation.

Let (z1) and (z2) be two solutions of a multi-objective problem with R
objectives. We say that:

Solution (z1) dominates (z2) if 21, < 29, Vobjectivesrin {1,..., R},
21r < z9p for at least one r and (z1) # (22). A feasible solution is efficient if it
is non-dominated.

Based on this concept we will optimize the three objective functions to find
non-dominated solutions. The choice among these non-dominated solutions is
determined by the decision maker’s preferences among the multiple objective.
In the next section these preferences are introduced as weights.

3.3 Weighting function approach

An usual approach to solve multi-objective problems is to consider all the ob-
jectives in the same objective function. The simplest method to do this is the
Objective Weighting, where a weight is given to each of the objectives and the
sum of them is optimized. The objective function Z is a weighted sum of the
single objectives fy, A =1,...,e and e is the number of objectives.

Z =>5_qaxfa(z) where z € X and X represents the feasible region
and > 5_; oy = 1.

In this method the optimal solution is controlled by the weight vector a.
The preference of an objective can be changed by modifying the corresponding
weight.

The use of this method may lead to Pareto-Optimal solutions but has some
drawbacks. The solution is very sensitive to the weights that have been defined.
The problem lies also on having objectives with different variables and scales.
In our case, for example we are adding costs with standard deviations and
quantities, forcing to use cost measures for the second and third objectives.
This, in practical terms increases the complexity of the decision process.

To apply this method to our model we have to define objective B and C in
terms of costs and in a similar scale.

Let ¢cp be the cost per unit of standard deviation, this can be interpreted
as the cost for a firm of having disequilibrium in routes. And c¢ unit cost to
the company for not serving a client with the same salesman. This could also
be interpreted as the penalty for not going to the same client.

The weighted objective function with weights a1, a2,a3 > 0, such that

15



Zi:l oy = 1 is as follows:

P m n m Zm 2 m 2
. 1w 1 W
Min o E g g Cij g :Ugjk—ﬁ—ozch k=l & _ 21 +
— m m

t=1 i=1 j=1

g R
Yir — Yik

n o m D
+agco {1 > Y >_ai | %
i=1 k=1 g,h€T; t=1

g<h

Subject to
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To use this method we face two problems: The first one is related with
the weight that will be given to each objective and the second problem is the
comparability between objectives through the transformation of the objectives
into identical scales.

4 Solution Approach

In this section we will present solutions for the above problem using a small
example.

The Lingo 2.1 Industrial version was used to run the algorithms. Lingo is
a mathematical modeling language that solves linear and nonlinear problems.
For the linear problems LINGO uses Primal and Dual Simplex solvers or a
Barrier solver. The Barrier solver utilizes a barrier or interior point method to
solve linear models. The non-linear solver is based on the Generalized Reduced
Gradient algorithm. The method does not guarantee that the solution found is
a global optimum.

The example considers 5 clients, 2 vehicles and 3 days. The option to use an
example with only three days is just to have a short computational time. And,
on the other hand the number of days is large enough to allow the analysis of
the results. The demand and distances matrices used for the example can be
see in Appendix 1.

Figures 1 to 3 represent the solutions for 3 scenarios, corresponding to the
optimization of the 3 objective functions (A, B and C) independently. In these
pictures one can see the optimal routes and the total work of each vehicle. As
can be observed all the routes are different depending on the objective we want
to minimize, and, in general, the three objectives are contradictory.

For example, when we minimize objective A, we obtain unbalanced routes.
The total work of vehicle 1 is 230 and vehicle 2, 90. Or, when we balance the
work we have that client 4 is served by different vehicles on the second and
third days. Table 1 shows the results obtained for the three objective functions
in the 3 cases. All the solutions are non-dominant. That is, in all the solutions
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Day 1:

Route of Vehicle 1 -2-6-3-1

Route of Vehicle 2: 1-4-1

Total work: Vehicle 1: 100; Vehicle 2: 30

Day 2:

Route of Vehicle 1: 1 -4-2-1
Route of Vehicle 2: 0

Total work: Vehicle 1: 80; Vehicle 2: 0

Day 3:

Route of Vehicle 1: 1 -2 -1

Route of Vehicle 2: 1-5-4-1

Total work: Vehicle 1: 50; Vehicle 2: 60

Figure 1: Optimal Solution: Objective A

Day 1:

Route of Vehicle 1 -4 -1

Route of Vehicle 2:1-6-2-3-1
Total work: Vehicle 1: 30; Vehicle 2: 100

Day 2:

Route of Vehicle 1: 1-2 -4 -1
Route of Vehicle 2: 0

Total work: Vehicle 1: 80; Vehicle 2: 0

Day 3:

Route of Vehicle 1: 1 -2-1

Route of Vehicle 2:1-4-5-1

Total work: Vehicle 1: 50; Vehicle 2: 60

Figure 2: Optimal Solution: Objective B

there is at least one objective that has a better value on another solution.

Let cg = 200 and c = 50

Consider 2 examples: M1 and M2. The only difference between these exam-
ples is the weight given to each objective. In M1 all the objectives are equally
important, all a are equal to 1/3 and in M2 the weights are ay = 0,5;a0 =

17

A B| C
Optimize A | 13297 | 70 | 280
Optimize B | 14428 | 0 | 880
Optimize C | 15381 | 50| O
Table 1

In Figure 4, we can see the same results has in the Table 1. None of these
triangles is totally covered by the other. Which means that none of the solutions
is dominated by another.
The next step will be to implement the weighting method approach to the
same example, we will call it objective M. For this implementation we need to
define the weights and the costs associated with objective B and C.




Day 1:

Route of Vehicle 1-3-2- 1

Route of Vehicle 2: 1-4-6—-1

Total work: Vehicle 1: 60; Vehicle 2: 70

Day 2:

Route of Vehicle 1: 1 -2-1

Route of Vehicle 2: 1 -4 -1

Total work: Vehicle 1: 50; Vehicle 2: 30

Day 3:

Route of Vehicle 1: 1-2-5-1

Route of Vehicle 2: 1 -4 -1

Total work: Vehicle 1: 100; Vehicle 2: 10

Figure 3: Optimal Solution: Objective C

il e

—e—Optimize A

—m— Optimize B

Optimize C

Figure 4: Graphical representation of the solutions
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Day 1: Day 2: Day 3:

Route of Vehicle 1 -2-3-1 Route of Vehicle 1: 1 -2 -1 Route of Vehicle 1: 1 -2 -1

Route of Vehicle 2: 1-6 —4-1 Route of Vehicle 2: 1 -4 -1 Route of Vehicle 2:1-5-4-1

Total work: Vehicle 1: 60; Vehicle 2: 70 Total work: Vehicle 1: 50; Vehicle 2: 30 Total work: Vehicle 1: 50; Vehicle 2: 60

Figure 5: Optimal Solution: Objective M1

A B C M1

—o— Optimize A —g— Optimize B Optimize C Optimize M1

Figure 6: Graphical representations of the solutions

ag = 0,25 . The solution of problem M1 (Figure 5) is different from the one
found when considering the objectives separately. The values of the different
objectives can be seen in Table 2 and Figure 6.

A B C M1 M2

OptimizeA | 13297 | 14000 | 14000 | 13752 | 13649
Optimize B 13317 0 44000 | 19087 | 18099
Optimize C 15381 | 10000 0 8452 | 10091

Optimize M1 14721 0 0 4902 7361
Optimize M2 14701 2000 0 5561 7831
Table 2

The solutions obtained when optimizing objective M1 and M2 dominate the
one that results from optimizing objective C. It is an optimal solution for the
objective C and produces better values for objectives A and B. For the non-
linear objective functions we cannot guarantee that the solution is a global
optimum. The solution found for objective M2 is a local optimum, the value of
the objective function M2 is higher than the one we would obtain applying the
solution found for M1.
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If we try to increase the size of the example, by adding one more day, the
computational complexity increases exponentially. To show an example of the
complexity of this problem, when trying to solve an example with 4 days, 2
vehicles, and 5 clients, on a PC (Pentium , 32 MB RAM ), after 2 days the
LINGO had not been able to find a solution. These computational times are
not compatible with a firm’s decision processes.

5 Summary and Conclusions

This work presents a new extension of the VRP, which tries to reflect more the
“real world” situations and business concerns. The model is a multi-objective
combinatorial optimization problem with three objectives: minimizing cost,
balancing work and improving customer service. We have implemented the
model on a small example and found some non-dominated solutions.

The results obtained matched our expectations: The three objectives are
contradictory and, when optimizing one of them we obtain bad solutions for
the other two. When using the weighted method as an approach to solve the
multi-objective issue we face two problems: the first is that the costs associated
with B and C are artificial and influence the results; and second, the definition
of preferences for each objective also influence results.Just by analysing such
a small example, we were able to conclude the importance of the inclusion of
multiobjectives in the multiperiod model.

Since the idea is to approximate the model to reality we need to overcome
the complexity of the model and the time to find solutions to be able to apply
it to real cases and help the user to take decisions. Therefore, as further work
we will develop an heuristic approach, based on a technique known as iterated
local search, that we hope that it will enable us to obtain good results in shorter
running times.

For further research we also thought about extending this model to include
stochastic demand in order to compete with the new trend of on-line delivery
systems arising on the area of e-commerce.
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