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Abstract

A model of directed search with a finite number of buyers and sellers is con-

sidered, where sellers compete in direct mechanisms. Buyer heterogeneity and

Nash equilibrium results in perfect sorting. The restriction to complementary

inputs, that the match value function Q is supermodular, in addition coor-

dinates the sellers’ strategies. In that case, equilibrium implements positive

assortative matching, which is efficient and consistent with the stable (cooper-

ative equilibrium) outcome. This provides a non-cooperative and decentralized

solution for the Assignment Game. Conversely, if buyers are identical, no such

coordination is possible, and there is a continuum of equilibria, one of which

exhibits price posting, another yields competition in auctions.
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1 Introduction

This article considers equilibrium decentralized trade where sellers hold differentiated

goods and buyers have idiosynchratic preferences. The Walrasian equivalent of allo-

cating heterogeneous buyers and sellers is solved in what is known as the assignment

game (see Roth and Sotomayor (1990) for a survey). Assuming the preferences are

common knowledge, this literature identifies equilibrium trading prices and alloca-

tions which describe an equilibrium.1 In many contexts of trade however, prices are

much more instrumental in the allocation process. Rather than the mere outcome

of an optimization process, price is very often the strategic variable. Differentiated

goods for example are commonly advertised by announcing the price in addition to

the characteristics of the good. Many job announcements in newspapers, or through

agencies, include a wage together with the job description. We therefore adopt the

directed search approach (Montgomery (1991), Peters (1991), Acemoglu and Shimer

(1998), Burdett, Shi and Wright (1998)). One side of the market, the sellers, publicly

advertise their goods, their location and their price(s). The other side, the buyers,

then choose which seller to visit. The central theme in the existing directed search

literature is the inefficiency of the equilibrium allocation: buyers do not manage to

coordinate their visit strategies. The question this paper addresses is whether sellers

are able to solve the coordination problem and whether they can implement efficient

allocations. For that purpose, we add two features. 1. Rather than restrict sellers’

strategies to posting prices, sellers here are allowed to compete in direct mechanisms.

For example they could advertise an auction. The issue we investigate is what mech-

anisms these competing sellers adopt in equilibrium, and whether the final outcome

is efficient. 2. We introduce two-sided heterogeneity, which makes our model iso-

morphic to the assignment game model. Will the decentralized trade model of the

assignment game efficiently allocate differentiated buyers and sellers?

Our central result is that buyer heterogeneity and seller competition in mecha-

nisms results in perfectly directed search, which is efficient. This result is surprising

because the set of equilibria is discontinuous in buyer valuations: minimally differ-

ent buyer valuations are sufficient for ruling out bad coordination equilibria, while
1The so-called ”stable” outcome has been shown to coincide with the Walrasian equilibrium.
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coordination failure cannot be ruled out for identical buyers. Further, if there is also

seller heterogeneity and supermodularity in the match value function, equilibrium

results in the unique optimal allocation. The directed search model with competing

mechanisms provides a decentralized solution for the assignment game.

Heterogeneity is critical for these results. With identical buyers, there exists

a coordination problem where no buyer knows which seller the other buyers will

visit, so the buyers’ visiting strategy is to randomize over sellers. As there is a

positive probability that several buyers will choose the same seller, the final outcome

is inefficient: goods remain unsold with positive probability. We show that with buyer

heterogeneity, each seller’s mechanism is allocationally efficient [it allocates the good

to the highest valuation buyer should more than one show]: ex post, buyers who enter

the mechanism truthfully reveal their type. The byproduct of truthful revelation is

that it allows sellers to announce sufficiently rich mechanisms ex ante. Because sellers

know the buyers will truthfully reveal their types, they can choose the mechanism’s

incentive compatible payoffs in order to affect buyers visit strategy. This perfectly

directs buyers to the appropriate sellers and solves the coordination problem.

This paper extends the recent directed search literature in two ways. It assumes

there is two sided heterogeneity in the market and that sellers compete by advertising

prices/mechanisms. Much of the directed search literature has instead assumed no

or one-sided heterogeneity, where the advertisers post a price, and the (identical)

searchers choose which advertiser to visit [e.g. Montgomery (1991), Peters (1991),

Acemoglu and Shimer (1999), Burdett et al (1998)]. This generates the coordination

failure mentioned above, as identical searchers do not know which advertiser each

will choose to visit.2 When the advertisers are heterogeneous, coordination failure

remains while price dispersion arises as an equilibrium outcome [Montgomery (1991)].

Otherwise, all advertisers post the same price.

Of course, when buyers are heterogeneous, posting a single price cannot be an

optimal mechanism. If several buyers visit the same seller, maximising joint surplus
2An exception is Acemoglu and Shimer (1999) who in a labour market context assume workers

(searchers) differ in wealth and hence have different attitudes to risk. However, they also assume no

worker is unique and so each worker type faces the same type-specific coordination problem.
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requires allocating the good to the buyer who values it most. McAfee (1993), Pe-

ters (1997), Peters and Severinov (1997), Burguet and Sakovics (1999), Coles (1999)

show that when buyers have independent private values, then in equilibrium sellers

advertise second price sealed bid auctions and compete on reserve price.

In this article, it is not assumed that buyers have independent private values. In-

stead, as in the assignment game literature, there is a finite number of buyers where

the distribution of preferences is common knowledge. Each buyer knows his own

preference type, but that knowledge is private information: buyers are anonymous.

It is precisely this type of buyer preferences that generate the coordination result.

When two buyers turn up at one seller, the seller knows that they have different val-

uations. The efficient mechanism will always allocate the good to the high valuation

buyer. In addition, it will generate coordination as in equilibrium, no two buyers will

ever turn up at the same seller. In the announcement stage of the mechanism, the

seller can choose the transfers such that only one of the two buyers wants to visit

her. If one seller announces terms of trade that attract one buyer, the best response

of the other firm is to attract the other buyer. The common value assumption about

the preferences that drives the coordination result is a crucial feature of the directed

search and assignment game literature. Though absent in most of the optimal com-

peting mechanism literature, recent work by Biais, Martimort and Rochet (1999) and

Maskin (1999) introduces a common value environment.

This common value feature of preferences is of course widely adopted in the com-

mon agency literature (see Bernheim and Whinston (1986a and 1986b), Dixit, Gross-

man and Helpman (1997) and Bergemann and Välimäki (1999)). Common agency is

a multilateral relationship in which several principals simultaneously try to influence

the actions of one agent. Though the model we present is fundamentally different,

several aspects are common to the models in that literature. We have two principals

(the sellers) who simultaneously try to induce two agents (the buyers) to participate

in their mechanism. Moreover, the point of departure in the common agency liter-

ature, as well as in our model, is the use of Groves-Clarke mechanisms: truthtelling

is a dominant strategy. It is then no surprise that even though the mechanisms in

our model can coordinate the actions of the buyers, there exist multiple equilibrium

transfer prices. These are the result of ”non-serious” announcements by sellers even
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though these announcements do not change the equilibrium allocation. This has

led Bernheim and Whinston to concentrate on the refinement called truthful equilib-

rium. A strategy is truthful relative to a given action by the buyers (agents) if it

accurately reflects the seller’s (the principal) willingness to pay for any other action

relative to the given action. We show that a truthful equilibrium yields a unique set

of equilibrium prices for the coordinated equilibrium. If the match value function is

supermodular, the truthful equilibrium allocation is also unique. This corresponds to

the centralized solution of the assignment game, which exhibits postitive assortative

matching.

Most of the paper focusses on the two by two case. After describing the frame-

work, section 3 shows there is a continuum of (perfect) Nash equilibria when buyers

(and sellers) are identical. Those equilibria are characterized by coordination fail-

ure: buyers randomise their visiting strategy. The continuum of bad coordination

equilibria is new to the directed search literature. Section 4 then assumes buyers

are heterogeneous. The equilibrium seller mechanisms perfectly coordinate the visit

strategies of buyers. That implies that the allocation is always efficient. Truthful

equilibrium also yields a set of unique prices. Section 5 then considers heterogeneity

of both buyers and sellers and shows that for a matching value function strictly su-

permodular, the allocation is unique. That equilibrium implies positive assortative

matching and payoffs which are consistent with a stable outcome. This result is then

generalised to the N ×N case in section 6.

2 The Directed Search Model

There are two buyers and two sellers. Each seller has one unit of an indivisible good

for sale, and each buyer wishes to purchase one unit. The buyers and sellers are

heterogeneous, indexed by a type x ∈ X = {1, 2} for buyers and y ∈ Y = {1, 2} for

sellers. For any matched pair (x, y) ∈ X ×Y, the utility generated is denoted by the

match value Q : X × Y → <. Although X ,Y and Q are common knowledge, buyers

are anonymous.

Prices and the allocation of goods are determined by competition in seller mech-

anisms. In the first stage of the game, the sellers simultaneously post advertisements
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which describe their good (i.e. describe their type y) and a price/allocation mech-

anism. Each seller posts a direct mechanism - each visiting buyer (if any) simulta-

neously sends a message m ∈ X to the seller, and conditional on those messages,

the mechanism determines who gets the good and any sidepayments. Only equilibria

with pure seller strategies are considered.

In the second stage of the game, each buyer visits at most one seller. In particular,

given the advertized ‘mechanisms’, buyers simultaneously choose which seller to visit.

Given those decisions, and prior to the mechanism being played, each buyer observes

whether the other buyer has made the same choice or not. At this stage a buyer can

choose to walk away and so realize a payoff of zero. Given any buyers who remain,

the seller’s advertised mechanism is then played and determines the final payoffs; i.e.

the good is allocated and all sidepayments are made.

All buyers and sellers are risk neutral, expected utility maximizers. If buyer x

consumes good y and pays price p, the buyer obtains utility Q(x, y)−p and the seller

obtains payoff p from the transaction. The seller obtains zero utility by consuming

his own good.

The first step is to consider a simple benchmark case - that all buyers and all

sellers are identical.

3 The Benchmark Case: Identical Buyers, Identi-

cal Sellers

Assume Q(x, y) = Q for all x, y. As the distribution of buyer types is degenerate,

the restriction to direct mechanisms implies both buyers obtain the same payoff if

they visit the same seller. Suppose both buyers visit the same seller y and their

equilibrium expected payoff is u. As each has the option to walk away, this expected

payoff satisfies u ≥ 0. But note all are risk neutral. The seller’s optimal direct

mechanism simply sells the good with probability one, while providing each buyer

with expected payoff u (this maximises joint surplus and so maximises seller profit).

One such mechanism chooses either buyer with equal probability and sells the good

at price p where u = 1
2 [Q− p].

Hence the identical buyer case implies a very simple direct mechanism; a seller
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announces a price pair (p1, p2) where the good is sold at price p1 if only one buyer

shows, and it is sold at price p2 and allocated randomly if two buyers show. The price

posting approach in the directed search literature assumes p2 = p1. Conversely, the

second price sealed bid auction literature implies p2 = Q and p1 is then interpreted as

the reserve price (should only one buyer show).3 At this stage there are no restrictions

on p2. Obviously announcing p1 ≤ Q is a dominant strategy, otherwise the single buyer

walks away. But it follows that announcing p2 ≤ Q is also dominant.4 Hence there is

no loss in generality by restricting prices to p1, p2 ≤ Q.

Given sellers use pure pricing strategies, let (p′1, p
′
2) denote the price pair an-

nounced by seller 1, and (p1, p2) the price pair announced by seller 2. Given those

price announcements, let σi : (p1, p2, p′1, p
′
2) → [0, 1] denote the probability that buyer

i = 1, 2 chooses to visit seller 1. As the buyers are identical and anonymous, for most

of the section we focus on the symmetric case where buyers and sellers use the same

strategy σi = σ for i = 1, 2.5

Definition 1 A perfect Nash equilibrium requires identifying a quadruple of prices

(p1, p2, p′1, p
′
2) and a function σ where

(a) given (p1, p2, p′1, p
′
2), σ describes the Nash equilibrium in visit strategies for the

two buyers, and

(b) given the subgame visit strategies σ : (p1, p2, p′1, p
′
2) → [0, 1], (p1, p2) and (p′1, p

′
2)

describe a Nash equilibrium in pricing strategies for the two sellers.
3Julien, Kennes and King (1998) consider a hybrid case, where in a prior stage, each seller

simultaneously commits to using either an auction or a fixed price.
4If p2 > Q and p1 ≤ Q then the buyers will play a war of attrition - each wants the other to

walk away. Suppose each walks away with probability π and their corresponding expected payoff

is u ≥ 0. It follows that posting p2 where u = 1
2 [Q − p2] dominates. Both buyers obtain the same

expected payoff, but the total surplus generated increases as the good is sold with probability one

(rather than probability (1− π)2 ≤ 1).
5The next section assumes heterogeneous buyers where buyers use different strategies. Equi-

librium finds that buyers use pure visit strategies and visit different sellers. This section assumes

identical buyers cannot co-ordinate in this way. Nonetheless, those results also apply to the case of

identical buyers by setting QH = QL = Q, imposing uL = uH = u (anonymity) and invoking a tie

breaking assumption which co-ordinates the buyers’ visit strategies (the notation is defined in the

next section); e.g. if buyer i is indifferent to visiting either seller, that buyer visits the corresponding

seller j = i. Note this requires that sellers are not anonymous.
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The next theorem describes the set of symmetric (perfect) Nash equilibria where the

sellers use the same pricing strategies.

Theorem 2 (Identical Buyers and Identical Sellers). There is a continuum of sym-

metric Nash equilibria indexed by α ∈ [−Q,Q]. Given any such α, an equilibrium

exists where each seller announces (p1, p2) = (p′1, p
′
2) = (Q

2 , α) and each buyer visits

either seller with equal probability σ = 1
2 .

This result is perhaps surprising as one might have expected that (should both buyers

show) holding an auction would be a dominant strategy - it is an efficient way to al-

locate the good and extracts maximum surplus. But with identical buyers, randomly

allocating the good is an equally efficient allocation device. Of course, though the

good is always allocated efficiently, α < Q implies that not all surplus is extracted

when two buyers visit. But this is not inefficient ex-ante, as a seller first needs to

attract a buyer. Seller competition implies each seller offers some surplus to buyers in

their advertisements in order to attract them. Posting p2 < Q is one way to do this.

There is a continuum of equilibria, one of which involves price posting [p2 = p1 = Q
2 ]

and one of which involves posting an auction [p2 = Q].

The rest of this section formally establishes this result using standard backward

induction arguments. Anticipating that Nash equilibria where σ = 0, 1 do not exist

(one seller would then make zero expected profit and a profitable deviation always

exists), we first compute σ assuming mixing by buyers.

Lemma 3 Given (p1, p2, p′1, p
′
2), if σ ∈ (0, 1) then it satisfies

σ =
Q + p2 − 2p′1

2Q + p2 + p′2 − 2p1 − 2p′1
(1)

Proof. An interior solution to σ requires buyer 1 is indifferent between visiting

either seller. This requires

(Q− p′1) (1− σ2) +
1
2

(Q− p′2) σ2 = (Q− p1) σ2 +
1
2

(Q− p2) (1− σ2)

where the left hand side is buyer 1’s expected payoff to visiting seller 1 given σ2 is the

probability that buyer 2 also visits seller 1. Solving for σ2 and noting that symmetry

requires σ2 = σ implies (1).�
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Note that if σ has an interior solution, Lemma (3) implies that both buyers use

the same strategy σ1 = σ2 = σ. This follows from the fact that the mixed strategy

requires them to be indifferent between both sellers. This is only true for identical

buyers if both use the same strategy. Now if seller 1 announces (p′1, p
′
2) and σ is the

visit probability of each buyer, then seller 1’s expected payoff is

π′ = 2σ(1− σ)p′1 + σ2p′2, (2)

where 2σ(1−σ) is the probability one buyer shows (and trade occurs at price p′1) and

σ2 is the probability that two buyers show.

We now construct seller 1’s best response function. Suppose seller 2’s strategy is

(p1, p2). Further suppose that seller 1 announces (p′1, p
′
2) and σ ∈ (0, 1) in the resulting

subgame. As Lemma 1 implies a unique solution for σ in this case, we can use (1) to

substitute out p′2 in (2) and so obtain a reduced form profit function π̃′ for seller 1

π̃′(σ; p1, p2) = σ[Q + p2]− σ2[2Q + p2 − 2p1], (3)

which holds for all σ ∈ (0, 1). Note the surprising result - although we only substituted

out p′2 using (1) in (2), all the p′1 terms have cancelled out. It is this property of the

model which generates the continuum result. It occurs because all agents are risk

neutral. For example, suppose given (p1, p2) and any σ ∈ (0, 1), seller 1 raises p′2
and lowers p′1 while holding σ constant as defined in (1). Such a variation in prices

implies that the expected payoff to the buyers, and hence their visit strategies, are

unchanged (see the proof of lemma 1). But as all are risk neutral, this means that

the seller’s expected profit is also unchanged. Perturbations in (p′1, p
′
2) which hold σ

constant do not change expected payoffs.

Lemma 4 shows that given (p1, p2), the best response of seller 1 ties down σ, which

is denoted σ∗1 = σ∗1(p1, p2). But seller 1 has a continuum of best responses for (p′1, p
′
2)

which are defined by (1) with σ = σ∗1.

Lemma 4 Given (p1, p2), the best response σ∗1 of seller 1 is :

(a) if 2Q+p2−2p1 > 0, then

σ∗1 = 0 if p2 ≤ −Q

σ∗1 = 1
2

(

Q+p2
2Q+p2−2p1

)

if p2 > −Q, and 4p1 − p2 < 3Q;

σ∗1 = 1 if p2 > −Q and 4p1 − p2 ≥ 3Q
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(b) if 2Q + p2 − 2p1 < 0, then

σ∗1 = 0 if 2p1 −Q < 0

σ∗1 ∈ {0, 1} if 2p1 −Q = 0

σ∗1 = 1 if 2p1 −Q > 0
(c) if 2Q + p2 − 2p1 = 0, then

σ∗1 = 0 if 2p1 −Q < 0

σ∗1 ∈ [0, 1] if 2p1 −Q = 0

σ∗1 = 1 if 2p1 −Q > 0

Proof. In Appendix.

The same argument describes σ∗2. Identifying a perfect Nash equilibrium requires

finding a σ ∈ [0, 1] where σ∗1 = σ∗2 = σ (so that both sellers are playing best responses).

It immediately follows that if a perfect Nash equilibrium exists, it implies σ ∈ (0, 1).6

Lemma 5 Any solution for (p1, p2, p′1, p
′
2) and σ ∈ (0, 1) which satisfies (1),

σ =
1
2

(

Q + p2

2Q + p2 − 2p1

)

(4)

1− σ =
1
2

(

Q + p′2
2Q + p′2 − 2p′1

)

(5)

and the inequalities

p2 > −Q, 4p1 − p2 < 3Q, and p1, p2 ≤ Q (6)

p′2 > −Q, 4p′1 − p′2 < 3Q and p′1, p
′
2 ≤ Q. (7)

describes a perfect Nash equilibrium.

Proof. Lemma (4a) implies that seller 1 is playing a best response if (4) and

inequalities (6) hold, where it should be noted that those inequalities guarantee

2Q + p2 − 2p1 > 0. The same argument applies to seller 2, where (5) describes the

best response of seller 2 if inequalities (7) hold. As (1) describes the buyers’ optimal

strategies in the subgame (given σ ∈ (0, 1) in an equilibrium), any solution to these

conditions describes a perfect Nash equilibrium.�
6If σ = 0, then σ∗1 = 0 implies that seller 2 must announce p2 ≤ −Q [see Figure ??]. As seller 2

then gets both buyers, she makes a strict loss and this cannot be an optimal strategy.
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There is a continuum of equilibria as we only have 3 equations (1),(4),(5) to tie

down 5 unknowns {p1, p2, p′1, p
′
2, σ}, and the inequalities (6),(7) admit a continuum

of such solutions. The simplest to characterize are the (seller) symmetric equilibria

where p′1 = p1 and p′2 = p2. In that case, (1) implies σ = 1
2 and (4),(5) imply

p′1 = p1 = Q
2 . But p2 and p′2 are not tied down. As the inequalities are satisfied for

p2 = p′2 = α where α ∈ (−Q, Q], symmetric equilibria exist for those values.7

This continuum arises because each seller has a continuum of best responses. In

any equilibrium (which implies some value of σ ∈ (0, 1)), any (p′1, p
′
2) satisfying (1)

describes a best response for seller 1. But changing (p′1, p
′
2) while holding σ constant

changes the elasticities of σ with respect to p1, p2. This in turn changes firm 2’s best

response correspondence. A continuum of ‘best response intersections’ are possible

(as described by lemma 3).

In the symmetric equilibria, if seller 2 offers more surplus to the buyers, say by

lowering p2, seller 1’s best response is to offer more surplus to remain competitive.

Indeed, a best response of seller 1 is to lower p′2 by exactly the same amount, and so

a continuum of equilibria are possible.

Lemma (5) also implies there exists a continuum of equilibria where sellers use

different pricing strategies. For example an equilibrium exists where p′1 = 0 and

p′2 = Q. Seller 1 offers to give the good away if only one buyer shows, but will sell

at the monopoly price if two show. This describes a perfect Nash equilibrium when

seller 2 announces p1 = 2Q
3 , p2 = Q

3 and the corresponding visit strategies imply

σ = 2
3 . Note that this equilibrium is less efficient than the symmetric equilibrium as

the probability that one buyer does not obtain a good has increased. Indeed this is

true for all asymmetric equilibria as they necessarily imply σ 6= 0.5.

4 Heterogeneous Buyers

The continuum result of the previous section is new to the literature. But it also

confirms the main existing result on directed search with identical buyers: sellers are

unable to coordinate identical buyers’ visit strategies and as a result the equilibrium
7By inspection of lemma (5c), it follows that p′1 = p1 = Q

2 and p2 = p′2 = −Q also describes an

equilibrium. This is the zero profit equilibrium.
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allocation is inefficient. The trading environment is very different with heterogeneous

buyers. Unlike the previous section, sellers now find that (in reduced form) they

advertise three prices. In particular, the emergence of that third price allows sellers

to perfectly direct the visit strategies of buyers. Competition in seller mechanisms

results in perfectly directed search.

Suppose sellers y = 1, 2 are identical but now Q(1, y) = QH denotes the value

to buyer 1 of consuming the good, and Q(2, y) = QL denotes the value to buyer

2 of consuming the good, where QH > QL > 0. To stress the heterogeneity of

buyers, x ∈ {H,L} now indexes the respective buyers. With heterogeneous buyers,

the seller’s advertised mechanism now plays a double role.

(i) In the second stage, given that two buyers have arrived at that seller, the

mechanism allocates the good to one of these buyers. The following shows that the

firm’s optimal direct mechanism implies (a) each buyer truthfully reveals her type

and (b) allocates the good to the high valuation type. The resulting payoffs to the

buyers are denoted uL, uH ≥ 0.

(ii) Taking into account these surplus maximizing separating mechanisms, then

in reduced form the seller’s pricing strategy advertises a triple (p1, uL, uH) where p1

is the price charged if only one buyer shows, while if two buyers show the optimal

separating mechanism provides utility payoffs uH and uL to the respective types. Even

though the good is always allocated to the H type, the implicit transfer payments

uH , uL determine the relative attractiveness of being visited.

4.1 An Optimal Direct Mechanism

A direct mechanism corresponds to a message game Γ (X × X , u (·)), where each par-

ticipant sends a message mx ∈ X = {L,H}, and conditional only on those messages,

an allocation rule and sidepayments implies an outcome function u (·) : X × X →
[0,∞]× [0,∞].

Suppose the seller wishes to construct a direct mechanism which implements ex-

pected payoffs uL, uH ≥ 0 to the respective buyers, should both arrive. Obviously

such a mechanism needs to be incentive compatible. But clearly we should be most

interested in an efficient direct mechanism - one that allocates the good to the highest

valuation buyer. If such a mechanism exists, it must be optimal as by maximising

12



joint surplus, it then maximises the payoff to the seller [given the advertised payoffs

uL, uH ]. The following establishes that such a direct mechanism always exists, for any

uL, uH ≥ 0. Given that, the advertising game will then determine uL, uH

Fix any uL, uH ≥ 0. (A1)-(A3) below describe a set of (anonymous) allocation

rules which induce truth-telling as an iterated dominant strategy equilibrium and

implement payoffs uL, uH ≥ 0.

(A1) If both buyers report mx = H, the seller gives each buyer sidepayment uL and

allocates the good with equal probability at a price p = 1
2

(

QL + QH
)

. In this

event, buyer H obtains expected payoff a = uL + 1
4 [Q

H −QL] > uL and buyer

L obtains expected payoff b = uL − 1
4 [Q

H −QL] < uL for buyer L.

(A2) If both buyers report message mx = L, the good is not sold and both buyers

obtain a payoff of zero.

(A3) If one buyer reports H, the other L, the seller allocates the good to the buyer

reporting H at price p = QH− uH and pays uL to the buyer reporting L.

These allocation rules imply a message game with the following normal form

[where buyer H plays rows (and receives the first number in the pay-off pair) and

buyer L plays columns].

mH

mL

H L

H (a, b) (uH , uL)

L (uL, QL − [QH − uH ]) (0, 0)

Although these allocation rules respect anonymity, they do not imply symmetric

payoffs as the buyers obtain different payoffs by consuming the good.

As allocation rule (A1) implies a > uL, then for uH > 0, buyer H ′s strict dominant

strategy is to report mH = H.8 Further, as (A1) also implies b < uL, buyer L′s

(iterated) dominant strategy is to report mL = L.

Allocation rules (A1)-(A3) imply that truth telling is incentive compatible. As rule

(A3) allocates the good to the high valuation buyer, this mechanism also maximises
8All equilibria described below imply uH > 0. Of course, uH = 0 implies only weak dominance.
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joint surplus. Further as rule (A3) also implements the (given) payoffs uH , uL ≥ 0, this

mechanism also maximises the seller’s own surplus. Hence given any uH , uL ≥ 0, these

allocation rules describe an optimal direct mechanism and the seller’s corresponding

payoff is QH − uH − uL.

From now on assume that both sellers use a direct mechanism of this form and as

a result, the only payoff relevant variables when two buyers turn up are the seller’s

advertised choice of uH and uL.

4.2 A Nash Equilibrium in Seller Mechanisms

The previous subsection implies the seller’s optimal direct mechanism reduces to a

triple (p1, uH , uL) where p1 is the price should only one buyer visit, and uL, uH ≥ 0

are the respective payoffs of the buyers should both visit.

To solve for a (perfect) Nash equilibrium let (p′1, u
′
L, u′H) denote the advert posted

by seller 1, and (p1, uL, uH) denote the advert posted by seller 2. Given those posted

adverts, let σx, x ∈ {L,H}, denote the probability that buyer x visits seller 1.

But equilibrium is now quite different. To see why, suppose for now that the

two sellers announce p1, p′1 ≤ QL. A little work shows that in any mixed strategy

(subgame) equilibrium, σL, σH satisfy

σH =
uL + p′1 −QL

u′L + uL + p′1 + p1 − 2QL (8)

σL =
uH + p′1 −QH

u′H + uH + p′1 + p1 − 2QH , (9)

and seller 1’s payoff function is

π′ = [σL(1− σH) + σH(1− σL)] p′1 + σLσH
[

QH − u′H − u′L
]

.

Following the previous approach, suppose σL, σH ∈ (0, 1) and so use (8) and (9) to

substitute out u′L and u′H in π′. The p′1 term again cancels out [all are risk neutral]

and the reduced form profit function for seller 1 is

π̃′(σL, σH) = σL
[

QL − uL
]

+ σH
[

QH − uH
]

− σLσH
[

QH + 2QL − uH − uL − 2p1
]

(10)

But now there is a crucial difference. Previously, visiting strategies for buyers with

identical valuations were identical (from Lemma 3); i.e. σL = σH = σ. This also
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follows immediately from insepction of (8) and (9) for equal valuations Q and equal

transfers u. It followed that the profit function (3) was then concave in σ (at the

equilibrium). But with heterogeneous buyers, the payoff function described by (10)

is not concave in σL, σH .

Lemma 6 Given (σL, σH) ∈ [0, 1] × [0, 1], then π̃′ defined by (10) is a maximum at

one of the corners where σL, σH ∈ {0, 1}.

Proof : Given any σH ∈ [0, 1], notice that π̃′ is linear in σL. Hence for any such

σH , π̃′ is a maximum at σL = 0 or 1. Now fix σL = 0 or 1. π̃′ is now a linear function

of σH and hence a maximum occurs at σH = 0 or 1. This completes the proof of the

lemma.�

This is a striking difference. When buyers have different preferences, the seller’s

optimal separating mechanism not only allocates the good efficiently (should both

buyers visit), but also co-ordinates the visit strategies of buyers - there is no random-

ization by buyers in equilibrium.

Characterising the set of perfect Nash equilibria requires a different approach. For

simplicity, restrict attention to equilibria where both sellers make strictly positive

expected profit.9 Anticipating that the visit decisions of the two buyers are polarized

in equilibrium, suppose in equilibrium the high valuation buyer visits seller 1 and the

low valuation buyer visits seller 2; i.e. σH = 1 and σL = 0. A strictly positive profit

equilibrium then requires p′1 ∈ (0, QH ] and p1 ∈ (0, QL] (otherwise the respective

buyers walk away).

As before, the choice of (p′1, u
′
L, u′H) by seller 1 as a best response of seller 1

ties down the visit probabilities σH and σL. For each continuum of best responses

(p′1, u
′
L, u′H), there is a corresponding σH and σL. Let (σ′H , σ′L) denote the best re-

sponse of seller 1 given seller 2’s strategy (p1, uL, uH). Then (σH , σL) denotes seller

2’s best response. The following Lemma identifies necessary and sufficient conditions

on (p1, uL, uH) so that (σ′H , σ′L) = (1, 0).
9Lemma (6) and (10) imply a possible equilibrium is σx ∈ {0, 1} and the other σ−x ∈ (0, 1)

[i.e. at most one buyer mixes]. But this outcome is a (weak) best response for both sellers only if

one seller makes zero profit [the one which buyer x never visits]. Restricting attention to strictly

positive profit equilibria implies only perfectly polarised equilibria exist; i.e. (σH , σL) is either (1, 0)

or (0, 1).

15



Lemma 7 Given p1 ∈ (0, QL] and uL, uH ≥ 0, necessary and sufficient conditions

on (p1, uL, uH) so that (i) (σ′H , σ′L) = (1, 0) is a best response, and (ii) seller 1 makes

strictly positive profits, are

(R1) QH − uH > 0,

(R2) uH − uL ≤ QH −QL,

(R3) 2p1 ≤ QH + QL − uH .

Further, given (R1)− (R3), seller 1’s best pricing response is

p′1 = QH − uH , u′L ≤ QL − p1,

which generates expected payoff QH − uH .

Proof. In Appendix.

Given seller 2’s strategy satisfies (R1) − (R3), seller 1’s best response induces

(σH , σL) = (1, 0). In particular, note that price strategy

p′1 = QH − uH − ε, u′L ≤ QL − p1, u′H large

where ε > 0 (but small) implies buyer H ′s strict dominant strategy is to visit seller

1. Further sideoffer u′L ≤ QL − p1 then implies σL = 0 is an optimal strategy for

buyer L. This price strategy essentially undercuts buyer H ′s outside option, which is

to visit seller 2 and so obtain payoff uH , by a ‘penny’. By perfectly co-ordinating the

visit strategies of buyers in this way, seller 1 generates expected payoff QH − uH − ε.

Lemma (7) implicitly sidesteps the ‘penny’ issue by assuming that seller 1 can set

ε = 0 and buyer H will still choose σH = 1.10

(R3) is a competition condition. If (R3) does not hold, seller 1’s best response

is to poach both customers by offering u′H = QH − p1 and u′L = QL − p1.11 That

would give a payoff of 2p1−QL and (R3) is necessary to ensure this does not exceed

equilibrium payoff QH − uH . Of course in equilibrium, seller 2 chooses p1 to satisfy
10Formally for equilibrium to be well defined [as prices are continuous and a so-called ‘penny’

does not exist] we need an appropriate tie breaking assumption. In this equilibrium we would need

buyer H visits seller 1 if indifferent to doing so. We shall return to this issue later.
11By also setting p′1 < QL − uL, σL = 1 is a dominant strategy for buyer L, and σH = 1 then

describes a Nash equilibrium in visit strategies.
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(R3) and so prevents seller 1 from poaching both buyers. In this sense (R3) describes

price competition; seller 2 sets p1 sufficiently low so as to attract at least one buyer.

(R2) is a co-ordination condition. It guarantees that seller 1 is better off attracting

buyer H (with payoff QH − uH) rather than buyer L (with payoff QL − uL). (R2)

determines which buyer seller 1 will choose to attract. When seller 2 announces

uH−uL < QH−QL, we shall refer to this strategy as playing ‘weak’ - it invites seller

1 to attract the high valuation buyer. Conversely announcing uH − uL > QH −QL is

called playing ‘tough’ - it invites seller 1 to attract the low valuation buyer.

Similar conditions also describe (σH , σL), the best response of seller 2.

Lemma 8 Necessary and sufficient conditions on (p′1, u
′
L, u′H) so that (i) (σH , σL) =

(1, 0) is a best response and (ii) seller 2 makes strictly positive profits, are

(R1′) QL − u′L > 0,

(R2′) u′H − u′L ≥ QH −QL,

(R3′) 2p′1 ≤ 2QL − u′L.

Given (R1′)− (R3′), seller 2’s best pricing response is

p1 = QL − u′L and uH ≤ QH − p′1

which generates payoff QL − uL.

Proof. In Appendix.

If seller 1 plays tough [i.e. (R2′) holds] and announces a sufficiently low price p′1
[satisfying (R3′)] then seller 2’s best response is to attract buyer L using the above

price strategy. Using Lemmas 7 and 8, it is now straightforward to describe perfect

Nash equilibria with (σH , σL) = (1, 0). The main feature is that there is a continuum

of such equilibria. We illustrate this with an example.

An equilibrium with (σH , σL) = (1, 0) exists where seller 1 posts

p′1 =
1
2
QL, u′L = 0.9QL and any u′H > QH − 0.1QL.

As (σH , σL) = (1, 0) in this equilibrium, seller 1 obtains payoff 1
2Q

L. However note

seller 1 makes an extravagant sideoffer u′L = 0.9QL to buyer L [should L deviate from

the equilibrium] and u′H > u′L + [QH −QL] to imply ‘tough’.
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As this price strategy satisfies (R1′)− (R3′), then seller 2’s best response implies

p1 = 0.1QL (by Lemma 8). Note that the extravagant sideoffers of seller 1 force seller

2 to offer a very low price. But also note seller 1 has chosen p′1 small enough to ensure

seller 2 does not poach both buyers (i.e. to satisfy (R3′)).

Of course seller 1’s strategy also has to be a best response. Lemma 7 requires

seller 2 posts uH = QH − 1
2Q

L. Hence as long as uL is large enough (i.e. seller 2 plays

“weak”), then the above strategy for seller 1 and

p1 = 0.1QL, uH = QH − 1
2
QL and uL large enough.

describe a perfect Nash equilibrium with (σH , σL) = (1, 0). 12

This example reveals the source of multiplicity - the sideoffers determine the equi-

librium prices p1, p′1, but the sideoffers themselves are not determined. In particular

given (R1)− (R3), seller 1’s best response is only

p′1 =
1
2
QL, u′L ≤ 0.9QL.

Seller 1 has a unique optimal choice for p′1, but the optimal choice of sideoffers requires

only that u′L is sufficiently low that he does not attract both buyers. In contrast,

equilibrium requires very generous sideoffers - seller 1 not only offers the highest

possible value of u′L consistent with not attracting buyer L, but also posts an even

higher sideoffer u′H to guarantee ‘tough’. This seems somewhat inconsistent with

(R3); p1 is sufficiently low that seller 1 has no incentive to attract both buyers.

Indeed if buyer L were to deviate and visit seller 1, seller 1 would realise a loss of

at least 0.8QL. Such generous equilibrium sideoffers u′L, u′H are weakly dominated by

posting less generous ones.

This source of multiplicity is well known in the game theory literature and the

concept of trembling hand perfection is typically used as the appropriate equilibrium

refinement [for example see the Bertand pricing game as described in Mas-Colell,

Whinston and Green (1994)].13 In an uncertain world, if there is a small (vanishing)

probability that buyer L will deviate (i.e. a tremble is possible), then generous side-

offers are strictly profit reducing; there is a small but positive probability that both
12Note that though sellers are identical, they do not necessarily receive the same profits as we

have not imposed symmetric pricing strategies.
13The relevant Bertrand pricing game has two sellers who have different unit costs 0 < cL < cH ,

and both announce a price simultaneously. With the right tie breaking assumption to guarantee

18



buyers will visit. However, as Bernheim and Whinston (1986a) argue, formalizing this

notion imposes severe difficulties. Rather than complicating the analysis, we borrow

the refinement adopted in the common agency literature: truthful equilibrium. This

requires that side-offers are serious. Relative to an action that involves sideoffers

uL, uH ≥ 0, the seller’s profit is required not to be lower should the seller succeed in

attracting both buyers.

Definition 9 (Truthful Nash Equilibrium) An equilibrium {(p1, uL, uH), (p′1, u
′
L, u′H), (1, 0)}with

corresponding equilibrium payoffs π′∗ = p′1, π
∗ = p1, is truthful if and only if it is a

Nash equilibrium and the strategies are truthful:

(T1) QH − u′L − u′H ≥ π′∗ = p′1,

(T2) QH − uL − uH ≥ π∗ = p1.

The restriction to no frivolous offers uniquely determines equilibrium payoffs.

Theorem 10 (Heterogeneous Buyers) Strictly positive profit, perfect Nash equi-

libria with (σH , σL) = (1, 0) and (T1)-(T2) exist and imply

(i) p′1 = QL, u′L = 0 and u′H = QH −QL

(ii) p1 = QL, uL = 0, and uH = QH −QL.

Proof. In Appendix.

With no frivolous sideoffers, equilibrium implies both sellers post second price sealed

bid auctions with reserve price QL, and both obtain the same profit QL. Clearly this

outcome does not resolve the coordination problem. The restriction to no frivolous

offers implies neither seller plays strictly tough, nor strictly weak. Indeed, the same

strategies correspond to a pure strategy Nash equilibrium with σL = 1, σH = 0.14

existence, (i.e. that if a customer is indifferent she goes to the lower cost firm), then there is a

continuum of Nash equilibria; both sellers announce the same price pL = pH = p, where p ∈ [cL, cH ],

and all customers go to seller L. Selten’s trembling-hand argument rules out all equilibria except

p = cH . But note that in this surviving equilibrium, if the buyers deviate and visit the high cost

seller, that seller’s profit is no less than equilibrium profit. This is not true for the eliminated

equilibria with p < cH . In this case, restrictions of the form (NF1), (NF2) described below play the

same role as trembling hand perfection.
14The formal difference being in assumed tie breaking assumptions - see footnote 9.
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Further, a third equilibrium seems likely where sellers randomize on prices [e.g. Bur-

guet and Sakovics (1999)]. However seller heterogeneity now resolves this final co-

ordination problem.

5 Heterogeneous Buyers, Heterogeneous Sellers

This time denote Q(1, 1) = QHH , Q(1, 2) = QHL, Q(2, 1) = QLH , Q(2, 2) = QLL

where the first superscript refers to the buyer, the second to the seller. Seller 1 holds

the more valuable good in that both buyers prefer his good; i.e. QHH > QHL > 0

for buyer H and QLH > QLL > 0 for buyer L. We shall continue to use x ∈ {L,H}
to index the respective buyers, but to limit confusion over notation use y ∈ {1, 2} to

index the sellers, where seller 1 has the more valuable good.

Throughout assume

QHH + QLL > QHL + QLH . (11)

We again construct perfect Nash equilibrium but assuming (11) and strategies must

be truthful. Theorems (11) and (12) imply that such heterogeneity and equilibrium

perfectly co-ordinates the sellers’ strategies. Equilibrium [in pure seller strategies]

is unique and generates positive assortative matching. In that equilibrium, seller 2

plays strictly weak and attracts buyer L. Indeed seller 2’s mechanism corresponds to

a second price sealed bid auction with reserve price QLL. Seller 1 attracts buyer H by

matching the value of buyer H’s outside option, which is to bid in seller 2’s auction.

As the argument is (almost) the same as with identical sellers, the following quickly

outlines the details. Let σH , σL denote the visit strategies, where σx is the probability

that buyer x = L,H visits seller 1, let (p′1, u
′
L, u′H) denote the mechanism posted by

seller 1, and (p1, uL, uH) denote the mechanism posted by seller 2.

As before only consider strictly positive profit equilibria, where a little work

establishes that in a pure strategy pricing equilibrium, the visit strategies imply

σH , σL ∈ {0, 1}. The intuition is as before - each seller’s best response coordinates

the visit strategies of each buyer. Also, only consider non-frivolous side-offers which

requires

(T3) QHH − u′L − u′H ≥ π∗1 = p′1
(T4) QHL − uL − uH ≥ π∗2 = p1,
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where the interpretation is the same as before.

Theorem 11 Given (11) and (T3),(T4), a Nash equilibrium with σH = 1, σL = 0

exists and implies

p1 = QLL

p′1 = QLL + [QHH −QHL],

u′H = uH = QHL −QLL, u′L = uL = 0

Proof. In Appendix.

This result is closely related to that described in Theorem 10. No frivolous side-

offers implies seller 2 extracts all the rents from the low valuation buyer. But seller

2 also competes for buyer H by offering surplus uH = QHL −QLL. Indeed, seller 2’s

equilibrium mechanism corresponds to a second price sealed bid auction with reserve

price QLL. Such competition then forces seller 1 to set p′1 as described in the Theorem

(to attract buyer H). The restriction to non-frivolous offers implies the equilibrium

mechanisms are uniquely determined.

However, unlike Theorem 10, the seller strategies described in Theorem 11 are

strictly coordinated. With heterogeneous sellers, the relevant coordination condition

(R2) is

(R2) uH − uL ≤ QHH −QLH .

Given (R2), seller 1 prefers to attract buyer H rather than buyer L. But Theorem

(11) implies uH − uL = QHL − QLL, and (11) implies this is a strictly ”play weak”

strategy. Hence when seller 2 competes with a second priced sealed bid auction, seller

1 strictly prefers to attract buyer H.15

Theorem (12) establishes uniqueness, that an equilibrium with negative assorta-

tive matching (and no frivolous offers) does not exist.

Theorem 12 Given (11) and (T3),(T4), a Nash equilibrium with σH = 0, σL = 1

does not exist.
15Note that, unlike in theorem (10), (σH , σL) = (1, 0) is a still dominant strategy subgame perfect

equilibrium should both sellers shave their prices p′1, p1 by a ‘penny’.
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Proof. In Appendix.

Together Theorems (11) and (12) imply that (11) perfectly coordinates the sellers’

strategies. In the unique equilibrium, seller 2 plays strictly weak. The sellers’ cor-

responding pricing strategies then perfectly direct the buyers’ search strategies and

implies positive assortative matching. The final section now extends this result to

the N seller, N buyer case.

6 The N ×N Case

Clearly this case is much more complicated. We simply describe a candidate equilib-

rium using the insights provided by Theorem (11) and then prove that it does indeed

describe a (perfect) Nash equilibrium.

Suppose there are N buyers with valuations xi where x1 < x2 < x3, .... < xN and

N sellers with goods of quality yj where y1 < y2, .... < yN . The utility to buyer i

by consuming seller j′s good is Q(xi, yj). Assume Q(x1, y1) > 0, that Q is strictly

increasing in both arguments and strictly supermodular where

Q(xi, yi) + Q(xj, yj) > Q(xi, yj) + Q(xj, yi) for all i, j 6= i.

Each seller j simultaneously advertises a direct mechanism. Given those adver-

tisements, each buyer simultaneously chooses which seller to visit. Let σij denote

the probability that buyer i visits seller j. As before we wish to find a perfect Nash

equilibrium to this mechanism game.

Let u∗i denote the equilibrium payoff to buyer i and π∗j the equilibrium payoff to

seller j in a perfect equilibrium. We suppose positive assortative matching describes

the final equilibrium outcome; that σii = 1 for all i. This implies that equilibrium

payoffs satisfy

π∗i = Q(xi, yi)− u∗i for all i. (12)

The 2 × 2 case suggests that payoffs might be determined by competition in second

price sealed bid auctions; that is

u∗i = Q(xi, yi−1)−Q(xi−1, yi−1),
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where buyer i′s outside option is to visit seller i− 1 and obtain that good in a second

price auction. That result does not quite generalise to the N × N case. As the

above equation implies u∗i−1 > 0 for i > 2, the above equation with (12) implies

π∗i−1 + u∗i < Q(xi, yi−1); a gain to trade would exist between each seller i − 1 and

buyer i for i > 2. As the following suggests, seller i − 1 could construct a deviating

mechanism which attracts buyer i [by offering expected payoff “uH”= u∗i + ε] and so

increase profit.

In equilibrium, each seller i competes for buyer i+1 by offering some payoff “uH”

should buyer i + 1 visit. Of course, in equilibrium seller i + 1 matches that outside

offer. Such Bertrand competition implies buyer i + 1’s equilibrium payoff satisfies

u∗i+1 = Q(xi+1, yi)− π∗i , (13)

where seller i is just indifferent to attracting this buyer. For existence of equilibrium

we invoke the following tie breaking assumption : if buyer i+1 is indifferent to visiting

seller i + 1 or i then she chooses to visit seller i + 1.16

Given starting value u∗1 = 0, the candidate equilibrium payoffs are now defined

recursively by (12) and (13). Most importantly, these payoffs describe what is defined

as a ‘stable outcome” in the assignment literature [see Proposition 1 in Cole, Mailath

and Postlewaite (1998) for a proof]. This implies

π∗j = max
i

[Q(xi, yj)− u∗i ]

and so there is no further gain to trade between seller j and any other buyer, and of

course

u∗i = max
j

[Q(xi, yj)− π∗j ].

Given these candidate equilibrium payoffs, we now construct the equilibrium direct

mechanisms.

As each seller receives exactly one visitor in equilibrium, then this candidate

equilibrium requires each seller j specifies trading price pj = π∗j if one buyer shows. If

two buyers show, seller j uses the direct mechanism described earlier. In particular,

the two buyers are asked to report m ∈ {L, H}, and allocations and prices are as

described in that section, but with QH ≡ Q(xj+1, yj), QL ≡ Q(xj, yj), uL = 0 and
16This assumption explicitly deals with the ‘penny’ issues described previously.
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uH = u∗j+1. Note this mechanism is consistent with the two buyers being i = j, j + 1.

If the message pair is (L,H) the good is sold to the buyer reporting H at the same

price pj as when only one buyer shows.17 Conversely if the message pair is (H,H) the

good is randomly allocated at price 1
2 [Q(xj+1, yj) + Q(xj, yj)] > pj. Hence whenever

two buyers show, the good is either sold at a price no lower than π∗j , or is not sold at

all [if (L, L)].

Recall we are constructing an equilibrium where σii = 1 for all i describes the

equilibrium outcome. Hence any buyer i 6= j who deviates from this equilibrium by

visiting seller j,will then expect to compete against buyer j for seller j′s good. The

above mechanism implies a trading price no lower than π∗j . As the set of equilibrium

payoffs describe a stable outcome, this implies all buyers i 6= j, j + 1 strictly prefer

not to deviate in this way.

Now consider buyer i = j +1 and suppose that buyer j and seller j believe that if

a second buyer appears, that it is buyer j +1. If this buyer deviates by visiting seller

j, this mechanism implies buyer j +1’s dominant strategy is to report ‘H’, and buyer

j′s iterated dominant strategy is then to report ‘L’ [the price will otherwise be too

high]. Hence by deviating to seller j, buyer j + 1 obtains the good at price π∗j and

(13) implies he obtains his equilibrium payoff u∗j+1. Hence u∗j+1 describes the outside

option of buyer j + 1 (as required). Further this mechanism is non-frivolous as seller

j also obtains his equilibrium profit π∗j .

For the purposes of checking for a Nash equilibrium, we consider deviations by

one player at the time, so the seller’s equilibrium mechanism need not specify what

happens when more than two buyers visit.

Theorem 13 A (perfect) Nash equilibrium exists where each seller j uses the direct

mechanism described above, and given those mechanisms, each buyer i chooses σii = 1

and obtains equilibrium payoff u∗i .

Proof : Clearly σii = 1 describes a Nash equilibrium in visit strategies, given the

posted mechanisms. If any buyer i deviates by visiting any seller j 6= i, the direct

mechanism [given at least two buyers visit] implies she can obtain the good at a price
17The allocation rules specify that the buyer reporting H receives the good at price p = QH−uH ≡

Q(xj+1, yj)− u∗j+1. Equation (13) implies this price equals π∗jwhich is pj .
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no lower than π∗j and as these prices are consistent with a stable outcome, such a

deviation cannot make her better off.

Now consider the optimal direct mechanism of seller k, given all other sellers j 6= k

post the direct mechanisms as described above. In particular, suppose seller k deviates

by posting pk > π∗k; she raises her price in the event of only one buyer showing. Then

regardless of whatever else she specifies in her mechanism, the corresponding Nash

equilibrium in visit strategies by the buyers is (a) σii = 1 for i > k, (b) σi,i−1 = 1 for

i ≤ k and i > 1, (c) σ11 = 1.

To see why, note that these strategies imply the deviating seller k does not make

a sale [σik = 0 for all i] while all other sellers attract at least one buyer. Consider (a)

- those buyers i > k. By visiting any seller j 6= i, the posted seller mechanisms imply

buyer i expects to pay price no lower than π∗j for that good. As the set of equilibrium

payoffs describe a stable outcome, it follows that σii = 1 is privately optimal for these

buyers.

The interesting case is buyer i = k. As seller k has raised price pk > π∗k, buyer

k strictly prefers to visit seller k − 1 and obtain his original equilibrium payoff u∗k.

But now buyer i = k − 1 realises that she won’t obtain the good if she goes to seller

k − 1; instead she visits seller k − 2 and obtains her original payoff u∗k−1, and so on.

All buyers below k step down to the seller below except for buyer 1 who has nowhere

else to go. Hence (a) − (c) describe an equilibrium in visit strategies. The critical

feature of course is that all buyers obtain their original expected payoff u∗i .

The posted mechanisms of the other sellers coordinate the buyers’ visit strategies.

In particular, given this (co-ordinated) subgame response by buyers, each buyer i is

guaranteed a payoff of at least u∗i . Hence to attract at least one buyer with positive

probability, seller k must offer pk ≤ π∗k and a mechanism which offers an expected

payoff of at least u∗i for some buyer i. But as these payoffs describe a stable outcome,

an optimal mechanism is to attract buyer k and sell at price pk = π∗k. Hence the

stated mechanism is an optimal strategy and we have a (perfect) Nash equilibrium.�
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7 Conclusion

With a finite number of buyers and sellers, buyer heterogeneity and equilibrium in

pure pricing strategies implies buyer search is perfectly directed. But if sellers are

identical, they face a second problem - who will play tough and who will play weak?

The restriction to complementary inputs, that the match value function Q is super-

modular, perfectly coordinates those seller strategies; the seller holding the less valu-

able good plays weaker. A perfect Nash equilibrium in seller mechanisms implements

positive assortative matching [the efficent allocation] and the realised equilibrium

payoffs are consistent with a stable outcome as defined in the assignment literature

with perfect matching.

Unlike the competing auction literature with independent private values, the equi-

librium mechanisms do not correspond to second price auctions. In fact the equilib-

rium mechanisms correspond closely to Bertrand competition - each seller i’s price

pi [when only one buyer shows] matches the outside option of buyer i [which is to

visit seller i− 1], while i′s mechanism for two buyers competes for buyer i + 1. Such

Bertand competition generates the competitive outcome, even though the number of

sellers is finite, they hold differentiated goods and each acts strategically.

Finally, our coordination result sheds some new light on efficiency in the random

(as opposed to directed) matching literature with two-sided heterogeneity (see for ex-

ample Shimer and Smith (1999), Eeckhout (1999), Burdett and Coles (1999)). With

random matching, sellers cannot advertise prices which then direct buyer search. In-

stead prices are determined ex-post by bilateral bargaining. In contrast to the results

obtained here, trade with two sided heterogeneity in the random matching framework

is unlikely to be efficient. Ex-post bargaining implies the trading price does not corre-

spond to the shadow market values of the buyer and seller. Burdett and Coles (1999)

shows this creates a sorting externality: when two agents trade and exit the market,

they do not take into account that they change the composition of the market, which

then affects the trading opportunities of the remaining buyers and sellers. But allow-

ing only one-sided heterogeneity removes this sorting externality. Moen (1996) and

Acemoglu and Shimer (1998) show that trade with random matching is constrained

efficient. Constrained, because even though the search decisions are efficiently di-

rected, there is still friction. We show that for small markets of heterogeneous buyers
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and with appropriate seller mechanisms, even the search inefficiency as a result of

coordination failure disappears.
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8 Appendix

Proof of Lemma 5

Throughout assume (p1, p2) fixed. The text has described those pricing strategies

(p′1, p
′
2) which generate mixed visit strategies and corresponding payoffs. But we must

also consider those pricing strategies which generate pure visit strategies.

Consider those price strategies (p′1, p
′
2) which imply σ = 0. This requires (p′1, p

′
2)

satisfy Q − p′1 ≤ 0.5[Q − p2] so that given σ = 0, both buyers prefer to visit seller

2 and gamble on price p2 than pay p′1. Hence σ = 0 is a subgame equilibrium if and

only if p′1 ≥ 0.5[Q + p2] and generates profit π′ = 0. Clearly if a best response implies

σ = 0, then an optimal pricing strategy implies p′1, p′2 = Q which generates payoff

π′ = 0.

Consider those price strategies (p′1, p
′
2) which imply σ = 1. This requires (p′1, p

′
2)

satisfy Q − p1 ≤ 0.5[Q − p′2] so that given σ = 1, both buyers prefer to visit seller

1 and gamble on price p′2 than pay p1. Hence σ = 1 is a subgame equilibrium if

and only if p′2 ≤ 2p1 − Q, which generates profit π′ = p′2. Obviously in the set of

pricing strategies that generate σ = 1, the optimal strategy is p′2 = 2p1 − Q [and p′1
small so that no other equilibrium exists]. Hence if σ = 1 is a best response, the

correspondingly optimal price strategy generates profit 2p1 −Q .

It now follows that identifying seller 1’s best response reduces to maximising the

profit function defined by (3) with respect to σ ∈ [0, 1], as the payoffs at the corners

σ = 0, 1 defined by (3) correspond to the payoffs described above. Establishing the

lemma is now trivial.

(a) If 2Q + p2 − 2p1 > 0, the profit function (3) is strictly concave in σ. For

p2 ≤ −Q, the corner solution σ = 0 is optimal, for p2 > −Q and 4p1 − p2 ≥ 3Q the

corner solution σ = 1 is optimal, and otherwise we have the interior optimum.

(b) If 2Q+p2−2p1 < 0, the profit function (3) is strictly convex in σ. If 2p1−Q < 0

then σ = 0 is optimal, while 2p1−Q > 0 implies σ = 1 is optimal. When 2p1−Q = 0,

then both corners σ ∈ {0, 1} are optimal and generate zero profit π′ = 0.

(c) If 2Q + p2− 2p1 = 0, the profit function (3) is linear in σ. If 2p1−Q < 0 then

σ = 0 is optimal, while 2p1 − Q > 0 implies σ = 1 is optimal. When 2p1 − Q = 0,

then any σ ∈ [0, 1] is optimal and generate zero profit π′ = 0.�
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Proof of Lemma 7

Fix (p1, uL, uH) satisfying p1 ≤ QL and uL, uH ≥ 0. Given seller 1’s choice of

(p′1, u
′
L, u′H), the visiting strategies σL, σH ∈ [0, 1] satisfy

if (1− σL) max[QH − p′1, 0] + σLu′H > σL[QH − p1] + (1− σL)uH then σH = 1

if (1− σL) max[QH − p′1, 0] + σLu′H = σL[QH − p1] + (1− σL)uH then σH ∈ [0, 1]

if (1− σL) max[QH − p′1, 0] + σLu′H < σL[QH − p1] + (1− σL)uH then σH = 0

if (1− σH) max[QL − p′1, 0] + σHu′L > σH [QL − p1] + (1− σH)uL then σL = 1

if (1− σH) max[QL − p′1, 0] + σHu′L = σH [QL − p1] + (1− σH)uL then σL ∈ [0, 1]

if (1− σH) max[QL − p′1, 0] + σHu′L < σH [QL − p1] + (1− σH)uL then σL = 0

where if only one buyer visits seller 1, they walk away if the purchase price p′1 exceeds

their valuation of the good [and note p1 ≤ QL]. We prove (R1)− (R3) are necessary

and sufficient conditions in turn.

(i) (R1)− (R3) are necessary.

First consider those strategies (p′1, u
′
L, u′H) which imply (σH , σL) = (1, 0). The

above conditions with (σH , σL) = (1, 0) imply max[QH − p′1, 0] ≥ uH , which can be

rewritten as p′1 ≤ QH−uH , and u′L ≤ [QL−p1]. Indeed, (σH , σL) = (1, 0) is the unique

subgame equilibrium if p′1 = QH − uH − ε, u′L ≤ [QL − p1] − ε and u′H large, where

ε > 0. In that case buyer H ′s dominant strategy is to visit seller 1 and L′s iterated

dominant strategy is to visit seller 2. With those pricing strategies, the seller’s payoff

is π′ = p′1 = QH−uH−ε. Clearly the optimal strategy that generates (σH , σL) = (1, 0)

sets ε = 0. [Later in the paper we shall invoke appropriate tie-breaking assumptions

which guarantee existence of equilibria.] With ε = 0, the strategy as described in the

Lemma generates (σH , σL) = (1, 0), obtains payoff QH − uH and (R1) is necessary

for this to describe strict positive profit.

Now consider strategy u′H = QH − p1 − ε, u′L = QL − p1 − ε [and p′1 small]

where ε > 0. The above conditions imply (σH , σL) = (1, 1) and generates profit

π′ = QH − u′L − u′H = 2p1 − QL − 2ε. If (R3) does not hold, there exists ε > 0 and
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small enough that this strategy dominates the one stated in the lemma. Hence (R3)

is necessary.

Now consider strategy p′1 = QL − uL − ε, u′H ≤ [QH − p1] and u′L large, where

ε > 0. This implies (σH , σL) = (0, 1). The seller’s profit is π′ = p′1 = QL − uL − ε. If

(R2) does not hold, there exists ε > 0 and small enough that this strategy dominates

the one stated in the lemma. Hence (R2) is necessary.

(ii) (R1)− (R3) are sufficient.

By multiplying both sides by σH , the conditions determining σH described above

imply :

σHσLu′H ≥ σH
[

σL[QH − p1] + (1− σL)uH − (1− σL) max[QH − p′1, 0].
]

(14)

Similarly, the conditions determining σL imply

σLσHu′L ≥ σL
[

σH [QL − p1] + (1− σH)uL − (1− σH) max[QL − p′1, 0]
]

(15)

There are three cases depending on the seller’s choice of p′1.

(a) Price strategies where p′1 ≤ QL. In this case, each buyer will purchase the

good at price p′1 if only one buyer shows, and the seller’s expected payoff is then

π′1 = [σL(1− σH) + σH(1− σL)] p′1 + σLσH
[

QH − u′H − u′L
]

.

Using (14),(15) to substitute out u′L, u′H and rearranging implies

π′1 ≤ [QH − uH ]− [1− σH − σL + σLσH ][QH − uH ]

−σLσH [QL + QH − uH − 2p1]

−σL(1− σH)[QH − uH −QL + uL].

Hence (R1) − (R3) and σH , σL ∈ [0, 1] imply π′1 ≤ [QH − uH ] and so all strategies

with p′1 ≤ QL are dominated by the one described in the lemma.

(b) Price strategies where QL < p′1 ≤ QH . In this case, buyer L does not purchase

the good if the solo visitor, and so the seller’s expected payoff is

π′1 = σH
[

(1− σL)p′1 + σL(QH − u′H − u′L)
]

.

Using (14),(15) to substitute out u′L, u′H and rearranging implies
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π′1 ≤ σH [QH − uH ]− σLσH
[

QH + QL − uH − 2p1
]

− σL(1− σH)uL

Hence (R1)− (R3), σH , σL ∈ [0, 1] and uL ≥ 0 imply π′1 ≤ [QH − uH ] as required.

(c) Price strategies with p′1 > QH imply payoff

π′ = σLσH(QH − u′H − u′L).

Using (14),(15) to substitute out u′L, u′H and rearranging implies

π′1 ≤ σLσH [QH−uH ]−σLσH
[

QH + QL − uH − 2p1
]

−σH(1−σL)uH−σL(1−σH)uL

Hence (R1)-(R3), σH , σL ∈ [0, 1] and uL, uH ≥ 0 imply π′1 ≤ [QH − uH ] as required.

This completes the proof of Lemma 7.�

Proof of Lemma 8

There are two cases depending on whether p′1 > QL or p′1 ≤ QL.

(i) If p′1 ≤ QL, the proof which established lemma 7 applies directly and implies

(R1′)− (R3′).

(ii) Suppose instead p′1 > QL. If (σH
2 , σL

2 ) = (1, 0) were a best response, seller 2

would achieve profit QL − uL ≤ QL. But there is a dominating strategy - seller 2

posts

p1 < QL − u′L, uL = ε, uH = QH − p′1 + ε

where ε > 0 (but arbitrarily small). This price strategy attracts both buyers; p1 small

enough implies L’s dominant strategy is to visit seller 2, and H is then also better off

visiting seller 2. Seller 2’s payoff is now p′1 − 2ε > QL for ε small enough, and hence

is a dominating price strategy.

Hence (σH , σL) = (1, 0) is a best response only for case (i), and note that the

corresponding condition (R3′) guarantees p′1 ≤ QL as required.�

Proof of Theorem 10

Any positive profit Nash equilibrium with (σH , σL) = (1, 0) requires that both

sellers are playing best responses. By lemmas 5,6 those best responses imply

p′1 = QH − uH , p1 = QL − u′L. (16)
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Using (16) to substitute out p1, p′1 in (R1)− (R3), (R1′)− (R3′) which describe neces-

sary and sufficient conditions that these define best responses, we obtain equilibrium

constraints

(R1) : uH < QH , (R2) : uH − uL ≤ QH −QL, (R3) : uH − 2u′L ≤ QH −QL

(R1′) : u′L < QL, (R2′) : u′H − u′L ≥ QH −QL, (R3′) : 2uH − u′L ≥ 2[QH −QL].

where u′H , u′L, uH , uL ≥ 0.

We also use (16) to substitute out π′∗, π∗ in (T1), (T2) [where π′∗ = p′1 and π∗ = p1

with (σH , σL) = (1, 0)] to obtain

u′H − uH ≤ −u′L (17)

uL + uH − u′L ≤ QH −QL. (18)

We now solve these conditions. Note (R2) and(R2′) imply u′H − uH ≥ u′L − uL.

With (17) this implies u′L − uL ≤ −u′L, and so uL ≥ 2u′L.11

Subtracting (R3) from (R3′) implies uH + u′L ≥ QH −QL. With (18) this implies

uL + uH − u′L ≤ uH + u′L, and so uL ≤ 2u′L. Hence uL = 2u′L.

We can now substitute out uL. (R2) becomes uH − 2u′L ≤ QH − QL, and (18)

becomes uH + u′L ≤ QH − QL. Adding these two inequalities implies 2uH − u′L ≤
2[QH −QL], and with (R3′) this now implies

2uH = u′L + 2[QH −QL].

Using these solutions to substitute out uL, uH in (18) now implies u′L ≤ 0. Hence

u′L = 0 and so uL = 0 and uH = QH −QL. (17) and (R2′) now imply u′H = QH −QL.

Direct inspection shows that these values satisfy all the above conditions, which

completes the proof of the Theorem.�

Proof of Theorem 11

As the structure of the proof is identical to the proof of Theorem 10 we only sketch

details. First we must obtain the conditions analogous to lemmas 7 and 8.

Lemma A2 : Given p1 ∈ (0, QLL], necessary and sufficient conditions on (p1, uL, uH)

so that (i) a best response by seller 1 implies σH = 1, σL = 0 and (ii) seller 1 makes

strictly positive profits, are:
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(R1) QHH − uH > 0

(R2) uH − uL ≤ QHH −QLH

(R3) 2p1 ≤ QHL + QLL − uH

Seller 1’s best response implies

p′1 = QHH − uH and u′L ≤ QLL − p1.

Proof. The argument used to prove lemma 7 applies directly.�

Lemma A3 : Given p′1 ∈ (0, QHH ], necessary and sufficient conditions on (p′1, u
′
L, u′H)

so that (i) a best response by seller 2 implies σH = 1, σL = 0 and (ii) seller 2 makes

strictly positive profits, are:

(R1′) QLL − u′L > 0

(R2′) u′H − u′L ≥ QHL −QLL,

(R3′) p′1 −max[QLH− p′1, 0] + u′L ≤ QHH + QLL −QHL.

Seller 2’s best response implies

p1 = QLL − u′L and uH ≤ QHH − p′1.

Proof. Is straightforward by adapting the proof of lemmas 5,6. (R3′) arises because

seller 2 can attract both buyers (i.e (σH , σL) = (0, 0)) by posting uH = QHH−p′1 and

uL = max[QLH−p′1, 0] (where buyer L does not buy from seller 1 if p′1 > QLH). That

such a strategy is not optimal requires QLL − u′L ≥ QHL − uH − uL, which implies

(R3′)�

Any positive profit Nash equilibrium with (σH , σL) = (1, 0) requires that both

sellers are playing best responses. Lemmas A2,A3 imply

p′1 = QHH − uH , p1 = QLL − u′L. (19)

Using (19) to substitute out p1, p′1 in (R1)− (R3), (R1′)− (R3′) implies equilibrium

constraints

(R1) : uH < QHH , (R2) : uH − uL ≤ QHH −QLH , (R3) : uH − 2u′L ≤ QHL −QLL
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(R1′) : u′L < QLL, (R2′) : u′H − u′L ≥ QHL −QLL,

(R3′) : uH + max[uH −QHH + QLH , 0]− u′L ≥ QHL −QLL,

where u′H , u′L, uH , uL ≥ 0. Also use (19) to substitute out π′∗, π∗ in (T3), (T4) to

obtain

uH − u′L − u′H ≥ 0. (20)

uL + uH − u′L ≤ QHL −QLL. (21)

The problem is to solve (R1)− (R3′), (20) and (21) for uL, u′L, uH , u′H ≥ 0.

Lemma A4 : A solution does not exist if uH ≥ QHH −QLH .

Proof : By contradiction. Suppose uH ≥ QHH −QLH , and so (R3′) reduces to

(R3′) : 2uH − u′L ≥ QHH + QHL −QLH −QLL. (22)

Subtracting (R2′) from (R2) and using (20) implies 2u′L−uL ≤ QHH −QLH −QHL +

QLL.

Subtracting (R3) from (22) implies uH +u′L ≥ QHH −QLH . With (21) it follows that

2u′L − uL ≥ QHH −QLH −QHL + QLL and so by the previous paragraph

uL = 2u′L − [QHH −QLH −QHL + QLL].

Adding (R2) and (21) gives 2uH − u′L ≤ QHH + QHL−QLH −QLL. (22) now implies

2uH − u′L = QHH + QHL −QLH −QLL.

Substituting out uL, uH in (21) implies u′L ≤ 1
3 [Q

HH − QHL − QLH − QLL]. But

the above solution for uL now implies uL ≤ −1
3 [Q

HH −QHL −QLH + QLL] and (11)

implies the required contradiction. This completes the proof of Lemma A4.�

Hence if a solution exists, it implies uH < QHH−QLH and (R3′) implies uH−u′L ≥
QHL − QLL. (21) immediately implies uL = 0 and also that uH = u′L + QHL − QLL.

Adding (R2′) and (20) imply uH − 2u′L ≥ QHL−QLL. Substituting out uH , using the

solution given, now implies u′L ≤ 0. Hence u′L = 0. Finally (20) and (R2′) now imply

u′H = QHL −QLL. Given (11), direct inspection shows that these values satisfy all of

the above conditions, which completes the proof of the Theorem.�

Proof of Theorem 12
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The methodology is identical to the proofs of Theorems 10 and 11. We sketch the

essential points.

Assuming an equilibrium with (σH , σL) = (0, 1) exists, then the usual argument

implies this consistent as a best response for seller 1 if and only if : (R1) : QLH−uL >

0, (R2) : uH − uL ≥ QHH −QLH , and (R3) : QHH −max[QHL − p1, 0]−max[QLL −
p1, 0] ≤ QLH − uL. In that case the seller posts p′1 = QLH − uL = π′∗.

This outcome is also a best response for seller 2 if and only if (R1′): QHL−u′H > 0,

(R2′) : u′H−u′L ≤ QHL−QLL, and (R3′): QHL−max[QHH−p′1, 0]−max[QLH−p′1, 0] ≤
QHL − u′H . In that case, seller 2 posts p1 = QHL − u′H = π∗.

Given p1 = QHL − u′H , a contradiction argument using (R3) and (11) implies

u′H ≥ QHL −QLL. Substituting out p1 in (R3) now implies

2u′H − uL ≥ QHH + QHL −QLH −QLL. (23)

Similarly, substituting out p′1 = QLH − uL in (R3′) implies

u′H − 2uL ≤ QHH −QLH . (24)

Also no frivolous offers requires

u′H + u′L − uL ≤ QHH −QLH , (25)

uH + uL − u′H ≤ 0. (26)

The Theorem is established by proving no solution exists to (23)-(26), (R1), (R2), (R1′), (R2′)

with uL, u′L, uH , u′H ≥ 0.

Subtracting (24) from (23) implies

u′H + uL ≥ QHL −QLL (27)

and subtracting (27) from (25) gives

u′L − 2uL ≤ QHH −QLH −QHL + QLL. (28)

Now (R2), (R2′) imply

uH − uL − u′H + u′L ≥ QHH −QHL −QLH + QLL. (29)
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and subtracting (26) from (29) gives

u′L − 2uL ≥ QHH −QHL −QLH + QLL (30)

Hence (28) and (30) imply

u′L = 2uL + QHH −QHL −QLH + QLL (31)

Substituting out u′L in (29) using (31) gives

uH + uL − u′H ≥ 0 (32)

Hence (32) and (26) imply

u′H = uH + uL (33)

Substituting out u′H in (27) using (33) gives uH +2uL ≥ QHL−QLLwhile substituting

out u′L, u′H in (25) using (31) and (33) implies uH + 2uL ≤ QHL −QLL. Hence uH +

2uL = QHL − QLL. Using (33) to substitute out u′H , and this latter condition to

substitute out uH , (23) now implies

uL ≤ −1
3
[QHH −QLH −QHL + QLL]

and (11) implies a solution with uL ≥ 0 cannot exist. This completes the proof of

Theorem 12.�
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