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Abstract

This paper analyzes economic applications of genetic algorithms. Genetic
algorithms have been studied extensively as adaptive systems capable of near
optimal actions in a wide range of enviorments. It is the objective of this
paper to explore how genetic algorithms may or may not be a useful tool for
analyzing economic enviornments. The paper includes a brief review of other
work in economics that uses genetic algorithms. The Markov representation of
a simple genetic algorithm is developed, and applied to a coordination game
example. This example reveals the conclusion that genetic algorithms may
permit non-Nash outcomes for a significant number of periods. Further it is
shown that both the short and long run behavior of a genetic algorithm is
highly sensitive to the coding scheme used.




Introduction

The purpose of this paper is to analyze economic applications of genetic
algorithms. Genetic algorithms have been studied extensively as adaptive
systems capable of near optimal actions in a wide range of environments.
It is the objective of this paper to explore how genetic algorithms may or
may not be a useful tool for analyzing some specific economic environments.
Section I is an introduction to genetic algorithms, their strengths and weak-
nesses. In addition, Section I includes a short description of current work
in economics that uses genetic algorithms. Section Il develops the Markov
representation of a simple genetic algorithm. Section I1I studies an applica-
tion of the algorithm to an equilibrium selection problem from game theory.
This example reveals the most striking conclusion of the paper that genetic
algorithms are may permit non-Nash outcomes for a significant number of
periods. Section IV presents some propostions regarding the analytic prop-
erties of the algorithm. These propositions were suggested by the numerical
results from Section Il and serve to formalize the results from Section I11.
Section V is a summary and conclusions.

Section 1

The genetic algorithm is a simple way to model bounded rationality of agents
in economic models. It is a mathematical expression of a basic behavior rule
that sounds plausible for agents to use when confronted with uncertainty
and or incomplete information. The rule, stated in words, is to try strate-
gies in proportion to their past usefulness, while continuing to accumulate
information on the potential gains from as yet untried strategies. When
applied to economic problems of coordination, this algorithm promises to
sustain a disequilibrium state for a significant number of decision periods.
This property of genetic algorithms, and other adaptive schemes suggests
that using equilibrium refinements to eliminate possible solutions to game
theoretic representations of economic problems may be misleading.

Adaptive schemes, such as the genetic algorithm, or best response learn-
ing, or even Bayesian updating, have ability to define the path toward a
steady state. While this particular adaptive scheme has some appealing




decision theoretic properties lying at its base, as an algorithm, it offers spe-
cific rules for the decision making process that may be followed step by step.
Past research on genetic algorithms suggests that it may be able to fit human
subject data well. Using an adaptive process that models human behavior
to construct the path toward equilibrium is much more satisfying than ab-
stractly defining away potential equilibria on the grounds of some economists’
desiderata or axioms of choice. The interesting question then is, can these
models of adaptive behavior be constructed in a way so as to make them
amenable to testing, if not on real world data, then on experimental data?
The answer proposed here is, yes, it i1s possible to formalize the model so it
is amenable to testing with sufficient data, but at the same time there is so
much freedom in specifying the model that there may be many specifications
that fit the data well.

Economists are just beginning to use genetic algorithms. There are three
current papers in economics: Marimon, Sargent and McGrattan (1990) apply
the genetic algorithm to the monetary model of Kyotaki and Wright. Ari-
fovic (1989) applies the genetic algorithm to four separate smaller proklems,
Axelrod (1987) applies a genetic algorithm to the iterated prisoner’s dilemma.
Two of Arifovic’s applications are overlapping generations models, one is the
process of reaching competitive equilibrium and the last is a modification of
Bray’s (1982) model of an asset market with differentially informed agents.
The current literature seems to be in general agreement over why genetic al-
gorithms are useful for economic problems. Genetic algorithms are thought
to only require two simple and intuitively appealing models of choice, agents
choose to make moves according to how they have performed in the past, and
agents do occasionally test new moves. These rules roughly correspond to
the rules outlined in theoretical papers on learning in games. The way that
the algorithm is carried out, using binary strings, assumes that agents have
little knowledge of the environment that they are faced with. Depending on
how the modeler sets up the algorithm, this may lead it to be very good at
adapting to new environments. The testing of new moves is accomplished
through a stochastic process defined by the algorithm.

There is an implicit parallelism in the structure of the algorithm that
under certain specifications admits one agent considering multiple strategies
at the same time. In other words it may be thought to respresent an agent
holding two mutually contradictory views about the system that they are




actually in. This property may be useful in duplicating preference reservals
that have appeared in the experimental literature.

A final motivation for looking further into genetic algorithms is that it is
an easy way to simulate decentralized choice in an economic model. Within
a game theoretic context it may help to point out how agents become focused
on a particular Nash equilibrium when they exchange information in the way
dictated by a genetic algorithm. However, in order to interpret any of the
above simulations or applications in a meaningful way, we need to know more
about the stochastic process that the rules of the algorithm define.

The Markov representation and the following example in Sections Il and
IIT will lead us to see some of the problems with genetic algorithms, and
many other adaptive schemes. Perhaps the most glaring problem with using
an adaptive scheme is that it is essentially arbitrary. For example in a game
theoretic context one modeler may think that agents should or are thinking
of mixed strategies, and thus mixed strategies should be included as possible
decisions of the algorithm. Yet, an equally “correct” modeler may feel that
mixed strategies are too complex for most subjects to entertain. The many
different ways of parameterizing the same set of rules, is quite analogous to
the many different utility functions one may entertain for describing agents’
preferences in a consumer choice problem. They all are valid in some sense,
but our results may differ when we use one utility function over another.

Section II

This section will focus on the properties of the stochastic process that a sim-
ple genetic algorithm defines. Previous work has been done on the expected
performance of this simple genetic algorithm, but only as viewed through
Holland’s schemata framework. While Holland’s work is important in the
original formulation of the algorithm as a function optimizer, here the genetic
algorithm is formalized as a Markov process. Looking at this genetic algo-
rithm as a Markov process will yteld new insights into how exactly this model
of bounded rationality will play out in economic problems, thus enriching our
understanding of why and how to use genetic algorithms in economics.

The genetic algorithm uses a population of n strings of bits to encode



decision rules. The interpretation that will be used in this paper is that the
n strings represent n agents, each of which chooses an action as encoded
by the decimal value of the string that ‘is’ that agent'. After each decision
period the agents share information throught the rules described by the al-
gorithm. These rules are the genetic operations of reproduction, crossover
and mutation. After all operations have been performed, the population will
be in a new state. Each period the new state will be described by the n new
strings that have emerged from applying the genetic operators. The evolu-
tion of this system from one state to the next, from one set of decisions for
the population to the next, is the central topic of this section.

All strings in the population have the same length, [. Thus each string
may represent a decimal number in the range [0, H].WhereH = 2' — 1. The
decision that each value represents, as well as the length of the string, are
parameters of the algorithm. Thus this algorithm is limited to discrete choice
problems, where the maximum number of choices as H + 1. While each
decimal value may only represent one decision, there may be a set of values
which represent the same decision. The state of a string, as distinct from
the state of the population, is parameterized by its decimal value. There are
H + 1 string states.

The state of the population is parameterized by how many of the n strings
are in each of the A + 1 string states, and thus is a vector with indexes in the
range [0, H]. For any combination ny,n,, ..., n; such that 3 n; = n, there
1s one distinct population state. The total number of possible population
states, IV is calculated by the number of ways to allocate n items to H + 1
states?.

(n+ H)!

(1) N=—m

The genetic algorithm defines the three operations reproduction, crossover

1An alternative interpretation is that there are several populations of strings. Each
population of strings then represents the decision making process of a single agent. This
interpretation used in Arifovic's treatment of Bray’s (1982) model of asset trading by
informed and uniformed agents. The approach used in Marimon, Sargent, McGrattan 1s
similar, althought it is one population of strings for each type of agent.

2This is the solution to a member of the class of problems in probability theory called
occupancy problems. The classic way of formulating the problem is how many different
ways are there to put n identical items into H + 1 distinct boxes.



and mutation to be performed in that order. In the analysis that follows it
will be helpful to think of four ‘stages’ of the population as the algorithm
is running: the original population, after reproduction, after crossover and
after mutation. Once the final operator, nmutation, has been applied, this is
a new population.

Some notation at this point will be helpful. Let s, ¢, v, and v denote
canonical population states. They are vectors with elements (so, $1,...,51),
(to, t1,. .-, tu), (vo,ur,...,un), (vo,v1,...,vy). Each element denotes the
number of strings within each population state that are themselves in string
states 0 — H. The vector s will be used to denote original population states, t
for second stage, and u for third stage populations, and v for the final stage.

Reproduction

Reproduction has the most effect on the outcome of the algorithm as it is
the operation that selects the building blocks for the final generation. Under
operation of reproduction, n intermediate strings are chosen at random from
the original population. The probability distribution over the original strings
is that one dictated by the relative fitness (i.e. payoff, performance, utility)
of the strings in the previous decision making period. Using the relative
payoff of each string as its probability of being chosen for inclusion in the
second stage is the means by which the most successful choices from the past
are used for future decisions. The expected fitness (i.e. payoff, performance,
utility) of a string in string state  within a population in state s is denoted

fls,1]-

fls,7]

(2) Fls,7) = }:fzo s v

F[s,1] is the expected relative fitness (i.e. payoff, performance, utility) of
a string in string state + within a population in state s.

(3)  R[s,i] = s * Fls,1]

fls, ]

(4) R[Svi] = Si*

Zf:o f[sv k] * Sk




R|[s,1] is the probability that a string in string state i will be reproduced
from a population in state s.

H
(5) Py = [1:[ R[s,i]t‘]

FPsi 1s the matrix of transition probabilities for going from population state s
to second stage population ¢.

Since reproduction takes place over the original population with replace-
ment, the order of the strings in the second stage is random, where each
string from the original population has the same probability of being any
one of the n second stage strings. Once the reproduction operation has been
completed, n strings have been chosen for the second stage, the crossover
operation is applied to the second stage.

Crossover

Crossover is an operation where two strings are mated. Then a bit po-
sition, b, is chosen with uniform probability over all ! bits. The strirgs are
then ‘cut’ at that position, and crossed over. In other words the front half of
one string is merged with the back half of the other and vice versa. Crossover
may be thought of as an information sharing device among the strings. As
the strings in a population become more and more similar, the effect of the
crossover operation diminishes. The extreme case is when the second stage
consists on n strings all in the same string state. In this case crossover will
have no effect at all. This conclusion is discussed more formally in Section

IV.
Mating

The second stage has arisen in a ‘random’ manner, thus the pairing
scheme given by mating each two adjacent strings will yield the same proba-
bility distribution over possible matings as a scheme that chooses mates over
the n intermediate strings without replacement in a uniform manner. The
probability that a string in string state :, and one in state j will be mated,
denoted M(z,3), is the same as the probability that both of these two string
states end up in the second stage in either order.

(6) M[i,j]:{ Q*R[f{[i],:]f[s’i] Zij}



Once two strings have been paired, crossover will take place at a randomly
(uniform) chosen bit, b. Let d(z, b) be the decimal value of the rightmost b bits
of a string in state :. By switching the rightmost b bits of string ¢ with those
of string j, the crossover operation effectively substracts d(z, b) from string 1,
while adding d(7,6). In the operation of crossover mans {z,;} into {¢/,;'}.

(7) ' =1i—d(i,b)+d(j,b)
(8) ) =7 —d(j,b)+d(:,b)

Once a mating scheme is given for the n strings in the second stage, the
crossover operation is completely characterized by a vector of length n/2
indicating which bit each pair will be crossed on. A mating scheme, A, with
a(1,7) pairs of ¢ and j will have probability of occuring.

9) pA) = [I M[, ¢
H

1=0

_1:0”.. 1

Conditioning on a particular mating scheme, A, the set of possible states
for the third stage population is limited to those that will be outcomes of
I"? vectors assigning ab € [0,! — 1] to the n/2 mates. Each of these vectors
will have equal probability. These vectos of crossover bits are denoted B.
The operation of crossover can now be writen as X(A, B).

Equation (11) gives the probability of a third stage population, u, arising
from an initial population s.

(10) h[A,B,u]:{ [ if X(A,B) #u }

0 otherwise

ZA [P(A) * ZB II(A» 31 U)]
(11) Py, = A € {mating schemes}
B € {crossover vectors}




Even for small population sizes, and short string lengths, calculating this
matrix involves checking many mating schemes and crossover vectors®.Section
1l includes an example of a two string, two bit system. In this small example
alone there are ten population states, one mating scheme and two possible
crossover vectors?.

Mutation

The mutation operation will, with some small probability, €, switch any
bit of any string in the entire population. There i1s a Markov transition
probability matrix associated with this operation. The entries in this matrix
represent the probability that mutation will bring a third stage in state u,
into a final stage v. The first thing to note in deriving these probabilites
is that any string in the third stage population can be mutated to be any
one of the strings of the final stage population. The probability that a given
string ¢ from population u will be mutated enough to become string j from
population v is

-1

" L) " 1y(b)

(12) m(ij)=c im0 +(1—c) =0

Note m(z,7) > 0 for all z, 7.

Where I(b) is an indicator function that takes on the value one when the
two corresponding bits of strings : and j have different values, and zero when
they are the same value®. Notice that Y I5(b) is now a distance measure
showing how far in bits it is between strings ¢ and ;.

1 d(s,b) —d(i,b—1) = d(j,b) — d(j,b— 1) }

0 otherw:se

(13) Io(b) = {

3There are ("% crossover vectors, and the number of mating schemes is
1/2((H + 1)+ (H 4+ 1)). The number of crossover vectors is the number of ways to
assing up to [ items in each of n/2 boxes. The number of mating schemes was figured
as the number of elements in the lower triangle (including the diagonal) of a matrix with
H + 1 rows and H + 1 columns. Basically this is just the area of a triangle with base
= H + 1 and height = H + 1, plus a small half triangle for each diagonal element.

4In this system the crossover vector is actually a scalar indicating where the single pair
of strings in the population is to be crossed.

5This distribution differs from the binomial because the order of the ‘successes’ is
important. Thus, there is no binomial coeflicient.



-1
(14) D(i,5) =) h(b)
b=0

If there are k, distinct states represented in s, and k, distinct states repre-
sented in v, then Equation (15) gives the number of possible matchings. Each
of these matchings imply a probability of the mutation operation making u
mutate into v. This probability is given in Equation 16°.

(15) K = =% =1

k, < k,

n

(16) h(u,v) = Hrn(ui,vi)

1=t

(17) P,, = [Z hk(u,v)}

In (16) z indexes the string number for the particular matching. In (17)
k sums over all n! possible matchings, thus P,, is the matrix for mutation
alone. Now the entire genetic algorithm may be characterized by the product

of P,, and P,,.

(18) Py = Py + Pu

Section II1

This section presents a simple example of a genetic algorithm. The example
is a two person matrix game that was used in Cooper, DeJong, Forsythe,
Ross (1990). The particular game that this section addresses is Game 3 from
their paper. It is an example of a coordination game with two Pareto rankable
pure strategy Nash equilibria, one mixed strategy Nash equilibrium, as well

5When n is large it may be computationally more efficient to consider how many of
these matchings are redundant due to more than one string being in a particular string
state 1n either population.




as a cooperative outcome. The payoff matrix is presented in Figure 1. The
entry in each cell is the row player’s payoff. It is understood as follows. If
the row player plays R1 and the column player plays C'l then the row player
wins 350 points. The game is symmetric, so that the column player’s payoffs
are the same for a given action by the row player, as the row player’s payoff
are given the same action by the column player.

The fact that this example contains multiple equilibria as well as a coop-
erative outcome makes it an interesting testing ground for the equilibrium
selection properties of genetic algorithms.

A two string (n = 2), two bit ({ = 2) system is used to calculate the
transition matrices for a genetic algorithm. This is a much smaller system
than those presented in previous work on genetic algorithms, however the
main method and results are much clearer in this environment than in larger
systems. Each of the two strings represents one of the players of the game.
With two bits per string the algorithm provides four possible decisions for
each of the players.

Figure 2 shows six possible specifications for this system”. The mixed
strategy was chosen to correspond to the mixed strategy Nash equilibrium.
Each specification uses the same set of possible actions. Figure 3 shows
the mapping from actions to population states. This mapping is used for
all codings. Figure 4 shows the reproduction and crossover matrices for all
6 specifications. Figure 5 shows the matrix for the entire process for all
six specifications. All the probabilities given are based on the payoffs from
Figure 1 and the codings in Figure 2.

The six specifications do in fact have different Markov representations.
Figure 6 shows that the long run distributions over states for these six spec-
ifications are also different across codings. Codings A and C have the same
reproduction and crossover matrices, but mutation makes the processes differ
in the short run. Their long run distributions however are the same. It is
encouraging to note that although the long run distributions are sensitive to
coding, the difference between them seems to be minimal.

Much of the previous work on genetic algorithms, both within and outside
of economics, has allowed the probability of mutation to diminish as time goes

"The set of six specifications is the set of permutations of the last three strings in the
ordering of the mapping from string states to actions.
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on. The reason for this becomes clear when comparing Figures 4 and 5. In
Figure 4, we see that there are four absorbing states of the system. States
1,4,7, and 9 will all be long run stationary points of the algorithm once they
are entered into. However, if mutation is introduced, there are no longer
any absorbing states of the system. In other words the algorithm will never
settle down to one state, but rather it will settle to a long run distribution
over states. The long run distributions for this system are given in figure 6.
By diminishing the probability of mutation, the algorithm will converge to
one of the absorbing states with probability one. Intuitively this is because
eventually it will become the system described in Figure 4.

Looking at Figure 4, we can see that there is positive probability that the
system, without mutation, could settle down to the cooperative outcome,
state 9. Here, the cooperative outcome, as well as all three Nash equilibria
are states where all the strings are the same. When all strings are the same,
crossover and reproduction have no effect on the system, thus an absorbing
state arises. It is the symmetry of the system that brings the it to a Nash
equilibrium, not the payoffs of the game.

Section IV

This section will present some analytic properties of the simple algorithm
discussed thus far. Three propositions that give some more insight into how
the crossover and mutation operations work are stated and proven. A brief
example of why coding matters even in systems with longer strings is given.
The section also includes some propositions leading to a proof of the ergod-
icity of the Markov process defined by the algorithm. This leads to some
conclusions regarding the stability of both Nash and non-Nash outcomes of
the algorithm. The section is concluded with suggestions for future research.

The effect of crossover in different systems is expressed in the following
propositions. Propositions 1 and 2 say that the effect of crossover diminishes
as the two strings to be crossed are more similar. Proposition 1 is stated in
terms of the decimal representation of the strings. Proposition 2 is stated in
terms of the ‘bit distance’ as defined by I;(b). The conclusion from Propo-
sition 2 says that the overall change in bit distance possible from a given
crossover operation gets smaller as two strings become closer in bit distance.

11




Propositions 3 and 4 say that as the length of the strings in a system gets

smaller, the effect of crossover alone diminishes.

Proposition 1 As |d(z,b) — d(j,b)] — 0 t—1]—0 monotonically
Proof 1: rearrange Equation (7)
¢ —1 =d(i,b) — d(J,b)
Proposition 2 As D(1,7) = 0
max  {(D(i,i") + D, s), D(i,§") + D(j, i)} = 0
Proof 2:
max D(k,k'y=D(i,j)~1 k=dijk =45
As D(1,7) - 0 max D(kk')—0
Proposition 3 Asl—0li -1 —0
Proof 3:
max d(i,b) = d(z, 1)
mbin d(j,6) = d(4,0) =
as l — 0 max d(z,b) — 0 monotonically
as [ — 0 max |d(z, b) — d(j,b)] — 0 monotonically
therefore by Proposition 1 e -] —0
12



Proposition 4 As ! — 0
max {D(,¢'Y+ D(3,5"), D(¢,7") + D(5,7)} = 0
Proof 4: directly from Proposition 2
and as [ — 0 D(z,7) — 0

Taken together these propositions suggests that the potential difference
from recoding would only become more stark in larger systems, precisely
because crossover would be a stronger operation. The four bit recoding
example given in figure 7 supports this conjecture. In this example each bit
may be taken to indicate an action at a particular information set. The first
line gives a mated pair and the four possible outcomes of crossover. The
second line recodes the first by switching bits 1 and 3 and 2 and 4. Again all
four possible outcomes are given. Finally the third line recodes the second
back to the same order as the first. It is clear that the possible outcomes of the
crossover operation are different under different coding schemes. Mutation
is also affected by different coding schemes. When a coding scheme changes
the bit distance between two actions changes, then obviosly the probability
that one will mutate into the other is changed.

Propositions 5 and 6 serve to set up notation and concepts for the last
three propositions. Proposition 7 characterizes the Markov process when
the mutation probability remains constant. One important conclusion to
be drawn from Proposition 7 is that as long as the mutation probability is
positive, all states will be visited infinitely often. Notice however that all
states have this property, including, but not limited to the Nash equilibria.

Proposition 7 also indicates the existence of a unique long run stationary
distribution over states. This result follows directly from the ergodicity of
a finite state Markov chain. This fact leads to the possibility that the long
run distribution may the same for some or all permutations of the coding
scheme. A more general characterization of when this could be true is a
topic for further research.

Finally Proposition 8 is a preliminary way of characterizing the behavior
of the system if the mutation probability shrinks over time. Recall that one of
the conclusions from Section I1I was that if there were no mutation at all, then

13




all symmetric states would be long run stationary points of the algorithm.
Proposition 7 then tells us that even if ¢ 1s allowed to be positive, it can be
chosen so that the probability of leaving a symmetric state, Nash or non-
Nash, is close to zero. This conclusion uiaturally leads to further questions
regarding the convergence properties of the algorithm when e shrinks. This
would be a non-stationary Markov process, and its precise long run behavior
is another topic for future research.

Proposition 5 Ife > 0, then P,, 1s a strictly positive matriz.

Proof 5:
m(z,7) > 0 for all 2,7 from Eq. 12
R¥(u,v) > 0 for all u,v, k from Eq. 15
denoting the element of P,, as ¢q(u,v)
q(u,v) >0 from Eq. 16

Proposition 6 If P,, s a strictly positive matriz then Ps, 1s a stricily pos-
itive matriz.

Proof 6:
PstPsu*Puv from Eq 17

denoting the elements of these matrices as r(s,v), p(s,u) and ¢(u,v) respec-
tively gives

N-1
T(s,v) = X_: p(s,u) x q(u,v)

p(s,u) 20
N=-1
and »_ p(s,u) =1

u=0

.. 3 u such that p(s,u) >0

14




g(u,v) > OV u,v by Proposition 5
r(s,v) >0

Proposition 7 The Markov process for the entire genetic algorithm is irre-
ducible, aperiodic and all states are positive recurrent.

Proof: Irreducibility comes from the fact that the matrix is stricly positive
therefore all states communicate.

The fact that the matrix is strictly positive also makes the process ape-
riodic as this implies all diagonal elements are positive, thus each state can
return to itself in any number of periods.

All states must be positive recurrent, since they are all in one recurrence
class and this is a finite state Markov process.

Fort=1,23..3 >0 | P, <é&6>0
Proposition 8 Yu, A
V s such that s; = n for some 1

Proof: Proof follows directly from the fact that powers of € enter into the
system additively when P;, is multiplied by P,,. Equations 12 and 15 show
that only powers of € are in P,,.

Section V

This paper has shown that the genetic algorithm can be formalized as a
Markov process. The Markov representation of a genetic algorithm with the
operators of reproduction, crossover and mutation was presented for a general
system. When formalized as a Markov process genetic algorithms have the
potential to be testable and or calibrated to experimental data. However, the
study of an application of the algorithm presented in Section III illustrates

15




the sensitivity of the algorithm to coding schemes. It was shown that both
short run and long run behavior of the algorithm may differ under different
coding schemes. It was shown that absorbing states of the system are purely
an artifact of the coding scheme, and that only outcomes that are symmetric
with respect to string states will be absorbing states of the system. Section
IV presented several propositions to formalize the results from Section I11.
So, while the algorithm is an intuitively appealing adaptive scheme, care
must be taken to note the potential bias from the coding scheme.

Future research on genetic algorithms could include a closer study of
the model when the mutation probability diminishes over time. Also other
modifications of the algorithm, such as a bucket brigade payoft assignment,
could be studied. Other future research could include a study of how rational
agents might affect the outcome of the algorithm. Topics of this nature could
be related to current work on replicator dynamics and evolutionary stabil-
ity. This paper also suggests that more detailed research into the existing
models of learning could prove enlightening. For example these studies use
learning algorithms like the genetic algorithm, and they conclude that Nash
equilibrium will be reached infinitely often, but they don’t clearly state if
other outcomes will also be reached infinitely often.

16
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Table 1: Payoff Matrix

ct C2 C3
R1 350 350 1000
R2 250 550 0
R3 0 0 600

Table 2: Six Codings

String A B C D E F
00 mix mix mix mix mix mix
01 1 1 2 2 3 3
10 2 3 1 3 1 2
11 3 2 3 1 2 1

Table 3: Actions to Population States

Action for Action for Population
String 1 String j State
mix mix 0
mix 1 1
mix 2 2
mix 3 3

1 1 4

1 2 5

1 3 6

2 2 7

2 3 8

3 3 9
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Table 4: Continued

Coding E

100. 0.00 0.00 000 000 000 0.00 000 000 000
22.6 499 000 0.00 276 000 000 000 0.00 0.00
29.5 0.00 248 000 000 000 248 208 000 0.00
100. 000 000 000 000 000 000 000 000 0.00
0.00 000 000 000 100. 000 000 000 000 0.0
0.00 0.00 000 0.00 340 486 000 174 000 0.00
0.00 0.00 000 0.00 100. 000 000 000 000 0.00
0.00 000 000 000 000 000 000 100. 000 0.00
0.00 000 000 000 000 000 000 250 500 250
0.00 0.00 000 000 000 000 000 000 000 100.
Coding F

100. 0.00 000 0.00 000 000 000 000 000 0.0
22.6 249 000 000 276 000 000 000 249 0.00
29.5 000 49.6 000 000 000 000 208 000 0.0
100. 0.00 0.0 0.0 0.00 000 000 000 000 0.0
0.00 0.00 0.00 000 100. 000 000 000 0.00 0.00
0.00 000 000 000 340 486 000 174 0.00 0.00
0.00 0.00 000 0.00 100. 000 000 000 000 0.00
0.00 0.00 000 000 000 000 000 100. 000 0.00
0.00 250 0.00 0.00 000 000 000 250 250 250
0.00 0.00 000 0.00 000 000 000 000 000 100.

Table 5: Markov Matrix for Reproduction, Crossover and Mutation

Coding A

41.0 205 205 510 260 510 130 260 130 0.200
15.1 320 7.54 800 170 800 850 0942 200 1.06
17.7 885 31.9 7.97 111 797 199 144 7.8 0897
41.0 205 205 510 260 510 130 260 130 0.200
2.60 205 1.30 510 41.0 510 205 0.200 130 2.60
2.60 125 931 138 152 138 125 847 931 260
2.60 205 130 5.10 410 510 205 0200 130 2.60
2.60 130 205 5.10 0.200 510 130 410 205  2.60
1.00 200 800 800 100 800 800 160 320 160
0.200 130 1.30 5.0 260 510 205 260 205  41.0
Coding B

41.0 205 510 205 260 130 510 0200 130 2.60
15.1 320 800 7.54 17.0 850 800 1.06 2.00 0942
13.4 117 140 117 260 101 140 988 101  2.60
41.0 205 510 205 260 130 510 0.200 1.30 2.60
2.60 205 510 1.30 410 205 510 260 130 0.200
1.21 9.67 792 1.98 193 317 792 13.0 649 0812
2.60 205 510 130 410 205 510 260 130 0.200
0.200 1.30 510 130 260 205 510 410 205  2.60
1.00 200 800 800 100 800 800 160 320 160
2.60 130 510 205 0200 1.30 510 260 205 41.0
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Coding C
41.0
15.1
17.7
41.0
2.60
2.60
2.60
2.60
1.00
0.200

Coding D
41.0
10.6
17.7
41.0
0.200
0.812
0.200
2.60
2.60
2.60

Coding E
41.0
15.1
13.4
41.0
2.60
1.21
2.60
0.200
1.00
2.60

Coding F
41.0
10.6
17.7
41.0
0.200
0.812
0.200
2.60
2.60
2.60

20.5
32.0
8.85
20.5
20.5
12.5
20.5
1.30
2.00
1.30

5.10
14.1
7.97
5.10
5.10
7.92
5.10
5.10
14.1
5.10

20.5
32.0
11.7
20.5
20.5
9.67
20.5
1.30
2.00
1.30

5.10
14.1
7.97
5.10
5.10
7.92
5.10
5.10
141
5.10

20.5
7.54
31.9
20.5
1.30
9.31
1.30
20.5
8.00
1.30

20.5
10.4
31.9
20.5
1.30
6.49
1.30
20.5
10.9
1.30

5.10
8.00
14.0
5.10
5.10
7.92
5.10
5.10
8.00
5.10

20.5
10.4
31.9
20.5
1.30
6.49
1.30
20.5
10.9
1.30

5.10
8.00
7.97
5.10
5.10
13.8
5.10
5.10
8.00
5.10

20.5
10.4
8.85
20.5
1.30
1.98
1.30
1.30
10.9
20.5

20.5
7.54
11.7
20.5
1.30
1.98
1.30
1.30
8.00
20.5

20.5
10.4
8.85
20.5
1.30
1.98
1.30
1.30
10.9
20.5

Table 5: Continued

2.60
17.0
1.11
2.60
41.0
15.2
41.0
0.200
1.00
2.60

0.200
12.7
0.897
0.200
41.0
19.3
41.0
2.60
2.60
2.60

2.60
17.0
2.60
2.60
41.0
19.3
41.0
2.60
1.00
0.200

0.200
12.7

0.897

0.200
41.0
19.3
41.0
2.60
2.60
2.60

5.10
8.00
7.97
5.10
5.10
13.8
5.10
5.10
8.00
5.10

1.30
11.4
7.18
1.30
20.5
31.7
20.5
20.5
10.9
1.30

1.30
8.50
10.1
1.30
20.5
31.7
20.5
20.5
8.00
1.30

1.30
11.4
7.18
1.30
20.5
31.7
20.5
20.5
10.9
1.30

1.30
8.50
1.99
1.30
20.5
12.5
20.5
1.30
8.00
20.5

1.30
11.4
1.99
1.30
20.5
9.67
20.5
1.30
10.9
20.5

5.10
8.00
14.0
5.10
5.10
7.92
5.10
5.10
8.00
5.10

1.30
11.4
1.99
1.30
20.5
9.67
20.5
1.30
10.9
20.5

2.60
0.942
14.4
2.60
0.200
8.47
0.200
41.0
16.0
2.60

2.60
2.60
14.4
2.60
2.60
13.0
2.60
41.0
11.6
0.200

0.200
1.06
9.88

0.200
2.60
13.0
2.60
41.0
16.0
2.60

2.60
2.60
144
2.60
2.60
13.0
2.60
41.0
11.6
0.200

1.30
2.00
7.18
1.30
1.30
9.31
1.30
20.5
32.0
20.5

5.10
14.1
7.97
5.10
5.10
7.92
5.10
5.10
14.1
5.10

1.30
2.00
10.1
1.30
1.30
6.49
1.30
20.5
32.0
20.5

5.10
14.1
7.97
5.10
5.10
7.92
5.10
5.10
141
5.10
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0.200
1.06

0.897

0.200
2.60
2.60
2.60
2.60
16.0
41.0

2.60
2.60
1.11
2.60
2.60
1.21
2.60
0.200
11.6
41.0

2.60
0.942
2.60
2.60
0.200
0.812
0.200
2.60
16.0
41.0

2.60
2.60
1.11
2.60
2.60
1.21
2.60
0.200
11.6
41.0




Table 6: Long Run Distributions

Coding
State A B c D E F
0 146 134 146 125 134 125
1 168 168 168 7.6 168 7.16
2 128 677 128 134 677 134
3 674 861 674 859 861 859
4 144 156 144 13.7 156 137
5 674 134 674 141 134 141
6 9.14 677 914 917 677 917
7 746 752 746 100 7.52 100
8 712 709 712 716 709 7.16
9 415 404 415 422 404 4.22
Table 7: Four Bit Recoding Example
Cross bit
String String b=1 b=2 b=3
i _] i’ ja i’ ja i’ j7
original 0101 1110 0101 1100 0100 1111 0110 1101 0110
recode 0101 1011 0101 1011 0101 1011 0111 1001 0011
decode 0101 1110 0101 1110 0101 1110 1101 0110 1100
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Appendix

Program to do calculations for Section III
Note: Function Action changed for each cocing.
Program GA2by2;

Uses Crt, Dos;

Const
n = 2; {number of strings}
1 = 2; {number of bits}
H = 3; {271-1, highest decimal number representable}

Bigl = 10; { (n+H)!/n!'H! number of population states}
Eps = 0.2; {mutation probability}

Type
PopStateType = array(0..H] of Byte;

Var
Popstates : array[0..Bigi-1] of PopState Type;
Tostate : PopStateType;

Payoffs : array [0..Bigl-1, 0..H] of real;
Mates : array[0..BigK-1, 0..1-1] of record
Iprime, JPrime : Byte;
end;
TotalFit : Real;
RelFit : Array [0..BigH-1, 0..H] of real, {relative fitness}
Reprob : Array [0..Bigl-1, 0..H] of Real; {prob. of reprodaction}
Mateprob: Array [0..BigN-1, 0..H, 0..H] of real; {prob. of mating}
SumReprob, SumRelfit : REal; {used for check if Reprob}
Popst, Act, StrstI, Strst] : Integer ;
MateEum, Crossbit, ToStates : Integer;
PrimeNum, Strstipri, Strstjpri : Integer;
I0NE : Array [0..BigN-1, 0..1-1, O..Bigl-1] of real;
{indicator for if mating scheme & and crossover vector B will yield

population u}

SumOverB: Array [0..Bign-1] of Real; {used to sum IONE over crossover
vectors}

BigPSU : Array [0..Bigl-1, 0. .Bigh-1] of real;
{The reproduction + crossover Matrix}

Sum0verPopSt : Real; {used to check that things sum to one}

Mute : Array [0..H, 0..H] of real;
{probability of string i mutating into string j}

BigPUV : Array[0..Bigl-1, 0. .BigB-1] of real;
{The mutation Matrix}
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{0UTPUT FILE}

DataFile :Text;

DataFileName :String{40];
{TIME/DATE}

Hour, Min, Sec, Sec100 : word;
Month, Day, Year, DayofWeek : word;

{#oeasnastsnantss YES 000000000000 ttattt sttt assstasstansssosnsns}
function Yes( Prompt : string ) : boolean;

var
Ch : char;

begin

write( Prompt, ’(Y/N)’);

repeat

Ch := readkey;

until Ch in [’Y’, ’y’, 'N’, 'n’ ];
write( UpCase( Ch ) );

Yes := ( Ch in [’Y’, ’y’] );

Writeln;
end; { Yes }

{*xxsnersnsnsnsstnes (PENDAtaFILE ##sttstsststsbsdsbasssd b ahabtnsn}
{Opens, Signs and Dates the DataFile}
Procedure OpenDataFile;
Var
OK : boolean;
Begin
repeat
Writeln;
Write (’Enter name of Data File ’);
Readln(DataFileName) ;
Writeln;
Assign(DataFile, DataFileName) ;

{$I-} ReSet(DataFile) {$I+};
0K := (IOresult = 0);

If OK then begin
Close(Datafile) ;
Writeln(’The File’ ,DataFileName,’already exists.’);

If Not Yes(’Do you want to write over this file?’) then

0K := False;
End{if}
Else
0K := true;
until 0OK;
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ReWrite(Datafile);
Writeln(DataFile,’This is file’,DatafileBame);

Yriteln(Datafile,’The Output contained herein was generated by
GA2by2’);
Writeln(Datafile,’As written By Lisa Tilis’);

GetTime (Hour,Min,Sec,Sec100);
¥Writeln(Datafile,’Time:’ ,Hour:2,’:',Min:2);

GetDate(Year,Month,DAy,DayofWeek) ;
Writeln(Datafile,’Date:’,Month:2,’/’ ,Day:2,’/’,Year:4);

Vriteln(DataFile);
Writeln(DataFile,’ = """ " "= " rnemmosssssosscssssns s as s sS s s s asaananansnan ’);

End; {proc OpenDataFile}
{*xxxnsnnxnsrrnnnnns CLOSEFILES saskssdbmpdhsnshspipmpbhkshhhshshnsnhns}

{Closes and dates all open files}

Procedure CloseFiles;
Begin
GetTime (Hour,Min,Sec,Secl100);
GetDate(Year,Month,DAy,DayofWeek) ;

Writeln(Datafile,’Time:’ ,Hour:2,’:’ ,Min:2);
Writeln(Datafile,’Date:’ ,Month:2,’/’ ,Day:2,’/’ ,Year:4);

Close(DataFile);

End;
Function Action (StrSt:Byte):Byte;
{Takes in the decimal value of a string State and returns the action #}

Begin
Case Strst of
O:Action:=0;
1:Action:=3;
2:Action:=2;
3:Action:=1;
end; {case}
End; {function Action}

Function StateEqual( Statel, State2 : PopStateType):Boolean;
Var
i:integer;

Begin
StateEqual:= True;
For i:=0 to H do
If Statei[i] <> State2[i] themn
StateEqual :=False;
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End; {Function StateEqual}

Function Stateof( Strstl, Strst2 : integer): integer;
Var

State : Popstate Type;

i, temp: integer;

Begin

For 1:=0 to H do
Statel[i] :=0;

State[ Action(Strst1) ] :=State[ Action(Strst1) ] + 1;
State[ Action(Strst2) ] :=State[ Action(Strst2) ] + 1;

Temp := Bigl;

For i := O to Bigll ~1 do
If StateEqual(State,Popstates[i]) then
Temp :=i;

If Temp = Bigl then
Writeln (’error in stateof’)
Else Stateof := Temp;

End; {function stateof}

Procedure InitVariables;
Begin
For Popst := O to Bigl-1 do
For Act := 0 to H do begin

Popstates[Popst, Act] := 0;
Payoffs{Popst , Act] := O;
end; {for}

Popstates([0,0] := 2; Payoffs[0,0] := 350;
Popstates(1,0] := 1; Payoffs[1,0] := 950/3;
Popstates([2,0] := 1; Payoffs[2,0] := 1250/3;
Popstates(3,0] := 1; Payoffs(3,0] := 2000/3;

Popstates[1,1] := 1; Payoffs(1,1] := 350;
Popstates[4,1] := 2; Payoffs[4,1] := 350;
Popstates[5,1] := 1; Payoffs(5,1] := 350;
Popstates[6,1] := 1; Payoffs{6,1] := 1000;

Popstates[2,2] := 1; Payoffs[2,2] := 350;
Popstates[5,2]) := 1; Payoffs[5,2] := 250;
Popstates(7,2] := 2; Payoffs[7,2] := 550;
Popstates([8,2] := 1; Payoffs[8,2] := 0;

Popstates([3,3] := 1; Payoffs{3,3] := 0;
Popstates[6,3] := 1; Payoffs[6,3] := 0;
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Popstates[8,3]
Popstates([9,3]

Mates[0,0]
Mates[1,0]
Mates{2,0]
Mates[3,0]
Mates[4,0]
Mates[5,0]
Mates([6,0]
Mates([7,0]
Mates[8,0]
Mates[9,0]

Mates[0,0]
Mates[1,0]
Mates[2,0]
Mates[3,0]

Mates[5,0]
Mates[6,0]

Mates([9,0]

Mates[0,1]
Mates[1,1]
Mates[2,1]
Mates([3,1]
Mates[4,1]
Mates[5,1]
Mates[6,1]
Mates[7,1]
Mates[8,1]
Mates[9,1]

Mates([0,1]
Mates[1,1]
Mates([2,1]
Mates[3,1]
Mates[4,1)
Mates[5,1]

Mates[8,1]
Mates[9,1]

Mute[0,0]
Mute(0,1]
Mute[0,2]
Mute[0,3]

Mute[1,1]

.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=

.Jprime :=
.Jprime :=
.Jprime :=
. Jprime

Mates[4,0].
. Jprime

.Jprime

Mates(7,0].
Mates[8,0].
.lprime :=

.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=
.Iprime :=

.Jprime :=
.Jprime :=
.Jprime :=
.Jprime :=
.Jprime :=
.Jprime :=
Mates[6,1].
Mates[7,1].
.Jprime :=
.Jprime :=

; Payoffs([8,3] := 0;
Payoffs[9,3] 600;

"
[
]

WRNFR OO0 O0O0

u

[
W W WK =W =0

Jprime :=

[}

Jprime :

Jprime :=

W WK O == OO

Jprime :=

Jprime :=

WNNWWRLNDODO O

(1-Eps)*(1-Eps);
(Eps)«(1-Eps) ;
(Eps)*(1-Eps);
Eps*Eps;

(1-Eps)*(1-Eps);
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Mute[1,2] := (Eps)*(Eps);
Mute[1,3] := (Eps)*(1-Eps);
Mute(2,2] := (1-Eps)*(1-Eps);
Mute[2,3] := (Eps)*(1-Eps);
Mute[3,3] := (1-Eps)*(1-Eps);

For Strsti := 0 to H do
For Strstj := strsti to H do
Mute[strstj,strsti] := Mute [strsti,strstj];

Writeln(DATAFILE, ’Popstates’);
For PopSt := 0 t0 biGn -1 DO begin
Write (DATAFILE,Popst:4);
For Act := 0 to H do
write(DATAFILE, PopSates{PopSt, Act}:4);
Writeln(DATAFILE);
End;
Writeln(DATAFILE);

Writeln(DATAFILE, 'Payoffs’);
For PopSt := 0 t0 biGn -1 DO begin
Write (DATAFILE,Popst:4);
For Act := 0 to H do
write (DATAFILE,Payoffs{PopSt,Act]:5:0);
Writeln(DATAFILE);
End;
Writeln(DATAFILE);

Vriteln(DATAFILE, ’Mates b=0 b=1 ’);
Writeln(DATAFILE, ’State IPRINE JPRIME IPRIME JPRIME’);
For PopSt := O t0 biGn -1 DO begin
Write (DATAFILE,Popst:6);
For Crossbit := O to 1-1 do
write (DATAFILE,Mates[PopSt,Crossbit] .IPRIME:6 Mates[PopSt,Crossbit].JPRINE:6);
Writeln(DATAFILE);
End;

VWriteln(DataFile);
Writeln(DataFile, ’Mutation Probabilities atring to string’);

For Strsti := O to H do
Vrite(Datafile, Strsti:8);
Vriteln(DATAFILE);
For Strsti := 0 to H do begin
Write(Datafile, Strsti:4);
For Strstj := 0 to H do
Write(DATAFILE,Mute[Strati,Strstj}*100:7:1);

Writeln(DATAFILE);
End; {for}
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End;{Procedure initvariables}

Begin
OpenDataFile;

Writeln(DataFile, ’Strst’,’ Action’);

For Strsti := 0 to H do
Writeln(DataFile,Strsti:S,Action(Strsti):S);

InitVariables;

For Popst := O to BigW-1 do Begin
TotalFit := O;

For Strsti := O to H do
TotalFit := (Payoffs{Popst,Action(StrSti)]s
Popstates[Popst,Action(strsti)]) + TotalFit;

Write(DATAFILE, ’Total Fitness is..’,TotalFit:5:0,’ for state’,Popst:4);

SumRelFit := O;
SumRepreob := 0Q;
For Strsti := 0 to H do begin
If TotalFit > O then

RelFit [PopSt, Strsti] := Payoffs[Popst,Action(Strsti)}/TotalFit
Else

RelFit[PopSt,StrSti]l := (1/n);

Reprob[PopSt,Strsti] := (Popstates[Popst,Action(strsti)])s
RelFit [PopSt,SrtStil;

SumRelFit := SumRelfit +
(RE1Fit [Popst,StrSti] * Popstates[Popst,Action(strstil]);

SumReprob := SumReprob + Reprob[PopSt,Strsti];
End; {for StrSti}
Writeln (DATAFILE,’ SumReprob’,SumReprob:7:2,’
SumRelfit’,SumRelfit:7:2);

For StrSti := 0 to H do begin
For StrStj := 0 to (StrSti-1) do begin

MateProb[PopSt,Strsti,strstj] := 2+Reproblpopst,strstils
Reproblpopst,strstjl;
MateProb[PopSt,Strstj,Strsti] := MateProb[Popst,Strsti,Strstj);
End; {for}

MateProb[Popst,Strsti,Strsti] :=
Reprob[popst ,stratil *Reprob{popat,strstil;
End; {for}

End; {for popst}

{Set up IONE}
Writeln(DataFile);
Writeln(DataFile, ’I0NE’);
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Writeln(DataFile,’Mate’,’Cross’,’To’);

For MateNum := O to Bigk-1 do
For Crossbit := 0 to 1-1 do begin
For Act := 0 to H do
ToState[dct] := 0;
{could use stateof here}
ToState[ Action(Mates[ MateFum, Crossbit] .Iprime)]:=
ToState( Action(Mates MateNum, Crossbit].Iprime)] + 1;

ToState[ Action(Mates[ MateNum, Crossbit].Jprime)] :=
ToState[ Action(Mates[ MateNum, Crossbit] .Jprime)] + 1;

For ToStates := O to Bigl-1 do
If StateEqual(ToState,PopStates[ Tostates]) then begin
IONE [ Matenum,crossbit,tostates] := 0.5;
Writeln (DATAFILE,MateNum:3,Crossbit:5;ToState:5);
end{if}
Else
IONE [Matenum,crossbit,tostates] := 0;

End; {for}
{Done setting up IONE}

{Note here the probability of a mating scheme is the same as the
probability of two strings mating, since there is only one pair per
scheme}

For ToStates := 0 to Bigl-1 do begin

{Set up SumOverB for each mating scheme}
For MateNum := 0 to Bigl-1 do begin
SumOverB[MateNFum] := O;

For Crossbit := 0 to 1-1 do
SumOverB[MateNum] := SumOverB[MateNum] +
IONE[MateNum,Crossbit,ToStates];
end; {for Matenum}
{Done Setting up SumoverB}

For PopSt := 0 to Bigl-1 do begin
BigPSU[Popst ,TOStates] := 0;

For MateNum := 0 to Bigl-1 do
BigPSU[Popst,ToStates] :=
BigPSU[Popst,ToStates] +
MateProb[Popst ,Mates[MateNum,0] .Iprime,Mates[MateNum,0] . Jprime]
*SumOverB([Matenum] ;

End; {for Popst}
End; {For ToStates}

{Write out answer}
Writeln(DataFile);
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Writeln(DataFile,’Strst’,’ Action’);

For Strsti := O to H do
Writeln(DataFile,Strsti:5,Action(Strsti):5);

Writeln(DATAFILE) ;

Writeln(DATAFILE, ’Reproduction and crossover’):

Write (DataFile,’ )5
For ToStates := 0 to Bigli-1 do
Write (DATAFILE,ToStates:5,’ ’);

Writeln(DATAFILE) ;

Fcr PopSt := O to Bigl-1 do begin
Write (DATAFILE,PopSt:5);

Sumoverpopst := O;
For ToStates := O to Bigl-1 do begin
Write (DATAFILE,BigPSU[popSt,ToStates]*100:7:1);
Sumoverpopst := Sumoverpopst + BigPSU[popSt,ToStates]*100;
End;
Writeln(DATAFILE, Sumoverpopst:7:1};
End;

For MateNum := 0 to Bigl-1 do
For PrimeNum := 0 to BigB-1 do begin
{the following four statements are used for clarity}
Strsti := Mates[MateNum,0].Iprime;
Strstj := Mates[MateNum,0].Jprime;

Strstipri := Mates[Primellum,0].Iprime;
Strstjpri := Mates[PrimeNum,0].Jprime;
Popst := Stateof(strsti,strstj);

ToStates := Stateof(strstipri,strstjpri);

If(strsti = strstj) and (stratipri = strstjpri) then
BigPUV[Popst,ToStates] :=
(Mute[Strsti,Stratipri] * Mute[Strstj,Strstjpril)
Else
If (strsti = strstj) and (strstipri < > strstjpri) then
BigPUV[Popst,ToStates] :=
2+ (Mute[Strsti,Stratipri]*Mute[Stratj,Strstjpril)

Else
If (strsti < > strstj) and (strstipri = strstjpri) then
BigPUV[Popst,ToStates] :=
(Mute[Strsti,Strstipri]*Mute[Strstj,Strstjpril)

Else
If (strsti < > strstj) and (strstipri < > strstjpri) then
BigPUV[Popat,ToStates] :=
(Mute(Strsti,Stratipril«Mute(Strstj,Strstjpril) +
(Mute[Strsti,Strstjpri]l*Mute[Strstj,Strstipril);
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End;

{¥Write out BigPUV}

Writeln(DataFile);

Write (DataFile,’
For ToStates

J);

:= 0 to Bigl-1 do

Write(DATAFILE,ToStates:5,’ ’);

Writeln(DATAFILE);

Writeln(DATAFILE,’ Mutation’);

For PopSt

:= 0 to BigH-1 do begin

Write (DATAFILE,PopSt:5);

Sumoverpopst

For ToStates

0;
0O to Bigl-1 do begin

Write (DATAFILE, BigPUV[popSt,ToStates]»100:7:1);
:= Sumoverpopst + BigPUV[popSt,ToStates]»100;

Sumoverpopst
End;

Writeln(DATAFILE,Sumoverpopst:7:1);

End;

Closefiles;

End.
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