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Abstract

We consider adaptive sequential lossy coding of bounded individual sequences when
the performance is measured by the sequentially accumulated mean squared distortion.
The encoder and the decoder are connected via a noiseless channel of capacity R
and both are assumed to have zero delay. No probabilistic assumptions are made on
how the sequence to be encoded is generated. For any bounded sequence of length
n, the distortion redundancy is defined as the normalized cumulative distortion of
the sequential scheme minus the normalized cumulative distortion of the best scalar
quantizer of rate R which is matched to this particular sequence. We demonstrate
the existence of a zero-delay sequential scheme which uses common randomization in
the encoder and the decoder such that the normalized maximum distortion redundancy

~1/5

converges to zero at a rate n log n as the length of the encoded sequence n increases

without bound.

Index Terms: Lossy source coding, scalar quantization, sequential prediction, individual

sequences.
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1 Introduction

In a widely used model of lossy source coding, an infinite sequence of real-valued source
symbols z1, 2y, ... is transformed into a sequence of channel symbols y;, ys,... (assumed to
take values from a finite alphabet) which are transmitted through a noiseless channel. The
received sequence of channel symbols are then used to produce the reproduction sequence
Z1,Z9,.... Such a system is called causal if the reproduction of the current source symbol
depends on the present and past source symbols, but not on the future ones. In general,
very little is known about the optimum performance theoretically attainable (OPTA) for
causal coding of probabilistic sources. For the special case of a stationary and memoryless
source Neuhoff and Gilbert [1] showed that the OPTA function of causal codes is achieved
by time-sharing of entropy coded scalar quantizers.

A requirement more restrictive than causality is that of zero delay. A lossy coding scheme
is said to have zero delay if each channel symbol v, depends only on the past and present
source symbols z1, ... , z, and the reproduction Z, for the present source symbol z,, depends
only on the channel symbols ¥, ... ,y, received so far. Zero-delay schemes have an obvious
advantage over other coding methods (such as block codes) in applications where decoding
delay is a crucial factor. For memoryless sources it has been shown by Ericson [2| and
Gaarder and Slepian [3] (see also [4]) that the zero-delay OPTA function is achieved by the
optimal (Lloyd-Max) scalar quantizer for the source.

In this work, we consider the problem of zero-delay source coding in a deterministic
setting. Inspired by recent work on prediction of individual sequences, we study zero-delay
sequential quantization of individual sequences. In this setting, it is not assumed that the
source is generated by an underlying probabilistic mechanism. In general, the goal is to
construct a single zero-delay scheme whose cumulative distortion on every bounded sequence
is very close to that of the best scheme for the given sequence within a family of fixed zero-
delay schemes. The probabilistic analogue of this problem is the problem of zero-delay
universal coding with respect to a given class of sources.

Although lossless sequential source coding has been extensively studied (see Merhav and
Feder [5] for am extensive survey), there seem to be no results available concerning its lossy
counterpart we consider here. One main difficulty with the lossy case is that, unlike in
the lossless case, the decoder does not have access to the past source outputs. Therefore
the well-developed arsenal of universal lossless coding and sequential prediction cannot be
directly applied.

In this paper we investigate the possibility of zero-delay lossy coding of individual se-
quences. Our main result in Section 2 describes a zero-delay sequential adaptive coding



scheme which, asymptotically, achieves a cumulative mean squared distortion achieved by
the best scalar quantizer of a given rate matched to the actual bounded source sequence.
In other words, the proposed method has to compete sequentially with an “anticipating”
scheme that sees the entire sequence in advance and chooses the best scalar quantizer for
this sequence. The construction builds on techniques developed in the theory of prediction
of individual sequences, namely, it uses an appropriately modified version of the exponential
weighting method of Vovk [6]. The proposed method requires common randomization in the
encoder and the decoder. Some aspects of common randomization are discussed in Section 3.

Admittedly, the special class of reference methods (i.e., the family of all fixed-rate scalar
quantizers) limits the scope of this result, but it is still of interest, especially in view of the
previously cited results of Ericson [2] and Gaarder and Slepian [3]. To our knowledge this is

the first result concerning zero-delay sequential lossy coding of individual sequences.

2 Problem Formulation and Results

A (randomized) zero-delay sequential source code of rate R = log M (where M is a positive
integer and log denotes base 2 logarithm) is described by an encoder-decoder pair which are
connected via a noiseless channel of capacity R. It is assumed that both the encoder and
the decoder have access to a common sequence of random variables {U;}°,, where each U;
is uniformly distributed on the interval [0,1]. (Note that the U; need not be independent.)
The input to the encoder is a sequence of real numbers x1,x,,... assumed to be bounded
such that z; € [0,1] for all 4 > 1. (One could more generally assume that each z; is in a fixed
interval of length B, but since squared error distortion will be considered, the choice x; € [0, 1]
does not limit generality.) At each time instant ¢ = 1,2,..., the encoder observes z; and
the random number U;. Based on z;, U;, and the past input values ' 1 = (21,...,2; 1),
the encoder produces a channel symbol y; € {1,2,... , M} which is then transmitted to the
decoder. After receiving y;, the decoder outputs the reconstruction value z; based on U; and

the channel symbols 4™ = (y1, ... ,yn) received so far.
More formally, the code is given by a sequence of encoder-decoder functions { f;, g:}52;,
where
fii 0,17 x [0,1] = {1,2,..., M}
and

g {1,2,..., M} x [0,1] — [0,1].



so that y; = f;(2%,U;) and 7; = ¢;(v*,U;), i = 1,2,.... Note that there is no delay in
the encoding and decoding process. The normalized cumulative squared distortion of the

sequential scheme at time instant n is given by

i=1

where the dependence of D,, on the randomizing sequence is suppressed in the notation. The

expected cumulative distortion is

_ 1 — N
=1
where the expectation is taken with respect to the randomizing sequence U™ = (Uy, ... ,Uy,).

An M-level scalar quantizer () is measurable mapping R — C, where the codebook C is a
finite subset of R with cardinality |C| = M. The elements of C are called the codepoints. The
instantaneous squared distortion of @ for input z is (z — Q(z))?. A quantizer Q is called a
nearest neighbor quantizer if it satisfies

(@) - 2)* = min(z - 1)°
for all z. It is well known that if () is a nearest neighbor quantizer and @ has the same
codebook as @, then (Q(z) — z)? < (Q(z) — z)? for all z. For this reason, we will only
consider nearest-neighbor quantizers. Also, since we consider sequences with components in
[0,1], we can assume without loss of generality that the domain of definition of @ is [0, 1]
and that all its codepoints are in [0, 1].

Let Q denote the collection of all M-level nearest neighbor quantizers. For any sequence
z", let D} (z") denote the minimum normalized cumulative distortion in quantizing 2" with
an M-level scalar quantizer, that is, let

1

D(2") = min— 3@, — Q(:))".

Qean

=1

Note that to find a Q € Q achieving D?(z") one has to know the entire sequence z" in
advance. The next theorem asserts that there exists a zero-delay sequential source code of
rate R which, for any bounded input sequence, performs asymptotically as well as the best
scalar quantizer of rate R matched to the entire sequence.



Theorem 1 For any R =log M there exists a randomized zero-delay sequential source code
{fi, 9}, of rate R whose expected normalized cumulative distortion D, (z") satisfies, for
all ™ € [0,1]",

Dy(2") = Dy (a") < Cnlogn, (1)

where C' is a constant independent of n and x7. In particular,

limsup max (ﬁn(x") - D;(x")) <0.
n—oo T"€[0,1]”
To prove the theorem we first consider the case of sequential coding of sequences of a
fixed finite length.

Proposition 1 For anyn > 1 and R = log M there exists a randomized zero-delay sequen-

tial source code {fi(ﬁ),gi(ﬁ) " of rate R for coding sequences of length n such that for all

n <7 and for all z" € [0,1]",
nD,(z") < nD?(z") + cii*/® log 7 (2)
where ¢ is a positive constant which does not depend on n.

Proposition 1 demonstrates the existence of a zero-delay scheme for sequentially coding
sequences of length n which are asymptotically (for large n) efficient. To see this, let n =7
in Proposition 1. Then for any n > 1 there exists a sequential code for sequences of length
n such that for any z" € [0, 1],

D,(z") < D:(2") + cen YPlogn . (3)

Note that codes achieving (3) depend on the length n of the sequence to be encoded and
therefore Proposition 1 does not directly imply the existence of a single sequential code
{fi, g:}2, capable of coding sequences of arbitrary length and achieving (1). The following
proof exhibits a simple construction of a sequential code {f;, g;}3°; which satisfies Theorem 1
using the finite-length codes of Proposition 1. The proof is inspired by a similar trick in [7].

Proof of Theorem 1 For any i+ = 1,2,..., let [ be a nonnegative integer such that
2! <4 < 2!*1. Now use the codes {fi("), ggn) | of Proposition 1 with 7 = 2! to define f; and
gi by

. i .
Yi = fi(xza UZ) = fi(EQ)l_{_l(xEIa Uz)



and

= i ! i
Ty = g’t(y aUz) = 9532)14_1 (lea Uz)

! = (24,...,2941_;) are independently encoded

That is, for [ = 0,1,..., the segments x%jﬂ
using the code { fi@l), gzgzl)}?l:l. The resulting sequence {f;, g;}$2, is clearly a sequential code
in the sense of Theorem 1.

To bound the cumulative distortion, for any 1 < j < k, welet D(z%) = E Zf:j (z; — 7;)?
and also define D*(z¥) = mingeg Zf:j (z; — Q(z;))?. Note that for all j < k' < k, one has
D*(2z¥ ') + D*(a}) < D*(2%). Therefore Proposition 1 implies that for all n such that

om < p < 2L

-1

3

D(ay" ") + D(m)

nDy,(z") =

|
g

3

IN

(D* (x21+1_1) + 0(21)4/5 log 2[)

2l

o~

o

+ D*(23) + ¢(2™)*/ log 2™

D*(2") + > c(2)* log 2"
=0

IN

IN

D*(z") 4+ clog 2™ 2(21)4/5
1=0

(N m2(m+1)%_1
= nD;(z") + clog2™ ——F——
25 —1

< nD:(z") + Cn5logn

where C' = ¢2%/°/(2%/° — 1) < 2.35c. We conclude that for all n > 1 and 2" € [0,1]", the

normalized cumulative distortion of the sequential scheme is upper bounded as
D, (z") < Di(z™) + Cn~"/logn

which proves Theorem 1. O

Proof of Proposition 1 Let Qy = {Q1,...,Qn} be a fixed but arbitrary collection of
M-level nearest neighbor scalar quantizers such that the codepoints of each (Q; are inside
[0,1]. Fix 2" € [0,1]®, and for n = 1,... , 7, let

n

L} =) (i — Qi)

i=1



and set Lg = 0. To simplify the description of the code, let us first construct a hypothetical
coding scheme in which both the encoder and decoder have access to the values L7, j =
1
weighting method of sequential prediction, (see, e.g., Vovk [6], Littlestone and Warmuth [8],
and Cesa-Bianchi et al. [7]). Let n > 0 be fixed and for n =1,... 7, define the weights

,..., N, at each time instant n. The hypothetical scheme uses the well-known exponential

n—1
e~
M=

Y N _ Ln—l
Zm:le MIm

(note that E] 1 A7 = 1). At time n, the encoder uses the random number U, and the

weights A} to generate the random index J, € {1,..., N} with distribution
Pr{J,=j} =X, j=1,...,N.

Then the encoder picks the quantizer (), to encode z,, and transmits the channel symbol
representing the quantizer output Q) (z,). After receiving this channel symbol, the decoder
outputs @, () (note that since the decoder has access to U, and the A7, it can also generate
In)-

The expected normalized cumulative distortion of the hypothetical scheme (denoted by
d,(z™)) is given by

CACOIES oY NS O 95 91 2 Pr(J; = j)

i=1 j=1
= —ZZ/\’ — Qj())*. (4)
=1 j=1
In the Appendix we show that for all n > 1,
— In N m)
n < _r
ndp, (z") 12rj11<n]\7 L + e +t3- (5)

Moreover, a simple argument presented in Lemma 2 in the Appendix shows that for each
N > 2, there exists a collection of M-level nearest-neighbor quantizers Qn = {Q1,... ,@Qn},
supported in [0, 1], such that for all z" € [0, 1]",

n n 1

. 2 . 2
QHEHQI}V i=1 (xl - Q(xZ)) = glellgl i=1 (371 - Q(xz)) * an/M -1

(6)

Using this Qy in the definition of the hypothetical scheme, we can rewrite (5) as

= . n 1 InN nn
ndn(x)gnDn(m)+an/M_1+ p —|—§. (7)

6



Construction of sequential scheme
The bound (7) implies that n and N can be chosen (as functions of ) such that the

cumulative distortion of the hypothetical scheme satisfies
nd,(z") < nD}(z") + O(d'/*logn).

To achieve this, however, the hypothetical scheme has to transmit the values of L;, ] =
1,...,N at all time instants ¢, which requires an additional channel of infinite capacity
between the encoder and the decoder. The basic idea for constructing a sequential scheme of
true rate log M is to periodically transmit approximate (quantized) versions of the cumulative
quantizer losses L; and to use these approximations to form the approximate weights X; at
the decoder. We show that using only a small fraction of the overall available rate to transmit
the quantized cumulative distortions, the :\\; will sufficiently well approximate the /\j- so that
the difference between the distortion D, (z") of the resulting sequential scheme and the
distortion d,(z") of the hypothetical scheme becomes negligible for large n.

To describe the scheme, let {n;; = 1,2,...} be a strictly increasing sequence of positive
integers such that n; = 1. Let K > 1 be a fixed integer and let gx denote the K-level

uniform quantizer over [0, 1]. Introduce *
by = [Klogy ] .

For any [ > 1, if b; < m;41 — ny, then in the time interval ¢ = n;,... ,n; 41 — 1, the encoder
transmits losslessly the values of Z, = gk (z,), r = 1,...,n; — 1, using the first b; of the
available n;,; — n; channel uses. (Note that this is possible since the number of different

ways of partitioning n; — 1 points into K cells is not greater than n/.) In these time instants

(for i = ny, ... ,n+ b — 1) the decoder’s output is set to a constant value (say z; = 1/2). In
the remaining time instants ¢ = n; + b;_1,... ,ni11 — 1, the encoder forms the approximate
weights
~. e—’l‘]i;_l
o= e j=1,...,N (8)
j N _ Ti—1) ) 3
Zm:l € nEm
where
n;—1
~; - ~ N2 . .
L = Z(xr—Qj(xr)) , J=1,...,N, di=mny...,nyq — 1.
r=1

Using U;, the encoder then generates the random index j; with distribution Pr{:fi =j} =
)\j-, picks @ j, to quantize w;, and transmits the channel symbol for the quantizer output

LTt] denotes the smallest integer not less than ¢, and |¢] denotes the largest integer not greater than t.

7



Q7,(z;). Observe that at the same time instants, the decoder has already access to all

T, r=1,... — 1, and thus it can simultaneously calculate )\’ for j = ,N, and
1 =mny,...,n41 — 1. Using U; and the received channel symbol, the decoder can output
7= Qg ().

If ni.1 — ny < by for some [, then the encoder is defined to be in an idle state in the
time segment ¢ = ny, ... ,n;y1 — 1 and the decoder outputs some preset constant value (say
z; =1/2).

Analysis of distortion

For i =mny,... ;1 — 1 such that n;, —ny < by, we have (x; —7;)2 < 1. If nyyy —ny > by,
then (z; —7;)? < 1fori=mny,...,n;+b—1. On the other hand, for i = n;+b;, ... ,m41—1,
we have

N
E(zi —3:)? =) (2 — Qj(:))? Pr{J; = j} = Z)\ — Qj(z:))%.
j=1

Fix n < 7 and consider the cumulative distortion at time n. Extending the definition (8) of
the approximate weights to all ¢ = n;,... , 741 — 1, we can now upper bound the expected

cumulative distortion as

n

nDy(z") = ZE(x,

n N

< Z ZB\\;(azz — Q%)) + Zn b (9)

i=1 j=1
where S, = max{l : n; < n}. First we give an upper bound for the first term of the

right side of (9) in terms of the cumulative distortion of the hypothetical scheme. Since
(Qj(x) — z)? <1 for j and z € [0, 1], equation (4) implies

30D Nl — Q) —nida(a) < 3030 IK - X (10)

=1 j=1 i=1 j=1
B ~. e—nf,;._l . e—nLi._l
Since \! = —*———=- and X} = —*———, Lemma 3 in the Appendix implies that
J N lefan J ZN L€ nLy,
m= m=
N
E | \<277 max LZ ! L}_l‘.
— 1<j<N

Now it is easy to see that for any nearest-neighbor quantizer ) supported in [0, 1] and any
z,Z € [0, 1], we have

(z - Q@))* — (& — Q(#))*] < 2|z — .

8



This implies that for all i =ny,... ,nz1 —land all j=1,... N,

n;—1 [
|L; — L3 Y@= Qi(E) =) (@ — Qj(w))’

r=1 r=1
n;— 1

S 2Z|xr xr'”"z Qg xr

r=mn;
-1
< (an ) + (g1 — )
where the second inequality follows since |z, — Z,| = |z, — ¢k (z,)| < 1/(2K). Summarizing

these bounds, we obtain

Sn Sn
— — -1
nDy(z") — nd,(z") < E b, + 2n E (N1 —my) (an + (ng1 — nl)> } (11)
=1 =1

Combining this with the bound (7) on the cumulative distortion of the hypothetical scheme,

for all n < 72 we obtain

nD,(z") —nD}(z") = (nD,(z") —nd,(z")) + (nd,(z") — nD}(z"))

S. S
+ E bl + 277 E (nl+1 - nl) ( lK + (’le_l — nl)) .

It only remains to choose the parameters n, N, K, and the sequence {n;} appropriately. We

do this by setting n; = |[*] for some a > 1 which allows us to approximately optimize the

1/a

upper bound by an appropriate choice of the constant a. In this case we have S,, &~ n'/* and

(ignoring the constants) the upper bound has the form

n In N L nn?
T /a are 2—1/a
Nl/M+ +mnn+ Kn/%logn + % +nn .

Straightforward calculation reveals that ignoring logarithmic and constant factors, the choice
that approximately minimizes this upper bound is a = 5/2, n ~ 2~ */°, K ~ 7?5 The

number of reference quantizers N must be such that N/ is bounded by a polynomial of 7

1/5

and its order is at least n Computationally it may be advantageous to choose N as small

M/5)

as possible (i.e., letting N ~ n . Resubstiting these values into the upper bound above

gives the desired result. O



3 Remarks on Common Randomization

The proposed quantization scheme has an obvious weakness: it requires that both the encoder
and the decoder dispose of the same sequence of uniform random variables Uy, Us, . ... This
assumption is not uncommon in universal quantization of probabilistic sources (see the works
of Ziv [9] and Zamir and Feder [10]) where the U; sequence represents “subtractive dither”.
In practice, these may be replaced by a pseudorandom sequence generated at both the sender
and receiver side.

Observe that the only requirement for Uy, Us, ... is that their distribution should be uni-
form. No assumption on the joint distribution of these variables is necessary for Theorem 1.
In an extreme case, as in [9], one may even take Uy = Uy = ---, that is, use the same
variable at each time instance. This has no effect on the expected behavior of the distor-
tion. On the other hand, using the same randomizing variable at all time instants hides a
danger of instability, as the true (random) distortion D, (z™) may be far from its expected
value D,(z") = ED,(z"). The next fact shows that one may avoid instability by using an

independent randomizing sequence.

Lemma 1 IfU,,U,,... are independent and uniformly distributed over [0,1], then the dis-
tortion D, (x™) of the quantization scheme of Theorem 1 satisfies, for all t > 0,

Pr{|Dn(a") — Dy(a™)] > t} < 272"

In particular, by the Borel-Cantelli lemma, combining Lemma 1 with Theorem 1 yields:

Corollary 1 Assume that a sequence of independent uniform random variables is available
at both the encoder and the decoder. Then there exists a randomized zero-delay sequential
source code { fi, gi}32, of rate R whose normalized cumulative distortion D, (z") satisfies, for
all {z;}3°, such that z; € [0,1] for all i,

: Dy (2") — Dy (a")
1 n
1;11_)5;}p n=1/5logn

<C, almost surely (12)

where C is the same constant as in Theorem 1.

Proof of Lemma 1 Recall from the proof of Proposition 1 that for all n,

n

23 (0= Qp )" - Bes - Qs a0))

‘Dn(:c”) - En(x”)‘ <

10



where the random variable j; is a function of U; and the approximate weights X;, j =
1,...,N. Since the approximate weights are deterministic (i.e., their values do not depend
on the sequence Uy, Us,..., see equation (8)), the expression on the right-hand side is an
average of n independent random variables. Now recall Hoeffding’s inequality [11] which
states that if S, = ., X;, where Xy, ..., X, are independent random variables such that
X; € [a, b] with probability one, then Pr{n 1|5, — E(S,)| > t} < 2e 20*/(~a) for all ¢ > 0.
Letting X; = (z; — in(xi))2 and [a, b] = [0, 1] yields the claim of the lemma. O

Appendix

Proof of (5): distortion of hypothetical scheme
Using a standard technique (see, e.g., Cesa-Bianchi [12]) to upper bound d,(z"), we

define W,, = Z;VZI e Then, since W; = N, on the one hand we have

W N
In—*1 = In e i —InN
h o
> ln( max e_"L?) —InN
1<j<N
= —7 11<I;_i<nNL? —InN. (13)

On the other hand, recalling that by Hoeffding’s inequality [11], for any random variable
Xel0,l]]and seR E (@SX) < eSEX)+5°/8,

n N omn(wi—Qj(z:i))? g —nLi™
Dy €T e

i=1 Z;Vﬂ e
n N
— Z In (Z )\;’,e*n(wer (%’))2)
i=1 j=1

Z In (67" e A (zi—Q; (wi))2+n2/8>
=1

IN

(by Hoeffding’s inequality)

11



2
= _HZZXA Q] -'L'z) %

i=1 j=1
= —nndy,(z") + g
Combining the preceding bound with (13) yields
_ In N
ndy(z") < min L} + or L
1<j<N n 8

Lemma 2 Let Q@ denote the family of all M-level nearest neighbor scalar quantizers whose
codepoints are all inside [0,1]. Then for all N > 2 there exists a collection of N scalar
quantizers Qn = {Q1, ... ,Qn} C Q such that for all 2™ € [0,1],

n n

1

. 2 : 2
o, 2. (2i — Q(2:))" < min 2 (i = Q)" + s —-

Proof. The statement of the lemma will follow if we can construct a @ C Q with

cardinality |Q'| < N such that for any @ € Q there is a Q' € Q' satisfying

1
max |(z = Q@) - (v = Q@) < ar—;

Toward this end, let £ = | N'/™ | and define Q) as the family of nearest neighbor quantizers
with M or less codepoints which all belong to the set

c® = {1/(2k),3/(2k),. .., (2k —1)/(2k)}.

Since for any y € [0,1] there is a ' € C%®) with |y — | < 1/(2k), it is easy to see that for
any M-level nearest neighbor quantizer @ with codepoints inside [0, 1] there is a @' € Q%)
with

1
2 12
— —(z— <.
xrg[g%\ 7= Q)" = (z - Q@) < ¢
Since |Q®)| < kM < N, the lemma follows. d

Lemma 3 Letn > 0, and for any v = (vi,... ,uy) ERY andj=1,... N, define

Aj(v) =

e~

ZIICVZI e Mk '

Then for any v,v € RY,

N
Z |<2nmax [v; — vl
— <<

12



Proof. For a € [0,1], let h;j(a) = Aj(v + a(V — v)) and let h(a) denote the derivative
of h;j(«). Then by the mean value theorem of differentiation, for some & € (0,1) we have
Aj(0) = A(v) = hy(1) = ;(0) = hj(&). Now,

N 9\,
h;-(o?) = ; 8—1):(U +a(v—0))(U; — v;)
where

N Jnx(=2y), i=

Ovi —NAjA;, i F

Therefore, by letting \; = \;(v + &(? — v)) and using the fact that Z;\le ); = 1, we obtain

| (1= A) @5 —vy) + > N(@ — vy)

[A(0) = Aj(v)]

]
< nA2(1 - ) max [7; — v
< 2, max [U; — vj|
which implies the lemma. (|
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