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Abstract

We introduce a simple new hypothesis testing procedure, which,
based on an independent sample drawn from a certain density, detects
which of k nominal densities is the true density is closest to, under
the total variation (L;) distance. We obtain a density-free uniform
exponential bound for the probability of false detection.
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1 Result

A model of robust detection may be formulated as follows: let f(V) ... (X
be fixed densities on R¢ which are the nominal densities under k hypotheses.
We observe i.i.d. random vectors Xj, ..., X, according to a common density
f. Under the hypothesis H; (j =1, ..., k) the density f is a distorted version
of f0). This notion may be formalized in various ways. In this note we
assume that the true density lies within a certain total variation distance
of the underlying nominal density. More precisely, we assume that there
exists a positive number € such that for some j € {1,...,k}

If— ]| <Ay —e,
where A; & (1/2) miny ||fV — f0)||. Here ||f — g|| = [ |f — g| denotes the

[; distance between two densities. Recall that by Scheffé’s theorem half of
the L, distance equals the total variation distance:

Lt ot
A A {x:f(x)>g(x)} {x:f(x)>g(x)}

where the supremum is taken over all Borel sets of R. Thus, we formally
define the k hypotheses by

Hy={f:|[f—f) <A —e€}, j=1,... k.

If —gll =2 sup

ACRd

Introduce the empirical measure
-l n
Hn(A) = — ; Txen

where I denotes the indicator function and A is a Borel set. Let A denote
the collection of k(k — 1)/2 sets of the form
Ay ={x:fU(x)>fVx)}, 1<i<j<k.

The proposed test is the following: accept hypothesis H; if for all 1 # j

max
AcA

0) = min m
Lf ”’“(A)‘ i=1,...k Aeajtc

L £t — un(A)‘ :

(In case there are several indices achieving the minimum, choose the small-
est one.) The main result of this note is the following:

2



Figure 1: The hypothesis classes H; are illustrated here for k = 9 with
€ = 0 on the left and € > 0 on the right. The centers of the balls represent
the nominal densities fU).

Theorem 1 For any f € U;‘zl H;

P{error} < 2k(k — 1)%e ™€*/2,

Proof. Without loss of generality, assume that f € H;. Observe that by
Scheffé’s theorem,

AR
A A

2 max
AcA

INA

1]

IN

A] — €
1 .
z||f(1) _ f())“ —€

me_J £0)
A A
Jf_J £ Jf_J £6)
A A A A

by the triangle inequality. Rearranging the obtained inequality, we get that

Jf_J £ Jf_J £0)
A A A A

INA

max
AcA

— €

< max
— AcA

+ max
AEA

— €

< max
— AcA

max
AcA

— €.




Therefore,

1 — : . () (1)
P{error} IF’{E!) > 1  max Lf wa(A)| < max Lf %(A)‘}
_ G) _ m _
< (k 1)11;3}:1?{1/33 Lf un(A)| < max Lf %(A)‘}

= (k—1)maxP {ma.x
i>1 AcA

L
Rk

AcA

J £0) — %(A)‘ — max
A

< max

A€EA AcEA

J £ — pﬂ(A)‘ — max
A

< (k—1)maXIP’{max J' f0) — uy (A)| — max J' f—J' 0 4+ ¢
i>1 AEA (A A€A |JA A
< max J 9 — . (A)| — max J f—J i }
AEA A AEA A A
(by the inequality derived above)
_ G) _ _ I O
< (k 1)nj1;a]xIF’{1/£1€ajc Lf us(A) 1/{13} Lf J'Af >2
_ M _ _ | sl s €
R = R K B
€
< — _ e
< 2(k 1)]P{r}r\1€aic Lf un(A)‘ > 2}
(by a double application of the triangle inequality)
€
< 2= DAmare { || 1= ) > 5

< 2k(k—1)2e e /2

where in the last step we used Hoeffding’s inequality [8]. O

2 Discussion

METHODOLOGY. The methodology of the proposed test is close in spirit
to Yatracos’ minimum distance parametric density estimate, see Yatracos
[10], Devroye and Lugosi [5, 6, 7].



COMPUTATION. The hypothesis testing method proposed above is com-
putationally quite simple. The sets A;; and the integrals [, f) may be
computed and stored before seeing the data. Then one merely needs to
calculate u,(A) for all A € A and compute the test statistics requiring
O(nk? +k?log k) time. In many applications k = 2. In these cases the test
becomes especially simple as the class A contains just one set.

ROBUSTNESS. Note that the theorem does not require any assumption for
the nominal densities. (In fact, the result may be formulated in a similar
fashion without even assuming the existence of the densities.) The test
is robust in a very strong sense: we obtain uniform exponential bounds
for the probability of failure under the sole assumption that the distorted
density remains within a certain total variation distance of the nominal
density.

ADDITIVE NOISE. We illustrate the power of the proposed method on a very
simple example showing that the test has an exponentially small probability
of error if the nominal density is corrupted by an arbitrary additive noise
of a sufficiently small support. Consider k nominal densities fV), ..., f(X)
and assume that the observations are distributed according to one of the
nominal densities corrupted by an additive noise. Thus, assume that the
X;'s are distributed according to density f = f(') x g, where the nominal
density 1) is now assumed to be Lipschitz (i.e., [ (x) —fV(y)| < clx —y
for some ¢ > 0 for all x,y € R), supported on the bounded set [—M, M],
and the density g of the additive noise is assumed to have support in
the interval [—r,r], where r is thought of as a small number. The other
k — 1 nominal densities are arbitrary. Then, according to the theorem, the
proposed test is correct with probability larger than 1 — 2k(k — 1)2e "€*/2
as long as ||f — fV)|| < A; — €. But

=10 = [0 otuiay - [ aiatula o

< ”H“)(x—y)—f“)(xng(y)dydx



IN

JM+T Jclylg(y)dydx

—M-—r
< 2c((M+1)r
Thus, the condition is satisfied if r is so small that r < (A; —¢€)/2c(M + 7).
This is the only assumption on the noise density g, otherwise it may be
completely arbitrary! (Note that boundedness of the support of g is not a
necessary condition; we assumed it to simplify the example.)

MAXIMUM LIKELIHOOD DOES NOT WORK. Perhaps the most standard de-
tection method is maximum likelihood, which accepts the j-th nominal
density f0) if

—Zlogf (Xe) > Zlogf (X,) foralli#j.

It is easy to show that this test does not share the proved property of the
proposed test. Indeed, consider the simple example when k = 2, and the
two nominal densities are standard normal and standard Cauchy densities,
that is,

1 1
() == e /2 and f?(x) =il
vV £TT

Assume that the data are distributed according to f = f(') x g., where the
density of the additive noise is Cauchy:

1
mic(1+ (x/c)?)’
where c is a small positive constant. It is well known (see, e.g., [4]) that
I[fD — fM x g || — 0 as ¢ — 0, and therefore, for a sufficiently small c, the
L, distance between f and f(') can be made arbitrarily small, in particular,
I —f]| < ||[f1) — f?)]||/2 — e. Nevertheless, it is easy to show that for
any small ¢, the probability of error of the maximum likelihood detector
converges to one. Indeed, on the one hand,

]E{lilogf(”(xe)} = Jf(x)logf(”(x)dx
ne=1
= —logv2 ——J x?dx

= —00,

ge(x) =



and on the other hand,

E { 1 i log f(z)(Xg)} = Jf(x) log f®(x)dx
fgrme

= —logm— Jf(x) log(1 + x%)dx

> —00.

Therefore, the strong law of large numbers implies that for sufficiently large
n, the maximum likelihood detector errs with probability one.

TESTS BASED ON DENSITY ESTIMATES. An alternative way of performing
robust detection is based on estimating the density. Indeed, such meth-
ods have been proposed in the literature. For example, Zabin and Wright
[11] investigate maximum likelihood detection based on kernel density es-
timates. Once again, it is easy to show that these methods do not achieve
the robustness of the proposed method in the sense of the theorem, and
they cannot compete with the simplicity of the proposed method. How-
ever, detection based on density estimates may be necessary if even larger
hypothesis classes need to be considered. A stronger notion of robust detec-
tion is obtained if one requires good detection whenever the true density
is closer to the nominal density than to any other density in the finite
collection. Formally, this leads to the hypotheses

Hy=(F: IF =0l <min [f = O, §=1,....k.
17)

This problem may be solved by using a nonparametric estimate f,, of f and
accepting H; if ||f, — f)|| is minimal among the ||f, — fY||, i =1,... k.
(Break ties by selecting the smallest index.) A suitable choice is the kernel
estimate defined by

b0 = =3 Kulx—Xy),
i=1

where K : R — R is a fixed kernel fuction with JK =1, h > 0is
a smoothing factor, and Ky (-) = (1/h%)K(-/h). If h is chosen such that
h — 0 and nh® — oo as n — oo, then it is well known (see Devroye and



Gyorfi [4]) that the estimate is universally consistent, that is, E||f, —f|| — 0
for any density. Also, Devroye [3] shows that for any € > 0,

P{||fn — f|| — E|[fn — f|| > €} < e ™¢*/2.

Using these properties, it is easy to see that the detection method based on
the kernel density estimate is consistent in the sense that the probability of
error converges to zero exponentially for all f € U}‘:1 H;. In order to show
this suppose that f € H;, and put

e = min||f — fO|| — [|f — 1|
i>1
Then
Plerror} < P{F > 1:[[fa — ] > [[fo — O]}
< (k= 1maxP{||fn — V] > [[fn — 0[]}
1>
< (o= TmaxP{[[fn —fl] + I = FVI] > [If = )] = [l fn — £}
>
< (k=NPR2||fn —f]| > €}
= (k—DP{||fn — ]| — E|fn — || > €/2 — E||fn — f||}
< (k= 1)e W/Ale/2-Blfn )2

where the last inequality follows from the above-mention inequality of De-
vroye [3]. The consistency of f, assures that for a sufficiently large n,
E||f, — f|| < €/4 and for such n, P{error} < (k — 1)e ™¢*/32, However, since
E|/f,, —f|| may tend to zero at an arbitrarily slow rate (see Devroye [2]), the
error exponent is not uniform: it depends on f. It is known (see Barron
[1], LeCam [9]) that for the hypotheses H; it is impossible to construct a
test with a uniform error exponent.
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