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Abstract

We study the statistical properties of three estimation methods for a model
of learning that is often �tted to experimental data: quadratic deviation
measures without unobserved heterogeneity, and maximum likelihood with
and without unobserved heterogeneity. After discussing identi�cation issues,
we show that the estimators are consistent and provide their asymptotic dis-
tribution. Using Monte Carlo simulations, we show that ignoring unobserved
heterogeneity can lead to seriously biased estimations in samples which have
the typical length of actual experiments. Better small sample properties are
obtained if unobserved heterogeneity is introduced. That is, rather than es-
timating the parameters for each individual, the individual parameters are
considered random variables, and the distribution of those random variables
is estimated.



1 Introduction

A traditional view of equilibrium behavior is that it results from the intro-
spection of rational players. As Fudenberg and Levine (1998) point out, this
view has \nontrivial conceptual and empirical problems". Learning models
are increasingly becoming an alternative foundation for equilibrium theory.
A problem with this approach is that the predictions are very sensitive to the
precise description of the model1. However, once (and if) the learning behav-
ior of real agents is pinned down, the predictions of these models need not
be less sharp than the full rationality alternatives. It is therefore important
to �nd which learning model is empirically better founded.

One natural way to start this search is to estimate the models from �eld
data. However, the structure of real life games is typically not well known,
and there are many sources of dynamics besides learning. Thus, the use of
�eld data requires to make a number of identifying assumptions that could
confound the estimation of learning parameters. One useful alternative is to
estimate learning models from experimental data. For one thing, the games
played by laboratory agents are quite tightly controlled. Also, the subjects
are often required to play the same exact game with di�erent opponents over
time, so the main (or only) source of dynamics is the learning process.

The purpose of this paper is to provide tools for the estimation of the form
of learning used by laboratory agents. We use a quite general speci�cation
for learning, taken from Camerer and Ho (1999) (henceforth CH). We �rst
give conditions which guarantee that the parameters are identi�ed, that is,
two di�erent parameter vectors lead to di�erent distributions for the data.
Even when the parameters are theoretically identi�ed, there may be practical
identi�cation problems. We explain these problems, as well as the conditions
for identi�cation, in terms of the underlying learning model. Basically, if the
game is simple enough, or the agents are very sharp, they will realize early
on what is the optimal way to play. Then the data will exhibit little or no
variation over time. It is not feasible to extract parameters precisely with so
little information.

We also provide conditions for consistency of the estimators, and characterize
their limiting distribution, for di�erent estimation methods (maximum likeli-
hood and quadratic deviation)2. This is not trivial because the model implies

1See, e.g. Fudenberg and Levine (1998).
2Previous work in the area (CH, Tang 1996, Chen and Tang 1998, Nagel and Tang

1998, Cabrales, Garc��a-Fontes and Motta 2000) has either failed to provide the properties
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that the distributions of the data from experiments will sometimes exhibit
substantial heterogeneity and historical dependence. The players can end up
locked into di�erent equilibria under di�erent realizations of the same un-
derlying stochastic process (that is, for the same learning parameters). The
di�erent equilibria are more likely to be attractors a priori under di�erent
parameter vectors. This implies that with positive probability the parameter
estimates will be biased even asymptotically. While the reason for this is for-
mally similar to the familiar unit-root problem of economic time series3, the
particularities of the data are such that the usual solutions for the unit-root
problem will not help here4.

We also study the properties of the estimators in small samples using Monte
Carlo simulations. When the length of the sample is from 30 to 50 periods
(a usual length of actual experiments) the estimators are seriously biased.
Given this problem, we propose and study an alternative method for under-
standing the learning behavior of experimental subjects. Rather than trying
to estimate the learning coeÆcients of each individual, one can assume that
these learning parameters are themselves random variables and estimate their
distribution, that is introduce unobserved heterogeneity in the model. Unlike
the individual learning coeÆcients, the parameters for their distribution can
be estimated with small or no biases, even in small samples. However, we
have assumed a particular distribution for the learning coeÆcients, and we
have not explored exhaustively the parameter spaces for those distributions.

The structure of the paper is as follows. We �rst give some background
on learning models in section 2. Then we describe the experience-weighted
attraction learning model (CH model) in section 3. The identi�cation con-
ditions and the asymptotic properties of this model are described in section
4. The small sample analysis is performed in section 5. The paper ends with
some conjectures on directions for further research.

of the estimators or has not done any statistical inference on the estimates provided.
3The problems caused by unit roots in standard economic models are not related to

consistency, but rather to non-standard asymptotic distributions of the estimates of other
parameters.

4We propose as an alternative to make the parameters of the model random, and
estimate their distribution. This is the same solution we use to deal with small sample
problems (as the problem is conceptually similar).
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2 Some learning models and experimental ev-

idence

Most of the learning models that have been considered in the literature as-
sume that strategies (actions) that have given the agents higher payo�s in the
past are used more frequently in the future. Within this general perspective,
two strands of models stand out particularly. In the �rst type of model the
agents choose the best strategy, given some average of past behavior of the
other players. This includes models like �ctitious play (Brown 1951, Robin-
son 1951) or best response dynamics (Cournot 1971, Matsui 1991). The
alternative assumption, used for example in the learning by reinforcement
model (Bush and Mosteller 1951, Cross 1973, Roth and Erev 1995), is that
agents choose their strategies with probabilities that are roughly in propor-
tion to some average of past payo�s. This model in turn is related to the
replicator dynamics of evolutionary game theory (Taylor and Jonker 1978),
as B�orgers and Sarin (1997) have shown.

The model of CH uni�es the two types of models with a relatively parsi-
monious speci�cation5. For this reason we use the CH model to showcase
the econometric methods. Strictly speaking the \best responsive" models
are only limiting cases (when one of the parameters goes to in�nity) of CH.
On the other hand, the pure version of learning by reinforcement is in the
strict interior of the parameter set. We will �nd, however, that the degree
of dependence of the stochastic process of (the pure version of) learning
by reinforcement or �ctitious play is very high. So much, in fact, that the
asymptotic properties of the estimators in those cases are poor.

We will now formally describe the models. We have an I-player game, where
each player i has Ni strategies. Let s

j
i be the strategy j of player i, si(t) de-

notes the strategy played by player i at time t. s(t) = fs1(t); s2(t); : : : ; sN(t)g,
is the strategy pro�le of all the players at time t, and
s�i(t) = fs1(t); : : : ; si�1(t); si+1(t) : : : ; sN(t)g is the strategy pro�le of players
other than i at time t. The payo� function for a player i using strategy j
against a strategy pro�le s�i for the other players is denoted �i(s

j
i ; s�i).

The probability that strategy sji 2 Si is chosen by agent i at time t + 1,
conditional on s(t); : : : ; s(0) is denoted by P j

i (t + 1), that is, P j
i (t + 1) �

5Cheung and Friedman (1997), Mookherjee and Sopher (1997) and Blume, DeJong,
Neumann and Savin (2000) also encompass belief learning with reinforcement learning
models. Although their models are not identical to CH, they are close enough to conjecture
that our results should mostly apply to these models as well
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P (si(t+ 1) = sji js(t); : : : ; s(0)).

One popular learning model that has been �tted to the data is called learning
by reinforcement (LR) model (see Roth and Erev 1995). Let I(sji ; si(t)) be
an indicator function that is 1 if strategy j was used by agent i at time t and
0 otherwise and Aj

i (t) is the \propensity" to play strategy j.

Aj
i (t) = �iA

j
i (t� 1) + I(sji ; si(t))�i(s

j
i ; s�i(t))

where �i is a parameter that measures how past information is discounted.

Notice that a strategy which is not played does not increase its \propensity".
The learning model predicts that strategy j for player i will be played with
probability

P j
i (t+ 1) =

Aj
i (t)PNi

k=1A
k
i (t)

:

The parameter �i (as well as the initial propensities Aj
i (0)) has been esti-

mated (see for example Cabrales, Garc��a-Fontes and Motta 2000, or Chen
and Tang 1998) by minimizing on a grid the quadratic deviation measure

QDM =
IX
i=1

NiX
j=1

TX
t=1

(I(sji ; si(t))� P j
i (t))

2

IT
PI

i=1Ni

:

The higher the initial propensities, the more important initial play in the
resulting outcomes.

Another quite popular model in the literature is the model of �ctitious play
(Brown 1951, Robinson 1951). In �ctitious play agents best respond to their
beliefs, which are formed by doing a simple average of past behavior by the
opponents. A related model is the best-response dynamics, in which agents
best respond to the behavior of the opponent in the last period. Cournot
(1971) already has a description of oligopoly behavior in those terms. For
more recent uses of the dynamics in game theory see Matsui (1991). More
formally, assume that each agent i forms beliefs about the probability that
her opponents k will use strategy sjk, which we denote by ŝjik(t),

ŝjik(t) = (1� �i(t))ŝ
j
ik(t� 1) + �i(t)I(s

j
k; sk(t))

where �i(t) = �i + �i=t. Denote by ŝik the vector of beliefs of player i about
the strategies used by player k, and ŝ�i the vector of beliefs of player i about
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all other players. Let BRi(ŝ�i(t)) be the set of best responses of agent i to
ŝ�i(t). Then

P j
i (t + 1) =

8<
:

1 if j = BR(ŝ�i(t))
0 if j =2 BR(ŝ�i(t))

ji if j 2 BR(ŝ�i(t)) and j 6= BR(ŝ�i(t))

so that we have �ctitious play strictly speaking when �i = 0, �i = 1 for all i;
and best response dynamics when �i = 1, �i = 0.

The parameters �i and �i as well as the initial beliefs ŝ�i(0), are also typically
estimated with a grid from 0 to 167

Two things should be noted about the results obtained so far in the two kinds
of studies. The �rst thing is that in general, the \best responsive" models
have a quite higher QDM than the reinforcement models (see Chen and
Tang 1998 and Tang 1996, Cabrales, Garc��a-Fontes and Motta 2000) which
warrants the conclusion that �ctitious play is not a good representation in
general for the way in which real agents learn and that the reinforcement
model seems more adequate.8

The other observation is that in general the forgetting parameter �i has an
intermediate value (neither 0 nor 1). This is important since the \pure"
models with �i = 1 are very popular, but we cannot provide asymptotic
results for them. The parametric restrictions we use to study the properties
of the estimators does not seem then to be a problem given the real behavior
of agents.

Although the analysis in CH is quite general, as it encompasses the mod-
els we just described, not all learning models can be incorporated in their
framework. A particularly important exception is that of games with a con-
tinuum of actions. One could in principle extend mechanically the model by
discretizing the strategy space and then applying CH. But this would miss
important e�ects produced by the structure of some games. For example,
CH (like learning by reinforcement) does not reinforce strategies that have

6The players are typically never indi�erent between actions 0 or 1, so  does not have
to be estimated.

7For papers where this model is estimated, see Tang (1996), Cabrales, Garc��a-Fontes
and Motta (2000), Sefton (1999). Boylan and El-Gamal (1993) using a Bayesian approach
try to discriminate between best response dynamics and �ctitious play.

8Sefton (1998) estimates another variant of �ctitious play with mistakes and he obtains
adequate results to explain the experimental data of Clark, Kay and Sefton (1999). He
does not compare his results with those for other learning models, however.
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not been used in the last period. But strategies that are \close" to the one
chosen should probably not be treated equally, and this is specially impor-
tant in games with a continuum of strategies. Armantier (1999) generalizes
learning by reinforcement for auctions and then proposes a robust estimation
method. Crawford (1995) and Broseta (2000) propose and estimate adaptive
learning models for coordination games in which the best response of a player
only depends on a summary statistic of other players' behavior9.

3 The experience-weighted attraction learn-

ing model

In the model of Camerer and Ho (1997), the probabilities that strategy sji 2
Si is chosen by agent i at time t+1, conditional on s(t); : : : ; s(0) is now given
by10:

P j
i (t+ 1) =

e�iA
j
i (t)Pmi

k=1 e
�iAki (t)

where Aj
i (t) is the \attraction" of strategy j for agent i at time t, which is

given by:

Aj
i (t) =

�iNi(t� 1)Aj
i (t� 1) + [Æi + (1� Æi)I(s

j
i ; si(t))]�i(s

j
i ; s�i(t))

Ni(t)
:

In this formula I(x; y) denotes the indicator function which is 0 if x 6= y and
is 1 if x = y, and Ni(t) is a variable that is used to express the importance
of past experience and is recursively de�ned by

Ni(t) = �iNi(t� 1) + 1; t � 1:

the variables Ni(t) and Aj
i (t) are started with some initial values Ni(0), and

Aj
i (0).

Let F j
i (s(t)) = [Æi + (1� Æi)I(s

j
i ; si(t))]�j(s

j
i ; s�i(t)), then one can also write:

9We have concentrated on the econometric issues of learning dynamics. A complemen-
tary strategy is followed by Haruvy and Stahl (1998). They have studied the way in which
experimental subjects make their decisions on the �rst round of play.

10This expression makes the model similar to a multinomial logit or probit model. How-
ever, notice that unlike in those models, these probabilities are not derived from the
distribution of some noise term in a more fundamental behavioral equation.
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Aj
i (t) =

Pt�1
k=0 �

k
i F

j
i (s(t� k)) + �tiN(0)Aj

i (0)

�tiN(0) +
Pt�1

k=0 �
k
i

:

In order to understand the meaning of the di�erent elements of the model
and the coeÆcients, notice �rst that the attractions are related to the payo�s.
This means that when �i is large, small di�erences in (expected) payo�s lead
to large di�erences in the probabilities that strategies are played. For this
reason, large values of �i will make the model be more like �ctitious play
or best response, which put weight only on the \best" strategy, rather than
learning by reinforcement, which put weight roughly in proportion to payo�s.
Strictly speaking, the model is exactly like �ctitious play only if �i =1, but
for practical purposes there will not be much di�erence in behavior for high
values of �i.

The parameter Æi regulates how much more the payo� of the strategy that
has actually been played in a given period gets incorporated in the attraction
with respect to strategies that have not been played. With Æi = 0 only the
strategy that has actually been played gets its payo� incorporated in the
attractions (as it happens, for example, in learning by reinforcement) . With
Æi = 1 (as in best reply or �ctitious play) the payo�s to all strategies (given
the strategy played by the opponent in the present period) get incorporated
in the attractions.

The parameters �i and �i tell us how much the past is discounted when
updating attractions. When �i = 1 and �i = 1, we have a model like �ctitious
play which gives all periods the same weight, whereas �i = 0 and �i = 0 is
more like best reply which reacts only to last period's experience.

Summarizing �i = �i = 1, Æi = 1, �i = 1 for all i gives us �ctitious play
�i = �i = 0, Æi = 1, �i = 1 gives us best reply, and �i = �i = 0, Æi = 0,
�i = 1 gives us learning by reinforcement. In general �i = �i, and Æi = 1
gives us some kind of geometric-weighted belief model.

Let �i = (�i; �i; Æi; �i; Ni(0); A
j
i (0)), the vector of individual parameters of

this model and � = (�1; �2; : : : ; �I). The vector � can be estimated by
minimizing a function

Qn(s(1); : : : ; s(n); �) = n�1
nX
t=1

q(s(t); A(t� 1); �)

7



where the function

q(s(t); A(t� 1); �) =
JX
j=1

miX
i=1

[I(sji ; si(t))� P j
i (t)]

2

in the case of minimum quadratic deviations or

q(s(t); A(t� 1); �) = �
JX
j=1

mjX
i=1

[I(sji ; si(t)) logP
j
i (t)])]

in the case of maximum likelihood.

In order to distinguish this two cases we will call QQ
n (s(1); : : : ; s(n); �) the

function that uses the minimum quadratic deviation, andQL
n(s(1); : : : ; s(n); �)

the function that uses the maximum likelihood. In the remainder we will as-
sume that the parameter space B is restricted so that B is a compact set.
This is true for example if there is a value � <1, such that � � �i � 0 for all
i. The other parameters have natural bounds, so that 1 � Æi � 0; 1 � �i � 0
and 1 � �i � 0: But we also assume (as we will see, this is also important
for our results) that there exists a � < 1, such that � � �i � 0:

4 Asymptotic properties of the estimators

4.1 Identi�cation

One problem with nonlinear models is that it is not always clear if the pa-
rameters are identi�ed. We say that the parameter vector is identi�ed, if
for any two � 6= � 0 there are realizations of the stochastic process fs(i)g1i=0
which have positive and distinct probability under � and � 0. We will now
show that under some mild restrictions on the parameters and the game, the
model is identi�ed. However, we will see that in some circumstances where
the restrictions are satis�ed, there can be a practical identi�cation problem.

Proposition 1. Let �� be the true parameter vector. Then �� is identi-
�ed, provided that for all i; Æ�i 6= 1; N�

i (0) 6= 1=(1 � ��i ), and that there
exists a strategy pro�le s��i, such that for some agent i and strategies j�; k�;

�i(s
j�

i ; s
�
�i) 6= �i(s

k�

i ; s
�
�i):

Proof: See appendix A.
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The reasons why the assumptions are needed are easy to see. With Æ�i = 1;
we have a \belief"-based model. Suppose that all strategies for some player
are such that the payo� is independent of the other player's behavior. Then
the belief about its payo� is independent of the \discount"-factor �i; which
would not be identi�ed11. If N�

i (0) = 1=(1���i ), then N
�
i (t) is a constant and

therefore only ��i =N
�
i (t) is identi�ed. Identical payo� functions for all strate-

gies (�i(s
j
i ; s

�
�i) = �i(s

k
i ; s

�
�i): for all i; j; k) also create some identi�cation

problems, but this is not a very interesting case to study anyway.

But near non-identi�cation problems can arise in other cases. When ��i 6= 1,
N�
i (t) tends to a constant as t goes to in�nity, which then multiplies ��i , so

that only the product ��i =Ni(t)
� can be identi�ed in the limit. If ��i is close

to 0, this convergence is very fast, which might give numerical identi�cation
problems even in small samples12.

Another problem that is not addressed in the theoretical result is that \best
responsive" dynamics can also lead to identi�cation problems. Suppose that
one strategy is strictly dominant (or is a unique best response given initial
attractions). Then, that is the only strategy that will be played, irrespective
of the values of ��i ; or Æ

�
i which would not be identi�ed. This problem does

not arise in Proposition 1 because we have already assumed that ��i 6= 1,
and thus excluded the case. However, for practical matters a high value of
��i can also create serious identi�cation problems (which typically show up
in slow convergence of the estimation).

4.2 Consistency

The estimators �̂Qn and �̂Ln are consistent estimators of �. To see this we
�rst have to show that a sequence of minimizers of the expectation of the
Qk
n(s(1); : : : ; s(n); �) function converges to the true vector of parameters,

��13.

11This also requires that ��i = ��i and (Aj
i (0))

� = �i(s
j
i ; s�i), for exact nonidenti�cation,

but in practice, Æ�i = 1 is enough as the e�ect of N�

i (t) goes away very fast when ��i 6= 1:
12In our Monte Carlo simulations we only estimate �i, Æi and �i, since we were unable

to estimate �i or Ni(0) with any reasonable precision. For practical purposes this is not a
very serious shortcoming of this model, since only the �rst three parameters have a clear
economic interpretation.

13This result assumes, as we always do in this paper that the CH model is the true data
generating process. Nevertheless the results in this section go through even if the model is
misspeci�ed, provided that one interprets then �� as the value of � which minimizes the
KLIC (Kullback-Leibler Information Criterion). See e.g. White (1996).
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Lemma 1. Denote by �� the true vector of parameters, then

�� = argmin�E(Q
k
n(s(1); : : : ; s(n); �), for all k 2 fQ;Lg.

Proof: See appendix A.

Another necessary intermediate step is to show that the stochastic process
s(t) is �-mixing.

De�nition 1. Let (s(t))t2R be a stochastic process on (
;F ; P ). Let F i
1

be the �-�eld generated by sequences (s(1); : : : ; s(i)) and F1
k be the �-�eld

generated by sequences (s(k); s(k + 1); : : :). De�ne

�(l) = sup
k2N

supfjP (F \G)� P (F )P (G)j : G 2 Fk
1 ; F 2 F1

k+lg;

�(l) = sup
k2N

supfjP (F jG)� P (F )j : G 2 Fk
1 ; F 2 F1

k+l; P (G) > 0g:

If �(l) (�(l)) goes to zero as l approaches in�nity, we call the process �-mixing
(�-mixing). Notice that every �-mixing process is �-mixing.

Lemma 2. The process (s(t))t2R is �-mixing of size �r=(r � 1), for r > 2:
That is, the sequence �(j) is O(m��) for some � > r=(r � 1):

Proof: See appendix A.

We use in this proof the fact that � < 1: Without this condition the s(t)
process need not be mixing. To see why, consider a one-player, two-strategy
game with �i(s

j
i ; s�i(t)) = 1; for the two strategies. Let s(t) be de�ned by

the limiting case that �1 = 1 and also that �1 = 1; Æ1 = 0; �1 = 1:

De�ne zu;t = (s(u); s(u+1); :::; s(t)); and let z1;k such that s(1) = ::: = s(k) =
1; and z01;k such that s(1) = ::: = s(k) = 0: Let also Nzk+1;l be the number of
times that strategy 0 is used between times k and k + l:

Then we have that

P (s(k + l) = 0jz1;k; zk+1;l) = exp(
Nzk+1;l + k

k + l
� 1)

and

P (s(k + l) = 0jz01;k; zk+1;l) = exp(
Nzk+1;l

k + l
� 1):

Thus
P (s(k + l) = 0jz1;k; zk+1;l)

P (s(k + l) = 0jz01;k; zk+1;l)
= exp(

k

k + l
)
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Therefore since we can make k = l we have sets F and G; such that for some
constant K

sup
k2N

supfjP (F \G)� P (F )P (G)j : G 2 Fk
1 ; F 2 F1

k+lg > K

and the process is not mixing.

As one can easily see the problem is that the de�nition of mixing requires
that the weight of observations of the process that are more than l periods
in the past have to go to zero as l goes to in�nity independently of the total
amount of time that the stochastic process has been running (k+l ). But when
�i = 1, then the weight of any l observations in the conditional probabilities
is precisely their weight in the total length of time that the game has been
played.

Proposition 2. The estimators �̂Qn and �̂Ln are consistent estimators of ��14.
That is

j�̂Qn � ��j ! 0 i:p: as n!1

j�̂Ln � ��j ! 0 i:p: as n!1

Proof: Lemma 1 shows that �� = argmin�E(Q
k
n(s(1); : : : ; s(n); �), for all

k 2 fQ;Lg, so by theorem 7.1 (p. 81) in P�otscher and Prucha 1997, the
result follows provided the following conditions hold:

1. The process s(t) is de�ned in a subset of Rp, and the parameter space
B is a compact metric space.

2. The process s(t) is �-mixing.

3. The function qk(s(t); A(t� 1); �) is continuous.

4. supn n
�1
Pn

t=1Ejs(t)j <1:

Conditions 1 and 4 are satis�ed by the �niteness of the strategy spaces we
consider and the limits we impose on the parameters. Condition 2 is ver-
i�ed in Lemma 2. Condition 3 is easily veri�ed by inspection of function
q(s(t); A(t� 1); �):�

14See footnote 13.
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The problem with �i = 1 is akin to the one of a time series having a unit
root. The standard approach to solving a unit root problem is (after testing
for its existence) to do some transformation to the series, such as di�erencing
it, to estimate other parameters of the model. The type of data that we are
dealing with may create problems that cannot be solved in this way.

To see why, notice that with �i = 1 Posch (1996) shows15 that the P j
i (t)

process converges almost surely to one of the strict equilibria in a 2 � 2
coordination game. The likelihood of convergence to the di�erent equilibria
(for given starting values) is di�erent for di�erent parameters. For example,
with very high values of �i the process is very likely to converge to the
equilibrium in whose basin of attraction it starts, whereas the likelihood of
convergence to that equilibrium is less strong (but still positive) for smaller
values of �i: So observing that the process converges to that equilibrium will
yield a high estimate of �i; even if the real value is a low one (which can
be true with positive probability). Consequently the estimate of � cannot
converge in probability to its true value, and Proposition 2 would not hold.

One solution for this problem could be to use the information available from
other individuals or sessions. This is the approach we propose to deal with
the small sample problems that we uncover in section 5.

4.3 Asymptotic normality

For every k 2 fQ;Lg, let

Ck
n = E(r��(Q

k
n(s(1); : : : ; s(n); �)))j��

and

Dk
n = (nE(r�0(Q

k
n(s(1); : : : ; s(n); �)r�(Q

i
n(s(1); : : : ; s(n); �)))j��)

1=2:

Let �knmin be the minimum eigenvalue of the matrixE(r��(Q
k
n(s(1); : : : ; s(n); �))).

Proposition 3. Assume that for all k, lim infn!1 �knmin > 0: Then the
estimators �̂Qn and �̂Ln are asymptotically normal estimators of ��. That is,
for every k 2 fQ;Lg,

15Using stochastic approximation theory.
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n1=2(�̂kn � ��) = (Ck
n)
�1Dk

n�n + op(1)

with

�n ! N(0; I)

and
n1=2(Dk

n)
�1Ck

n(�̂
k
n � ��)! N(0; I)

Proof: By theorem 11.2 (p. 108) in P�otscher and Prucha 1997 the result
follows provided the following conditions hold:

1. The process s(t) is de�ned in a subset of Rp, and the parameter space
B is a compact metric space.

2. The functions qk(s(t); :A(t� 1); :) are twice continuously partially dif-
ferentiable at every point in B; and the function qk(:; :; �) is measurable
in S.

3. The sequence of estimators �̂kn satis�es j�̂kn � ��j = op(1):

4. supn n
�1
Pn

t=1Ejs(t)j <1:

5. The function r��(q
k(s(t); A(t� 1); �̂kn)) is continuous on S;B, and

sup
n
n�1

nX
t=1

E[sup jr��(q
k(s(t); A(t� 1); �̂kn))j

2] <1

6.

E(r�(Q
k
n(s(1); : : : ; s(n); �

�)) = 0

7.

lim inf
n!1

�knminE(r��(Q
k
n(s(1); : : : ; s(n); �))) > 0

8. The process (s(t))t2R is �-mixing of size �r=(r � 1), for r > 2:
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Proof: Conditions 1 and 4 are satis�ed by the �niteness of the strategy
spaces we consider and the limits we impose on the parameters. Condition 8
is veri�ed in Lemma 2. Conditions 2 and 5 are easily veri�ed by inspection
of function qk(s(t); A(t � 1); �). Condition 3 follows from Proposition 2.
Condition 6 follows from the way in which estimators are obtained. Condition
7 is an assumption of the proposition.�

Remark. It is possible that the assumption of the theorem is satis�ed
trivially, as we have not veri�ed it. In our Monte Carlo simulations we have
never encountered any invertibility problems of that matrix.

5 Monte Carlo simulations

In this section, we perform Monte Carlo simulations using the Quadratic
Deviation and Maximum Likelihood estimators. We consider two games,
the 2 � 2 coordination game studied in Cabrales, Garc��a-Fontes and Motta
(2000), based on the following payo� matrix:

Choice of B
0 1

Choice 0 2.92, 1.64 6.12, 3.62
of A 1 3.64, 5.09 3.67, 3.46

and a dominance solvable game:

Choice of B
0 1

Choice 0 8, 1 6, 3
of A 1 5, 5 3, 6

We simulate the data for 14 individuals, 7 of type A and 7 of type B. Each
period each player of type i; i 2 fA;Bg is randomly matched with a player
of type i0; i0 2 fA;Bg; i0 6= i. Initial values for the attractions are �xed as as
an average of the possible payo�s. For instance for the coordination game,
the attractions for player i 2 fA;Bg for strategy j 2 f0; 1g are:

A0
A = (2:92 + 6:12)=2

A1
A = (3:64 + 3:67)=2

14



A0
B = (1:64 + 5:09)=2

A1
B = (3:62 + 3:46)=2

We choose the attractions for the dominance solvable game in a similar way.

We will only estimate �i, Æi and �i for the learning models (we were not able
to solve the identi�cation problems for �i and the initial value for Ni in the
denominator of the attractions). We �x the values �i = 0:5 and Ni = 1. We
consider di�erent combinations of values for �i, Æi and �i for the di�erent
individuals, which are given in tables 1 and 2 for the coordination game, and
tables 3 and 4 for the dominance solvable game.

The recursive procedure for generating the data works as follows: starting
from the initial values of the attractions, we generate the probabilities of
playing strategies 0 and 1 for each player for period 1. Conditional on these
probabilities we draw from a binomial distribution to generate the actual
choice of strategy for period 116.

Tables 1, 2, 3 and 4 report the results from 200 simulations for each indi-
vidual using sample sizes of T = 30 and T = 1000. Initial values for the
parameters to be estimated were obtained by a grid search in the interval
[0; 1] of size 0:1. We report the mean of the estimated values over the 200
simulations, the median, the Root Mean Squared Error (RMSE) and the
asymptotic coverage, that is, the percentage of observations that fall out-
side 2/1.645/1 asymptotic standard errors of the true parameter values, as
computed from the asymptotic normal distribution obtained in the previ-
ous sections. The values reported in the tables should be compared to the
percentages 5/10/32.

The performance of the estimators in the small sample (T = 30) is poor, as
can be seen in tables 1 and 317. There are also numerical problems, as shown
by the high number of cases where the optimization procedures do not �nd
the minimizing vectors. Not only the point estimates are not very precise,

16The actual algorithm that we use is the following: we draw a random number u0 from
a uniform distribution in the interval [0; 1]. If p0 is the probability of playing strategy 0
and if u0 � p0 we choose strategy 0, otherwise we choose strategy 1. Given the choices for
period 1 we generate the attractions for period 1 and the probabilities for period 2, and
we continue recursively until the last period. The random number generator for both the
actual strategy choice, as well as the random matching of players, is started with the same
initial values so that the data generated for testing the di�erent estimating procedures are
the same.

17We also tried with samples of 50 and 100 periods, and the results did not improve
substantially. The precision of the estimates started to look reasonable only for samples
of around 500 periods.
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Table 1: Simulation results: Coordination game (T = 30)

QDM MLE

Mean Median RMSE Asympt. Did not Mean Median RMSE Asympt. Did not
coverage converge coverage converge

Individual 1 (A) 71 65
� = 0:5 0.32 0.39 0.21 29/32/46 0.33 0.42 0.19 22/25/42
Æ = 0:5 0.54 0.61 0.19 32/38/50 0.54 0.60 0.21 27/33/47
� = 0:5 0.89 0.73 0.57 31/38/53 0.89 0.69 0.80 21/29/50

Individual 2 (B) 101 101
� = 0:5 0.28 0.41 0.28 22/25/43 0.29 0.42 0.25 19/24/40
Æ = 0:5 0.45 0.63 0.46 29/32/45 0.39 0.60 0.44 32/34/44
� = 0:5 0.72 0.65 0.32 22/29/41 0.74 0.66 0.30 18/23/38

Individual 3 (A) 88 80
� = 0:2 0.14 0.14 0.11 14/21/47 0.17 0.20 0.10 21/25/44
Æ = 0:2 0.27 0.43 0.27 32/37/53 0.28 0.44 0.24 23/31/45
� = 0:6 1.13 0.84 1.19 37/43/60 1.00 0.78 0.84 35/40/54

Individual 4 (B) 126 131
� = 0:7 0.28 0.49 0.45 27/31/44 0.28 0.50 0.46 27/35/51
Æ = 0:7 0.66 0.83 0.32 20/25/33 0.60 0.87 0.45 17/25/36
� = 0:4 0.71 0.57 0.35 19/24/37 0.68 0.60 0.34 11/19/35

Individual 5 (A) 102 89
� = 0:2 0.15 0.21 0.15 16/23/45 0.12 0.20 0.16 14/17/41
Æ = 0:2 0.20 0.33 0.28 38/45/57 0.18 0.34 0.32 35/41/50
� = 0:6 0.97 0.71 0.71 38/40/56 0.97 0.76 0.80 32/41/53

Individual 6 (B) 118 122
� = 0:7 0.25 0.48 0.50 28/29/48 0.32 0.49 0.41 31/33/43
Æ = 0:7 0.69 0.77 0.26 23/28/42 0.64 0.76 0.29 16/24/33
� = 0:4 0.97 0.68 1.33 27/34/53 0.88 0.68 0.57 24/31/45

Individual 7 (A) 98 80
� = 0:2 0.l5 0.22 0.14 22/27/49 0.15 0.17 0.14 21/27/44
Æ = 0:2 0.31 0.37 0.25 39/42/54 0.25 0.34 0.33 33/39/50
� = 0:6 1.09 0.83 1.02 40/47/65 0.93 0.82 0.50 37/44/61

Individual 8 (B) 136 122
� = 0:7 0.38 0.57 0.36 30/33/48 0.44 0.58 0.31 22/26/47
Æ = 0:7 0.63 0.80 0.40 28/29/41 0.68 0.78 0.36 26/31/44
� = 0:4 0.60 0.62 0.24 25/30/47 0.60 0.63 0.22 17/26/47

Individual 9 (A) 112 106
� = 0:7 0.45 0.55 0.30 25/31/50 0.47 0.54 0.28 25/27/47
Æ = 0:7 0.82 0.81 0.19 16/20/35 0.80 0.81 0.18 16/20/30
� = 0:4 1.04 0.67 2.17 31/34/53 0.80 0.64 0.61 20/30/49

Individual 10 (B) 104 97
� = 0:2 0.19 0.26 0.11 23/24/45 0.14 0.27 0.14 16/19/40
Æ = 0:2 0.20 0.35 0.34 27/33/45 0.17 0.35 0.38 31/37/45
� = 0:6 1.06 0.75 1.22 30/38/51 0.94 0.82 0.53 23/28/50

Individual 11 (A) 120 117
� = 0:7 0.44 0.55 0.29 29/33/48 0.43 0.54 0.30 36/41/54
Æ = 0:7 0.78 0.78 0.24 26/28/41 0.75 0.80 0.29 27/29/42
� = 0:4 0.93 0.64 1.24 23/29/51 0.71 0.63 0.38 23/28/55

Individual 12 (B) 94 89
� = 0:2 0.16 0.22 0.13 8/12/26 0.11 0.18 0.17 13/14/28
Æ = 0:2 0.15 0.29 0.32 34/37/48 0.15 0.27 0.31 28/34/43
� = 0:6 0.84 0.70 0.50 26/31/52 0.88 0.70 0.43 20/28/45

Individual 13 (A) 91 83
� = 0:5 0.34 0.40 0.20 17/18/29 0.32 0.40 0.23 21/21/38
Æ = 0:5 0.58 0.61 0.21 23/31/42 0.58 0.62 0.22 23/29/37
� = 0:5 1.15 0.72 2.60 24/31/44 0.89 0.74 0.61 21/27/42

Individual 14 (B) 109 100
� = 0:5 0.30 0.40 0.23 19/19/34 0.30 0.42 0.24 19/20/37
Æ = 0:5 0.43 0.57 0.41 21/28/39 0.44 0.55 0.32 22/26/42
� = 0:5 0.90 0.63 1.16 19/22/41 0.73 0.62 0.26 10/14/34
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Table 2: Simulation results: Coordination game (T = 1000)

QDM MLE

Mean Median RMSE Asympt. Did not Mean Median RMSE Asympt. Did not
coverage converge coverage converge

Individual 1 (A) 0 0
� = 0:5 0.49 0.50 0.007 5/9/42 0.49 0.50 0.008 5/8/43
Æ = 0:5 0.49 0.49 0.010 3/7/50 0.49 0.50 0.009 3/4/45
� = 0:5 0.50 0.49 0.006 7/10/40 0.50 0.49 0.006 6/8/42

Individual 2 (B) 2 5
� = 0:5 0.50 0.50 0.006 7/10/45 0.50 0.50 0.006 8/11/43
Æ = 0:5 0.50 0.51 0.006 6/8/48 0.50 0.51 0.006 4/6/45
� = 0:5 0.50 0.49 0.007 9/11/42 0.50 0.49 0.006 6/8/42

Individual 3 (A) 9 12
� = 0:2 0.20 0.20 0.004 6/10/42 0.20 0.20 0.004 4/7/38
Æ = 0:2 0.20 0.21 0.010 6/16/46 0.20 0.21 0.009 2/9/46
� = 0:6 0.62 0.61 0.017 12/15/51 0.61 0.61 0.015 5/8/53

Individual 4 (B) 29 45
� = 0:7 0.69 0.70 0.007 9/10/48 0.69 0.70 0.010 11/13/49
Æ = 0:7 0.70 0.71 0.006 5/16/44 0.69 0.70 0.009 4/5/45
� = 0:4 0.41 0.40 0.008 7/15/46 0.41 0.40 0.011 10/10/45

Individual 5 (A) 10 10
� = 0:2 0.19 0.20 0.009 5/7/40 0.19 0.19 0.008 5/7/42
Æ = 0:2 0.20 0.20 0.013 10/15/45 0.20 0.21 0.012 7/13/45
� = 0:6 0.62 0.60 0.017 12/16/49 0.61 0.61 0.016 7/16/51

Individual 6 (B) 26 40
� = 0:7 0.69 0.69 0.008 10/12/48 0.69 0.69 0.009 10/12/49
Æ = 0:7 0.69 0.70 0.008 3/6/41 0.69 0.70 0.010 3/5/40
� = 0:4 0.41 0.41 0.010 7/8/45 0.41 0.41 0.008 6/9/43

Individual 7 (A) 16 10
� = 0:2 0.20 0.20 0.005 4/7/38 0.20 0.20 0.004 4/7/35
Æ = 0:2 0.19 0.20 0.013 7/15/41 0.19 0.19 0.019 4/10/47
� = 0:6 0.60 0.60 0.008 14/18/46 0.60 0.59 0.007 12/17/47

Individual 8 (B) 30 45
� = 0:7 0.69 0.70 0.008 6/8/40 0.69 0.70 0.008 8/11/41
Æ = 0:7 0.70 0.70 0.006 6/9/45 0.69 0.70 0.009 6/9/46
� = 0:4 0.41 0.41 0.009 6/8/41 0.40 0.41 0.006 6/8/40

Individual 9 (A) 0 0
� = 0:7 0.71 0.71 0.008 4/6/37 0.71 0.71 0.008 6/9/38
Æ = 0:7 0.70 0.70 0.005 7/11/47 0.70 0.70 0.005 9/12/47
� = 0:4 0.39 0.40 0.008 5/8/42 0.39 0.40 0.009 4/8/42

Individual 10 (B) 12 16
� = 0:2 0.20 0.19 0.006 3/4/41 0.20 0.19 0.006 2/3/38
Æ = 0:2 0.20 0.21 0.009 3/7/46 0.20 0.21 0.009 7/8/45
� = 0:6 0.60 0.60 0.008 9/11/46 0.61 0.60 0.009 6/8/46

Individual 11 (A) 0 0
� = 0:7 0.70 0.70 0.003 8/12/41 0.70 0.70 0.002 10/13/43
Æ = 0:7 0.71 0.71 0.009 10/14/47 0.71 0.71 0.009 9/12/44
� = 0:4 0.40 0.39 0.006 7/12/40 0.40 0.40 0.006 10/14/41

Individual 12 (B) 6 8
� = 0:2 0.19 0.19 0.011 4/5/46 0.19 0.19 0.014 5/8/43
Æ = 0:2 0.20 0.20 0.009 5/10/47 0.20 0.21 0.009 6/9/44
� = 0:6 0.61 0.60 0.010 5/6/50 0.61 0.61 0.011 6/7/50

Individual 13 (A) 0 0
� = 0:5 0.50 0.50 0.004 7/8/44 0.50 0.50 0.004 8/10/41
Æ = 0:5 0.50 0.51 0.006 6/9/46 0.50 0.51 0.006 4/7/43
� = 0:5 0.51 0.50 0.007 8/10/44 0.50 0.50 0.007 8/10/46

Individual 14 (B) 1 2
� = 0:5 0.50 0.50 0.005 7/9/45 0.50 0.50 0.005 10/12/46
Æ = 0:5 0.50 0.51 0.007 6/10/48 0.50 0.51 0.007 6/9/52
� = 0:5 0.50 0.49 0.006 7/8/47 0.50 0.49 0.005 8/11/44
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Table 3: Simulation results: Dominance solvable game (T = 30)

QDM MLE

Mean Median RMSE Asympt. Did not Mean Median RMSE Asympt. Did not
coverage converge coverage converge

Individual 1 (A) 130 129
� = 0:5 0.11 0.14 0.41 34/36/60 0.12 0.16 0.41 32/35/61
Æ = 0:5 0.68 0.74 0.30 31/39/64 0.65 0.68 0.31 24/30/50
� = 0:5 1.06 0.94 0.75 40/43/59 1.12 0.90 0.90 41/48/56

Individual 2 (B) 98 93
� = 0:5 0.25 0.28 0.28 11/15/32 0.21 0.20 0.32 17/22/40
Æ = 0:5 0.48 0.59 0.40 19/24/41 0.61 0.63 0.55 21/28/43
� = 0:5 0.84 0.74 0.51 16/22/32 0.84 0.72 0.43 20/26/34

Individual 3 (A) 74 67
� = 0:2 0.04 0.06 0.19 15/20/47 0.03 0.04 0.20 21/26/48
Æ = 0:2 0.17 0.22 0.22 26/29/46 0.20 0.23 0.28 25/29/44
� = 0:6 0.75 0.63 0.26 23/28/47 0.78 0.61 0.32 25/32/47

Individual 4 (B) 121 124
� = 0:7 0.30 0.31 0.44 34/41/51 0.31 0.28 0.41 41/43/54
Æ = 0:7 0.84 0.82 0.28 18/19/28 0.78 0.75 0.19 17/17/29
� = 0:4 1.04 0.92 0.84 44/49/58 0.99 0.86 0.73 41/47/57

Individual 5 (A) 96 76
� = 0:2 0.02 -0.01 0.20 16/21/43 -0.03 -0.05 0.25 19/23/53
Æ = 0:2 0.22 0.31 0.33 37/45/60 0.16 0.27 0.32 32/38/52
� = 0:6 0.83 0.69 0.31 24/30/41 0.87 0.71 0.40 30/36/54

Individual 6 (B) 114 116
� = 0:7 0.22 0.28 0.52 43/48/59 0.22 0.26 0.52 43/49/58
Æ = 0:7 0.78 0.83 0.21 19/24/35 0.75 0.78 0.21 18/20/35
� = 0:4 1.06 0.92 0.77 48/50/64 1.14 0.89 0.93 43/50/65

Individual 7 (A) 80 72
� = 0:2 0.02 0.01 0.20 13/16/41 -0.02 -0.02 0.23 18/23/52
Æ = 0:2 0.11 0.20 0.35 33/34/51 0.01 0.09 0.44 36/41/57
� = 0:6 0.77 0.72 0.26 23/32/46 0.78 0.64 0.37 29/34/50

Individual 8 (B) 120 122
� = 0:7 0.30 0.32 0.42 45/50/61 0.30 0.37 0.44 37/42/50
Æ = 0:7 0.82 0.86 0.49 20/23/43 0.89 0.87 0.36 27/29/38
� = 0:4 1.00 0.89 0.74 46/51/61 1.01 0.76 0.75 38/44/56

Individual 9 (A) 168 165
� = 0:7 0.18 0.28 0.54 56/72/88 0.14 0.13 0.59 57/63/74
Æ = 0:7 1.00 1.02 0.31 16/19/34 0.95 0.92 0.29 14/17/31
� = 0:4 1.32 1.24 1.03 63/66/78 1.35 1.19 1.19 57/57/63

Individual 10 (B) 78 84
� = 0:2 0.05 0.08 0.20 14/16/30 0.05 0.07 0.21 13/15/28
Æ = 0:2 0.13 0.27 0.57 21/26/41 0.20 0.29 0.41 23/29/37
� = 0:6 0.92 0.76 0.53 25/30/43 0.89 0.77 0.45 25/32/48

Individual 11 (A) 163 160
� = 0:7 0.09 0.10 0.63 68/76/89 0.07 0.06 0.67 68/70/83
Æ = 0:7 0.88 0.94 0.30 22/30/43 0.84 0.85 0.44 18/20/28
� = 0:4 1.37 1.36 1.08 54/62/70 1.33 1.39 1.02 73/73/78

Individual 12 (B) 76 82
� = 0:2 0.11 0.12 0.15 13/17/31 0.11 0.12 0.14 6/8/22
Æ = 0:2 -0.01 0.19 0.66 27/31/43 -0.05 0.09 0.55 15/21/34
� = 0:6 0.80 0.67 0.42 23/31/53 0.70 0.64 0.21 15/21/45

Individual 13 (A) 126 128
� = 0:5 0.15 0.20 0.38 30/31/54 0.10 0.19 0.44 33/40/67
Æ = 0:5 0.53 0.63 0.37 34/38/54 0.53 0.61 0.26 29/33/56
� = 0:5 0.93 0.72 0.60 30/35/50 0.94 0.71 0.59 40/46/54

Individual 14 (B) 100 100
� = 0:5 0.22 0.31 0.32 22/25/38 0.20 0.29 0.37 25/30/44
Æ = 0:5 0.44 0.49 0.42 21/28/38 0.41 0.41 0.40 25/27/43
� = 0:5 0.91 0.71 0.65 32/35/53 0.87 0.69 0.53 26/30/45
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Table 4: Simulation results: Dominance solvable game (T = 1000)

QDM MLE

Mean Median RMSE Asympt. Did not Mean Median RMSE Asympt. Did not
coverage converge coverage converge

Individual 1 (A) 0 0
� = 0:5 0.47 0.48 0.04 13/16/42 0.48 0.49 0.03 11/15/36
Æ = 0:5 0.52 0.52 0.03 11/15/40 0.52 0.51 0.02 15/18/46
� = 0:5 0.55 0.53 0.06 11/18/45 0.54 0.52 0.04 15/22/45

Individual 2 (B) 2 5
� = 0:5 0.49 0.50 0.02 8/11/40 0.49 0.50 0.02 11/14/39
Æ = 0:5 0.49 0.49 0.02 6/9/37 0.49 0.49 0.02 7/9/31
� = 0:5 0.51 0.50 0.02 6/11/40 0.52 0.50 0.03 7/10/37

Individual 3 (A) 9 12
� = 0:2 0.20 0.19 0.01 4/6/38 0.20 0.19 0.01 6/10/44
Æ = 0:2 0.20 0.20 0.01 6/10/44 0.20 0.20 0.01 7/10/45
� = 0:6 0.61 0.61 0.01 7/9/49 0.61 0.61 0.01 6/11/48

Individual 4 (B) 29 45
� = 0:7 0.61 0.64 0.09 13/18/37 0.63 0.65 0.07 13/17/37
Æ = 0:7 0.72 0.73 0.02 14/17/36 0.71 0.73 0.02 12/15/36
� = 0:4 0.52 0.48 0.13 14/19/38 0.50 0.48 0.11 14/18/38

Individual 5 (A) 10 10
� = 0:2 0.18 0.18 0.02 3/4/48 0.19 0.19 0.02 6/8/47
Æ = 0:2 0.20 0.20 0.01 4/6/44 0.20 0.19 0.01 6/9/52
� = 0:6 0.62 0.62 0.02 7/11/50 0.62 0.61 0.02 5/9/51

Individual 6 (B) 26 40
� = 0:7 0.62 0.64 0.10 17/22/43 0.62 0.64 0.08 19/21/42
Æ = 0:7 0.73 0.73 0.03 14/19/43 0.72 0.73 0.02 14/18/41
� = 0:4 0.52 0.48 0.13 16/23/47 0.51 0.47 0.12 19/22/43

Individual 7 (A) 16 10
� = 0:2 0.19 0.20 0.01 6/7/44 0.19 0.19 0.01 6/9/45
Æ = 0:2 0.20 0.20 0.01 3/6/43 0.21 0.20 0.01 6/7/44
� = 0:6 0.61 0.60 0.01 9/12/43 0.61 0.61 0.01 7/9/41

Individual 8 (B) 30 45
� = 0:7 0.65 0.68 0.05 15/21/44 0.64 0.67 0.06 14/18/37
Æ = 0:7 0.71 0.72 0.02 15/19/36 0.72 0.72 0.02 12/16/37
� = 0:4 0.47 0.43 0.08 15/20/43 0.48 0.44 0.09 12/19/39

Individual 9 (A) 0 0
� = 0:7 0.63 0.68 0.09 22/27/48 0.66 0.70 0.06 22/25/40
Æ = 0:7 0.72 0.73 0.03 22/29/51 0.68 0.68 0.03 19/23/46
� = 0:4 0.52 0.42 0.17 25/36/48 0.47 0.40 0.11 24/29/46

Individual 10 (B) 12 16
� = 0:2 0.20 0.20 0.01 5/6/40 0.20 0.21 0.01 4/7/37
Æ = 0:2 0.19 0.20 0.01 4/7/46 0.20 0.20 0.01 4/5/42
� = 0:6 0.60 0.60 0.01 6/7/47 0.60 0.60 0.01 4/6/45

Individual 11 (A) 0 0
� = 0:7 0.60 0.65 0.12 28/36/51 0.62 0.67 0.09 32/35/47
Æ = 0:7 0.73 0.75 0.04 22/30/47 0.70 0.72 0.03 19/22/42
� = 0:4 0.57 0.48 0.23 31/38/55 0.53 0.43 0.17 33/39/52

Individual 12 (B) 6 8
� = 0:2 0.19 0.20 0.01 4/7/41 0.19 0.20 0.01 6/9/38
Æ = 0:2 0.20 0.21 0.01 4/6/42 0.20 0.20 0.01 4/8/42
� = 0:6 0.61 0.61 0.02 3/5/42 0.61 0.62 0.01 5/9/42

Individual 13 (A) 0 0
� = 0:5 0.48 0.50 0.02 7/10/38 0.49 0.51 0.01 11/15/39
Æ = 0:5 0.50 0.50 0.01 13/15/47 0.50 0.50 0.01 17/21/51
� = 0:5 0.53 0.50 0.04 8/13/41 0.52 0.50 0.02 13/16/44

Individual 14 (B) 1 2
� = 0:5 0.47 0.50 0.03 9/14/44 0.48 0.49 0.03 10/14/40
Æ = 0:5 0.51 0.51 0.01 10/14/41 0.51 0.52 0.01 9/11/39
� = 0:5 0.53 0.51 0.04 10/14/41 0.53 0.51 0.03 9/13/41
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as shown by the high values of the RMSEs, but they also fall outside the
asymptotic con�dence bands. The estimators seem to perform slightly worse
for the dominance solvable game, both with respect to numerical problems
of the optimization procedures and with respect to the statistical properties
of the estimators, as can be seen by higher RMSEs and larger percentages of
cases falling outside the asymptotic con�dence bands.

Given the high nonlinearity of the problem it is hard to guess the reason for
(and therefore solve) the small sample problems detected in the simulations.
The lack of convergence results from identi�cation problems. In short samples
the process generates often individual histories with so little variation that
many combinations of the parameters can explain well the data. At the end
of Appendix B we provide a formal discussion of a similar issue in the context
of the model with random learning parameters.

As for the bias, notice that the estimate of Æ does not di�er in a systematic
way from the true value (and the di�erence is not large). Notice also (see
tables 1 and 2) that the product � � � does not appear to have a large
systematic bias either. One can conjecture that the problem with � comes
from the estimation of �. Let us look at a simpli�ed model to see why is �
a problem.

Assume that the players are playing a one-person game with only two strate-
gies (s1; s2), whose payo�s are respectively �1; �2 with �1 > �2. Assume also
that � = 0; Æ = 1; � = 0, and N(0) = 1. We only have to estimate �. The
probability that strategy s1 is played is therefore p1 =

1
e�(�2��1)+1

: The model
then reduces to the choice of s1 following a binomial distribution with proba-
bilities given by p1. Let K be the number of times that strategy s1 is played
in a given sample of size T . The likelihood function of that sample is

�
1

e�(�2��1) + 1

�K � 1

e�(�1��2) + 1

�T�K
:

This likelihood is maximized for

�̂ = (�2 � �1) ln

�
T

K
� 1

�
:

But we know that in any reasonable learning models � � 0, so we have to
make

�̂ = max

�
0; (�2 � �1) ln

�
T

K
� 1

��
:
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This makes the estimator a convex function of K. Since K follows a binomial
its expectation is simply p1T . So by Jensen's inequality we have that

E(�̂) > (�2 � �1) ln

�
T

E(K)
� 1

�

= (�2 � �1) ln

�
T

p1
� 1

�

= �

So the estimator is biased upwards as we observe in the simulations. In
the example this could in principle be solved by choosing carefully an upper
bound for �̂, but in the general case, the choice of an upper bound that gets
rid of the bias depends on knowledge of the other parameters, which are not
available. For this reason this does not seem like a workable approach in
general.

6 Random learning parameters

We have so far assumed that the learning parameters are estimated individual
by individual. As we showed in section 4, this can be done in a consistent
way, as long the experiment lasts for a long enough period of time. Section
5 shows that this can be very long for reasonable games. What can be
done about that? Lengthening the duration of an experiment to the extent
suggested by our simulations would not be practical. Something that can
often be done is to run more sessions of the same experiment. This would
not help if we insisted in obtaining the parameters for each individual, but it
can be useful if we are interested in the distribution of learning parameters.

We need to make some adjustments in notation for the new framework. As
before, we have an I-player game, where each player i has Ni strategies.
Suppose that each individual i has a vector of learning parameters �i that is
randomly (and independently across players) drawn from some distribution
F (�i; �), where � is the vector of parameters which characterizes this distri-
bution. This distribution is the same across individuals and sessions. The
parameter �i is �xed for the duration of play, which consists of a number T of
repetitions of the game, for all individuals. We call this T -fold repetition of
the game a session. An experiment consists of some number n of sessions,
in each one of which a new set of I players draw (independently from the
others) their learning parameter from the distribution F (�i; �).
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Let us denote by sli(t) the strategy played by player i at time t in session l.
Let sl(t) = fsl1(t); s

l
2(t); : : : ; s

l
N(t)g, be the strategy pro�le of all the players

at time t in session l, and sl�i(t) = fsl1(t); : : : ; s
l
i�1(t); s

l
i+1(t) : : : ; s

l
N(t)g the

strategy pro�le of players other than i at time t in session l. Let S(l) =
fsl(1); sl(2); : : : ; sl(T )g be the sequence of observations of strategy choices
for all players in session l. Let ST be the set of all possible S(l) sequences,
and sT a generic element of ST .

We can now de�ne the probability of observing a particular sequence sT ;
given a vector of parameters � is thus:

P (sT ; �) =
IY
i=1

Z
�i2B

NiY
j=1

TY
t=1

[P j
i (t)

I(sji ;s
l
i(t))]dF (�i; �):

We denote by I(sT ; S(l)) the indicator function that is one if sT = S(l), and
zero otherwise. We de�ne now

q(S(l); �) = �
X
sT2ST

[I(sT ; S(l)) logP (sT ; �)])]

and

Qn(S(1); : : : ; S(n); �) = n�1
nX
l=1

q(S(l); �)

The model can now be estimated by maximizing Qn(S(1); : : : ; S(n); �) over
the vector of parameters �: When the parameter vector � is identi�ed18, its
estimator �̂, is consistent (see appendix B, where we also characterize the
asymptotic distribution) under mild assumptions about the function F (:; :):

Notice that the results hold because behavior between sessions is indepen-
dent, so that we can apply appropriate law of large numbers19. But the
number of sessions will, in practice, have to be not much more than 10 to
20. For this reason the large sample results we prove in the appendix are
of limited usefulness, without having a better idea of what is a \large" sam-
ple in practice. Thus, we focus here on the small sample properties of the
estimators.

18Identi�cation can be a serious issue in this context, as we show in appendix B.
19For this reason, it is not equivalent to have n sessions with I players each, than one

session with n� I players. With just one session, play can easily become correlated.
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One of the biggest problem that one �nds in this context is the speci�cation
of the distribution of the parameter vectors �i. Economic theory can be
of little help in proposing a distribution. But we know from the work on
\random-e�ects" models in panel data (see e.g. Heckman and Singer 1984)
that even mild incorrect speci�cations in the distribution of �i, can lead to
serious biases in the estimation process.

To illustrate this estimation procedure, we use again the 2� 2 coordination
game of section 5. As before, we are interested in �i, Æi and �i. To generate
the data for our estimations, we assume that �i is drawn at the beginning of
each experiment from a beta distribution with support in the interval (0; 1):

f(x) =
�(a+ b)

�(a)�(b)
(x)a�1(1� x)b�1;

where � is the gamma function, and we take a = 2 and b = 2. We also assume
that the other coeÆcients to be estimated, Æi and �i, are �xed and equal to 0:5
for all individuals. We estimate the three coeÆcients jointly by maximum
likelihood. Each simulation pools the data from 10 experiments with 30
periods each, thus replicating the estimating procedure that we suggested
above.

The results can be found in table 5. The assumption of random coeÆcients,
assuming that the speci�cation of the model is correct, reduces the biases
discussed in the previous sections but the precision is still poor, as illustrated
by the high root mean squared errors for a and b.

7 Further research

In this paper we have studied the properties of parameter estimators of a
model that encompasses a wide variety of learning patterns. We hope that
this will help to understand better the behavior of laboratory agents. The
model has some important de�ciencies that further research should take into
account. One problem is that it assumes that agents have feedback on the
\strategies" that other agents use (that is, complete contingent plans of ac-
tion), but in nontrivial extensive games the agents may only know the \ac-
tions" that the other agents take given the path of the game actually taken.
For example, in an ultimatum game a proposer chooses a split of a \pie"
from a (possibly large) set of splits. Then a responder accepts of rejects the
proposed split. In the usual version of the game, the proposer will only know
what happens with the actually proposed split, and not with some others.
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Table 5: Simulation results: random �i with beta distribution (a = 2, b = 2),
Æi = 0:5 and �i = 0:5 for all individuals (200 simulations with 10 experiments
each, T = 30).

a b Æ �
Population value 2 2 0.5 0.5

Means 2.01 2.02 0.50 0.50

Medians 1.90 1.99 0.50 0.50

Root Mean 0.52 0.30 0.00 0.00
Squared Error

Asymptotic
Coverage

5 % 16.66 10.14 5.07 7.97

10 % 24.64 18.84 7.25 9.42

32 % 42.75 39.13 36.23 38.41

Number of simulations 62
that did not converge
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A more satisfactory version of the learning model should be able to describe
how the player uses the available information on \actions" to adjust the be-
lief on \strategies." Some e�orts on this direction are done by Anderson and
Camerer (1999), Camerer, Ho and Wang (1999) and Grosskopf (1999).

Another missing factor is active learning with experimentation. A real agent
may choose a strategy she currently believes suboptimal in order to gather
more precise information about its performance. There are many models in
the theoretical literature with this feature, but to our knowledge none has
been �tted to experimental data. This is particularly important when, as we
discussed in the previous paragraph, there is only information on \actions"
rather than \strategies".

So far we have talked about improvements of the underlying theoretical model
(CH). But even within the CH model, there are econometric aspects that need
to be dealt with. To the extent that the pure �ctitious play or learning by
reinforcement models are true (that is, when � = 1), we need to establish
the properties of the estimators for other parameters, which we could not
provide with our theorems. In the same vein, it would be useful to know
how general are the small sample properties of the estimators that we have
partially analyzed with Monte Carlo methods.

We have taken as given the game that subjects are playing. But, as the
results of Feltovich (2000) make clear, one can design the game to obtain
more clear separation between the predictions of di�erent learning models.
Our results also underscore the fact that the properties of the estimates are
going to depend very substantially on the game that is played.

Erev and Haruvy (2000) have shown that, depending on the model compari-
son criteria that is used, di�erent learning models can appear to account best
for the data. An important issue in this context is whether parameters are
allowed to vary across games or not. It would be interesting to check if these
discrepancies are as large once one takes into account the possibilities for
inconsistent estimates that we have uncovered. One could, for example, use
the model with random parameters to see if the distributions of parameters
are statistically di�erent between games.

One obvious last question is whether this sort of analysis will give substantial
clues as to how do people learn outside the laboratory. For example, in real
life one can count on the experience of other players in the same or similar
games to guide one's own behavior to an extent that is typically precluded
in the laboratory. Although this is true, one can adjust the experimental
environment to permit a degree of controlled learning along some of those
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dimensions (see, for example, Bosch and Saez-Mart�� 1999 for an experiment
in which controlled learning from others is permitted).

8 Appendix A

Proposition 1. Let �� be the true parameter vector. Then �� is identi-
�ed, provided that for all i; Æ�i 6= 1; N�

i (0) 6= 1=(1 � ��i ), and that there
exists a strategy pro�le s��i, such that for some agent i and strategies j�; k�;

�i(s
j�

i ; s
�
�i) 6= �i(s

k�

i ; s
�
�i):

Proof:

Case 1. Let ��i (t) = (��i
Pt�1

s=0(�
�
i )
s)=N�

i (t) and let �
0

i(t) be de�ned analo-
gously. Let ��i (1) = limt!1 ��(t): Assume that for all t, there is a t0 such
that ��i (t

0) 6= �
0

i(t
0), and let the sequence where this is true ftg�: Assume also

that ��(1) 6= �
0

(1)

Let zu;t = (s(u); s(u + 1); :::; s(t)); and let a realization of the stochastic
process z1;t�1 such that s�i(1) = ::: = s�i(t� 1) = s��i and that si(1) = ::: =

si(t� 1) = sj
�

i :

Denote �ij� = �i(s
j�

i ; s
�
�i) and �ik� = �j(s

k�

i ; s
�
�i) . Then

P (si(t) = sj
�

i jz1;t�1; �
�)

P (si(t) = sk
�

i jz1;t�1; �
�)

=

= exp(��i (t)(�ij� � Æ�i�ik� +
(��i )

tPt�1
s=0(�

�
i )
s
N�
i (0)(A

j�

i (0)
� � Ak�

i (0)�)))

Suppose there is a t 2 ftg� such that

P (si(t) = sj
�

i jz1;t�1; �
�)

P (si(t) = sk
�

i jz1;t�1; �
�)
6=

P (si(t) = sj
�

i jz1;t�1; �
0

)

P (si(t) = sk
�

i jz1;t�1; �
0)
;

then the result follows for this case. Suppose to the contrary that for all
t 2 ftg�

P (si(t) = sj
�

i jz1;t�1; �
�)

P (si(t) = sk
�

i jz1;t�1; �
�)

=
P (si(t) = sj

�

i jz1;t�1; �
0

)

P (si(t) = sk
�

i jz1;t�1; �
0)
;
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Then if we choose z01;t�1 such that s�i(1) = ::: = s�i(t � 1) = s��i and that
si(1) = ::: = si(t� 1) = sk

�

i we have that for some t 2 ftg�

P (si(t) = sj
�

i jz
0
1;t�1; �

�)

P (si(t) = sk
�

i jz
0
1;t�1; �

�)
6=

P (si(t) = sj
�

i jz
0
1;t�1; �

0

)

P (si(t) = sk
�

i jz
0
1;t�1; �

0)

and the result would follow, because otherwise we would have that for all
t 2 ftg�

(�ij� � Æ�i�ik�) +
(��i )

t

Pt�1
s=0(�

�

i )
s
N�
i (0)(A

j�

i (0)
� � Ak�

i (0)
�)

(Æ�i�ij� � �ik�) +
(��i )

t

Pt�1
s=0(�

�

i )
s
N�
i (0)(A

j�

i (0)
� � Ak�

i (0)
�)

=
(�ij� � Æ

0

i�ik�) +
(�
0

i)
t

Pt�1
s=0(�

0

i)
s
N 0
i(0)(A

j�

i (0)
0

� Ak�

i (0)0)

(Æ
0

i�ij� � �ik�) +
(�
0

i)
t

Pt�1
s=0(�

0

i)
s
N 0
i(0)(A

j�

i (0)
0 � Ak�

i (0)
0)

but then taking t to in�nity we would have that

�ij� � Æ�i�ik�

Æ�i�ij� � �ik�
=

�ij� � Æ
0

i�ik�

Æ
0

i�ij� � �ik�
:

This, in turn, would imply that either �ij� = �ik�; which is a contradiction,
or Æ�i = Æ0i which is again a contradiction with the fact that ��i (1) 6= �

0

i(1);
and that for all t 2 ftg�

P (si(t) = sj
�

i jz1;t�1; �
�)

P (si(t) = sk
�

i jz1;t�1; �
�)

=
P (si(t) = sj

�

i jz1;t�1; �
0

)

P (si(t) = sk
�

i jz1;t�1; �
0)
;

since ��i (1) 6= �
0

i(1) implies that

lim
t!1

P (si(t) = sj
�

i jz1;t�1; �
�)

P (si(t) = sk
�

i jz1;t�1; �
�)

= exp(��i (1)(�ij� � Æ�i�ik�))

6= exp(�0i(1)(�ij� � Æ�i�ik�)) = lim
t!1

P (si(t) = sj
�

i jz1;t�1; �
0

)

P (si(t) = sk
�

i jz1;t�1; �
0)
:

Case 2. Let ��i (t) = �
0

i(t), for all t � t� Assume also Æ�i 6= Æ0i: Then we must
have that �ij� � Æ�i�ik� 6= �ij� � Æ

0

i�ik�; so that for a value of t high enough:
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�ij� � Æ�i�ik� +
(��i )

tPt�1
s=0(�

�
i )
s
N�
i (0)(A

j�

i (0)
�

� Ak�

i (0)
0))

6= (�ij� � Æ
0

i�ik�) +
(�

0

i)
tPt�1

s=0(�
0

i)
s
N 0
i(0)(A

j�

i (0)
0 � Ak�

i (0)0)

which implies, since ��i (t) = �
0

i(t) for all t � t�; that for t high enough,

P (si(t) = sj
�

i jz1;t�1; �
�)

P (si(t) = sk
�

i jz1;t�1; �
�)
6=

P (si(t) = sj
�

i jz1;t�1; �
0

)

P (si(t) = sk
�

i jz1;t�1; �
0)
:

Case 3. Let ��i (t) = �
0

i(t), for all t � t�, Æ�i = Æ0i and ��i 6= �0i:

First note that in this case
Pt�1

s=0(�
�
i )
s � 1Pt�1

s=0(�
�
i )
s

(�ij� � Æ�i�ik�)) +
1Pt�1

s=0(�
�
i )
s
(Æ�i�ij� � �ik�) (1)

6=

Pt�1
s=0(�

0
i)
s � 1Pt�1

s=0(�
0
i)
s

(�ij� � Æ�i�ik�)) +
1Pt�1

s=0(�
0
i)
s
(Æ�i�ij� � �ik�) (2)

as otherwise we would have �ij� = ��ik� and we have de�ned payo�s to be
positive. This implies that when t is high enough, if we choose z001;t�1 such
that s�i(1) = ::: = s�i(t� 1) = s��i and that si(1) = ::: = si(t� 2) = sk

�

i ; and

si(t� 1) = sj
�

i we have that

P (si(t) = sj
�

i jz
00
1;t�1; �

�)

P (si(t) = sk
�

i jz
00
1;t�1; �

�)
=

= exp(��i (t)(

Pt�1
s=0(�

�
i )
s � 1Pt�1

s=0(�
�
i )
s

(�ij� � Æ�i�ik�)) +
1Pt�1

s=0(�
�
i )
s
(Æ�i�ij� � �ik�) +

(��i )
tPt�1

s=0(�
�
i )
s
N�
i (0)(A

j�

i (0)
� � Ak�

i (0)�)))

so that for t high enough and given equation 1 and ��i (t) = �
0

i(t),

P (si(t) = sj
�

i jz
00
1;t�1; �

�)

P (si(t) = sk
�

i jz
00
1;t�1; �

�)
6=

P (si(t) = sj
�

i jz
00
1;t�1; �

0

)

P (si(t) = sk
�

i jz
00
1;t�1; �

0)
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Case 4. Let ��i (t) = �
0

i(t), for all t � t�, Æ�i = Æ0i; �
�
i = �0i, and Aj�

i (0)
� 6=

Aj�

i (0)
0 for some sj

�

i :

In this case, trivially P (si(1) = sj
�

i j�
�) 6= P (si(1) = sj

�

i j�
0):

The only possible case that remains is that ��i (t) = �
0

i(t), for all t � t�,
Æ�i = Æ0i; �

�
i = �0i, and Aj

i (0)
� = Aj

i (0)
0 for all sj

�

i : We will now show that this
in fact implies that �� = � 0 so that cases 1 through 4 exhaust all the possible
cases that have to be proved.

��i (t) = �
0

i(t), for all t � t� implies that N�
i (t)=�

�
i = N

0

i (t)=�
0

i for all t � t�:
For this reason we must have that

��iN
�
i (t)

��i
+

1

��i
=

N�
i (t+ 1)

��i
=
N

0

i (t+ 1)

�
0

i

=
�
0

iN
0

i (t)

�
0

i

+
1

�0i

so that given N�
i (t)=�

�
i = N

0

i (t)=�
0

i

(��i � �
0

i)
N�
i (t)

��i
=

1

�0i
�

1

��i

but given thatN�
i (0) 6= 1=(1���i ), we must have thatN

�
i (t); is not a constant,

therefore the previous expression can only hold if ��i = �
0

i and �0i = ��i : But
then we must also have that N

0

i (0) = N�
i (0); so that N

�
i (t)=�

�
i = N

0

i (t)=�
0

i for
all t � t�: Since we already know that Æ�i = Æ0i; �

�
i = �0i, and A

j�

i (0)
� = Aj�

i (0)
0

for all sj�i ; then �� = � 0 so that cases 1 through 4 exhaust all the possible
cases, and the result follows.�

Lemma 1. Denote by �� the true vector of parameters, then

�� = argmin�E(Q
k
n(s(1); : : : ; s(n); �), for all k 2 fQ;Lg.

Proof:

Let �rst k = Q. Let P j
i (t; �) be the probability that agent i uses strategy

j at time t, conditional on s(t � 1); : : : ; s(0), for a vector of parameters �.
Then

E([I(sji ; si(t))� P j
i (t; �)]

2js(t� 1); : : : ; s(0)) =

= E([I(sji ; si(t))]
2 � 2I(sji ; si(t))P

j
i (t; �) + [P j

i (t; �)]
2js(t); : : : ; s(0))

= E([I(sji ; si(t))]� 2I(sji ; si(t))P
j
i (t; �) + [P j

i (t; �)]
2js(t); : : : ; s(0))

= P j
i (t; �

�)� 2P j
i (t; �

�)P j
i (t; �) + [P j

i (t; �)]
2
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= P j
i (t; �

�)� [P j
i (t; �

�)]2 + [P j
i (t; �

�)]2 � 2P j
i (t; �

�)P j
i (t; �) + [P j

i (t; �)]
2

= P j
i (t; �

�)� [P j
i (t; �

�)]2 + [P j
i (t; �

�)]2 � P j
i (t; �)]

2

and this expression is minimized when P j
i (t; �) = P j

i (t; �
�), which happens

uniquely when � = ��, provided the parameter �� is identi�ed.

Let now k = L,

E(

mjX
i=1

[�I(sji ; si(t)) logP
j
i (t)]js(t); : : : ; s(0)) =

mjX
i=1

Rj
i (t) logP

j
i (t):

We will now show that this expression is minimized when Rj
i (t) = P j

i (t). The
�rst order conditions of the problem

max
P j
i (t)

mjX
i=1

Rj
i (t) logP

j
i (t)

subject to

mjX
i=1

P j
i (t) = 1

are
Rji (t)

P j
i (t)

= � or Rj
i (t) = P j

i (t)�. Adding over j we get � = 1, which gives

Rj
i (t) = P j

i (t) as we wanted. 2

Lemma 2. The process (s(t))t2R is �-mixing of size �r=(r � 1), for r > 2:
That is, the sequence �(j) is O(m��) for some � > r=(r � 1):

Proof: Let zt;u = (s(u); s(u + 1); :::; s(t)): For G 2 Fk
1 ; F 2 F1

k+j we have
that

jP (F jG)� P (F )j � max
z1;k 2 G; z0

1;k 2 Fk
1 ;

zk+1;k+j�1 2 Fk+j�1
k+1

jP (F jz1;k; zk+1;k+j�1)� P (F jz01;k; zk+1;k+j�1)j

= max
z1;k 2 G; z01;k 2 Fk

1 ;

zk+1;k+j�1 2 Fk+j�1
k+1

������

X

z1
k+j

2F

(P (zk+j;1jz1;k; zk+1;k+j�1)� P (zk+j;1jz
0

1;k; zk+1;k+j�1))

������

� max
z1;k 2 G; z0

1;k 2 Fk
1 ;

zk+1;k+j�1 2 Fk+j�1

k+1

X

z1
k+j

2F

jP (zk+j;1jz1;k; zk+1;k+j�1)� P (zk+j;1jz
0

1;k; zk+1;k+j�1)j

P (zk+j;1jz01;k; zk+1;k+j�1)

�P (zk+j;1jz
0

1;k; zk+1;k+j�1)
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� max
z1;k 2 G; z0

1;k 2 Fk
1 ;

zk+1;k+j�1 2 Fk+j�1
k+1

sup
z1
k+j

2F

jP (zk+j;1jz1;k; zk+1;k+j�1)� P (zk+j;1jz
0

1;k; zk+1;k+j�1)j

P (zk+j;1jz01;k; zk+1;k+j�1)

= max
z1;k 2 G; z0

1;k 2 Fk
1 ;

zk+1;k+j�1 2 Fk+j�1
k+1

sup
z1
k+j

2F

�����
P (zk+j;1jz1;k; zk+1;k+j�1)

P (zk+j;1jz01;k; zk+1;k+j�1)
� 1

�����

Let szt;u(r) be such that zt;u = (s(u); s(u+ 1); :::; szt;u(r); :::; s(t)): Also, let

�M = jmaxi;j;sji ;s�j
�i(s

j
i ; s�i)j and �m = jmini;j;sji ;s�j

�i(s
j
i ; s�i)j: Then,

P (s
zk+j;1
i (t)jz1;k; zk+1;t�1)

P (s
zk+j;1
i (t)jz01;k; zk+1;t�1)

=

exp(

Pt�k�1
n=0

(�i)
nF

j
i
(s
zk+1;t�1(t�n))+

Pt�1
n=t�k

(�i)
nF

j
i
(s
z1;k (t�n))+(�i)

tNi(0)A
j
i
(0)

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n

)

PNm
m=1 exp(

Pt�k�1
n=0

(�i)
nFm

i
(s
zk+1;t�1(t�n))+

Pt�1
n=t�k

(�i)
nFm

i
(s
z1;k (t�n))+(�i)

tNi(0)A
j
i
(0)

(�i)
tNi(0)+

Pt�1
n=0(�i)

n
)

exp(

Pt�k�1
n=0

(�i)
nF

j
i
(s
zk+1;t�1(t�n))+

Pt�1
n=t�k

(�n
i
F
j
i
(s
z0
1;k (t�n))+(�i)

tNi(0)A
j
i
(0)

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n

)

PNm
m=1 exp(

Pt�k�1
n=0

(�i)
nFm

i
(s
zk+1;t�1(t�n))+

Pt�1
n=t�k

(�i)
nFm

i
(s
z0
1;k (t�n))+(�i)

tNi(0)A
j
i
(0)

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n

)

�

exp(

Pt�1
n=t�k

(�i)
n�M )

(�i)
tNi(0)+

Pt�1
n=0

�n
i

)

exp(

Pt�1
n=t�k

(�n
i
(��m)

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n
)
PNm

m=1 exp(

Pt�k�1
n=0

(�i)
nFm

i
(s
zk+1;t�1(t�n))+(�i)

tNi(0)A
j
i
(0)

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n

)

exp(

Pt�1
n=t�k

(�i)
n(��m)

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n
)

exp(

Pt�1
n=t�k

(�i)
n�M )

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n
)
PNm

m=1 exp(

Pt�k�1
n=0

(�i)
nFm

i
(s
zk+1;t�1(t�n))+(�i)

tNi(0)A
j
i
(0)

(�i)
tNi(0)+

Pt�1
n=0

(�i)
n

)

= exp 2(

Pt�1
n=t�k(�i)

n(�M +�m))

(�i)tNi(0) +
Pt�1

n=0(�i)
n
) � exp 2(

(�i)
t�k(�M +�m))

1� �i
)

where for the last inequality we use the fact that �i < 1:

Therefore,

P (zk+j;1jz1;k; zk+1;k+j�1)

P (zk+j;1jz01;k; zk+1;k+j�1)
=

1Y

t=k+j

IY

i=1

P (s
zk+j;1

i (t)jz1;k; zk+1;t�1)

P (s
zk+j;1

i (t)jz0
1;k; zk+1;t�1)

�
IY

i=1

1Y

t=k+j

exp 2(
(�i)

t�k(�M +�m))

1� �i
) =

IY

i=1

exp 2(
(�i)

j(�M +�m))

(1� �i)2
)
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Therefore supk2R supfjP (F jG)� P (F )j : G 2 Fk
1 ; F 2 F1

k+j; P (G) > 0g:

jP (F jG)� P (F )j � max
z1;k2G;z

0

1;k2F
k
1 ;zk+1;k+j�12F

k+j�1
k+1

sup
z1
k+j2F

�����
P (zk+j;1jz1;k; zk+1;k+j�1)

P (zk+j;1jz01;k; zk+1;k+j�1)
� 1

�����
�

IY
i=1

exp 2(
(�i)

j(�M +�m))

(1� �i)2
)� 1

Since this is true for any k 2 N and any G 2 Fk
1 ; F 2 F1

k+j; P (G) > 0; the
result follows.�
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9 Appendix B

We investigate here the asymptotic properties of estimators of the � param-
eter vector which controls the distribution of individual learning parameters
in the population. We �rst have the analog of Lemma 1

Lemma 3. Denote by �� the true vector of parameters, then

�� 2 argmin�E(Qn(S(1); : : : ; S(n); �)) .

Proof:

E(�
X
sT2ST

[I(sT ; S(l)) logP (sT ; �)]) = �

mjX
sT2ST

P (sT ; ��) logP (sT ; �):

We will now show that this expression is minimized when � = ��. The �rst
order conditions of the problem

max
�

mjX
sT2ST

P (sT ; ��) logP (sT ; �)

subject to

mjX
sT2ST

P (sT ; �) = 1

are P (sT ;��)
P (sT ;�)

= � or P (sT ; ��) = P (sT ; �)�. Adding over sT 2 ST we get

� = 1, which gives P (sT ; ��) = P (sT ; �) so that a minimizer is ��as we
wanted. 2

We can now prove the analog of Propositions 1 and 2.

Proposition 4. If �� is identi�ed and F (:; :) is a continuous function of �;
then �̂ is a consistent estimator of ��: That is

j�̂� ��j ! 0 i:p: as n!1

Proof: Lemma 3 shows that �� 2 argmin�E(Qn(S(1); : : : ; S(n); �)) , and
since the parameter vector is identi�ed that requirement is satis�ed with
equality. So by theorem 7.1 (p. 81) in P�otscher and Prucha 1997, the result
follows provided the following conditions hold:
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1. The process S(l) is de�ned in a subset of Rp, and the parameter space
A is a compact metric space.

2. The process S(l) is �-mixing.

3. The function q(S(l); �) is continuous.

4. supn n
�1
Pn

l=1EjS(l)j <1:

Conditions 1 and 4 are satis�ed by the �niteness of the strategy spaces we
consider and the limits we impose on the parameters. Condition 2 is sat-
is�ed as the behavior between sessions as well as the learning parameters
draws between individuals is independent. Condition 3 is easily veri�ed by
inspection of the function q(S(l); �):2.

Let
Cn = E(r��(Qn(S(1); : : : ; S(n); �)))

and

Dn = (nE(r�0(Qn(S(1); : : : ; S(n); �)r�(Qn(S(1); : : : ; S(n); �))))
1=2:

Proposition 5. Assume that lim infn!1 �minE(r��(Qn(S(1); : : : ; S(n); �))) >
0 and that F (:; :) is a twice continuously di�erentiable function. Then �̂ is
an asymptotically normal estimator of ��. That is,

n1=2(�̂n � ��) = (Cn)
�1Dn�n + op(1)

with

�n ! N(0; I)

and
n1=2(Dn)

�1Cn(�̂n � ��)! N(0; I)

Proof: By theorem 11.2 (p. 108) in P�otscher and Prucha 1997 the result
follows provided the following conditions hold:
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1. The process S(l) is de�ned in a subset of Rp, and the parameter space
A is a compact metric space.

2. The functions q(S(l); :) is twice continuously partially di�erentiable at
every point in A; and the function q(:; �) is measurable in S.

3. The sequence of estimators �̂n satis�es jân � ��j = op(1):

4. supn n
�1
Pn

l=1EjS(l)j <1:

5. The function r��(q(S(l); �̂)) is continuous on S;A, and

sup
n
n�1

nX
l=1

E[sup jr��(q(S(l); �̂))j
2] <1

6.

E(r�(Qn(S(1); : : : ; S(n); �)) = 0

7.

lim inf
n!1

�minE(r��(Qn(S(1); : : : ; S(n); �))) > 0:

8. The process (S(l))l2N is �-mixing of size �r=(r � 1), for r > 2:

Proof: Conditions 1 and 4 are satis�ed by the �niteness of the strategy
spaces we consider and the limits we impose on the parameters. Condition 8
is satis�ed as the behavior between sessions as well as the learning parameters
draws between individuals is independent. Condition 2 and 5 is easily veri�ed
by inspection of function q(S(l); �) and by the continuous di�erentiability of
F (:; :). Condition 3 follows from Proposition 4. Condition 6 follows from the
way in which estimators are obtained. Condition 7 is an assumption of the
proposition.�

We have not been able to �nd meaningful suÆcient conditions for identi�-
cation of the parameter vector �: In fact, as we now show with an example,
this is not a trivial issue in general.

Assume that the players are playing a one-person game with only two strate-
gies (s1; s2), whose payo�s are respectively �1; �2 with �1 > �2. Assume also
that � = 0; Æ = 1; � = 0, and N(0) = 1. We only have to estimate the dis-
tribution of �. Assume that this game is played only once in every session,
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so that T = 1. The probability distribution of � is such that there are only
three possible values of �, namely �1; �2; �3 whose respective probabilities
are p1; p2; (1� p1� p2). In this case, the vector � = (p1; p2). The probability
that strategy s1 is played is therefore ps1 =

1
e�1(�2��1)+1

p1 +
1

e�2(�2��1)+1
p2 +

1
e�3(�2��1)+1

(1�p1�p2): The model then reduces to the choice of s1 following
a binomial distribution with probabilities given by p1. Let K be the number
of sessions (thus, the number of times) that strategy s1 is played in a given
sample of size n. The likelihood function of that sample is

(ps1)
K (1� ps1)

n�K :

This likelihood is maximized for any �̂, such that

ps1 =
K

n
:

But this is a linear equation with two unknowns, so we will have in�nitely
many solutions for the problem. In this particular case the diÆculty will
be resolved if each session has two periods, but in general notice that there
will be a tension between the number of periods in each session and the
complexity of the distribution function that needs to be estimated.
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