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Summary

A new algorithm called the parameterized expectations approach
(PEA) for solving dynamic stochastic models under rational
expectations is developped and its advantages and disadvantages are
discussed. This algorithm can, in principle, approximate the true
equilibrium arbitrarily well. Also, this algorithm works from the
Euler equations, so that the equilibrium does not have to be cast in
the form of a planner’s problem. Monte-Carlo integration and the
absence of grids on the state variables, cause the computation costs
not to go up exponentially when the number of state variables or the
exogenous shocks in the economy increase.

As an application we analyze an asset pricing model with
endogenous production. We analyze its implications for time dependence
of volatility of stock returns and the term structure of interest
rates. We argue that this model can generate hump-shaped term
structures.
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Introduction

During the last decade, the use of dynamic, stochastic models has
extended to all fijelds of economics. Perhaps the main limitation of
this class of models is that they are very difficult to solve; few of
them can be solved analytically” and only after making very strong
assumptions.

Given these difficulties, and given the progress that computer
hardware has experienced in the last few years, it is worthwhile to
put some effort on methods for solving these models numerically. With
numerical solutions it is possible to simulate the models and perform
exercises of theoretical interest (how does the model respond to a
change in the environment?, to a change in policy?, does the model
reproduce some stylized facts?), as well as empirical exercises
(estimation by simulation or calibration).

The main object of this paper is to introduce the parameterized
expectations approach (PEA) for calculating numerical solutions to
stochastic non-linear models with rational expectations; we discuss
its flexibility, its advantages and disadvantages. Despite its short
life, this procedure has been applied successfully to a number of
models: Marshall [1988] uses it to solve a model of money with
transactions costs, Den Haan [1988] solves a model of money with a
shopping-time technology and compares the equilibrium under the
optimal monetary policy with some suboptimal policy rules, Marcet and
Singleton [1989] show how to solve asset pricing models with
heterogeneous agents and credit constraints, Ketterer and Marcet
[1989] apply it to study the effect of introducing options in
financial markets with incomplete markets; Marcet and Marimon [1989]
solve a stochastic growth model with incentive compatibility and
participation constraints, and den Haan [1991] applies it to study the
term structure of interest rates in a model with money and endogenous
production and Rojas [1991] solves for the optimal taxation problem in
a model with private and public capital.

The basic idea in PEA is to approximate the conditional
expectations that appear in Euler equations by parameterizing them
with flexible functional forms; we then iterate on the parameters of
these functions until the expectations are good predictors by looking
at simulations done with several parameter values. This will usually

%Some examples are the linear-quadratic case, some models with exponential
utility, the Brock & Mirman version of the neoclassical growth model, or
the asset pricing model with discrete dividends (Mehra and Prescott
[1985]).




involve numerically calculating the fixed point to a certain mapping
in order to guarantee that, given that agents use these expectations,
these are in fact the best predictors of the future. We will discuss
techniques based on homotopy that can be used in calculating the fixed
point.

Because in PEA we check if the expectations are good predictors
along simulations, we are ensured that the approximation is good in
those intervals of the state variables that happen more often. When an
algorithm gives more importance to those values of the variables that
happen more often it said that this algorithm performs "endogenous
oversampling”; by its nature, PEA does endogenous oversampling and
Monte-~Carlo integration at the same time.

The parameterized expectations approach can, in principle,
approximate the equilibrium with arbitrary accuracy by refining the
degree of approximation; for example, if the conditional expectation
is parameterized as a polynomial, one can use a polynomial degree high
enough to obtain arbitrary accuracy . Perhaps its main advantage,
however, resides in its great flexibiliy that makes it applicable to a
large number of models with moderate computational costs.

As an application with independent interest, we study an asset
pricing . model with endogenous production and capital accumulation as
in Brock [1982]. This is an example of a relatively simple model that
is very difficult to characterize analytically but that can be easily
analyzed by simulation®. We show that a very simple model with
endogenous production generates a very rich pattern of covariances
between asset prices and interest rates that would be much harder to
capture in a model with exogenous production and it improves the
performance of the model in some aspects. In particular it generates
long-term dependence between asset prices and the real part of the
economy, and it creates a humped-shaped term structure of interest
rates; we also argue that, even though it displays higher variance of
stock returns in recessions as discussed by Rowenhorst [1991], this
result would happen in most asset pricing models. Finally, it has been
argued that one of the reasons for the equity premium puzzle in the
paper by Mehra and Prescott [1985] is that they force the volatility
of stock returns to be very small compared with the true data, due to
the fact that dividends are perfectly correlated with total
production; the model with endogenous production provides a natural

3 Den Haan and Marcet [1989] discuss a method for evaluating the accuracy

of numerical solutions to dynamic models. They also evaluate the accuracy
of PEA in several models.

4Balcluzzi [1991] studies a version of this model with an analytic
solution, but he has to assume no depretiation of capital. Rowenhorst
[1991] and den Haan [1991] study a similar model by simulation.




way of making stock returns highly volatile without introducing many
parameters in the model, since payments of capital are decided
endogenously; we show that, even when the stock returns are made as
volatile as in the US data in this case, this model still does not
solve the equity premium puzzle.

Much progress has been made recently on the subject of numerical
solution procedures. Some algorithms are based on discrete state space
techniques used by Miller [1984], Pakes [1986], Rust [1987], Tauchen
[1986] and Wolpin [1984] and Baxter [1988]. Also, the extended path
solution procedure of Fair and Taylor [1983], the Euler equation
approach of Labadie [1986], the linear-quadratic approximation as in
Kydland and Prescott [1982], the backwards solution technique of Sims
[1986], Novales [89] and Ingram [1986] and the Euler equation
approaches of Coleman [1988], Judd [1989) and Baxter [1988] are
available to solve dynamic stochastic models”. The ideas in this paper
are very related to other solution procedures that existed before the
earlier version; in particular, the relationship to the backwards
solution method of Sims and Novales, to the iterations performed in
Townsend [1983] and to Marcet and Sargent [1989b] will be discussed.

The traditional techniques based on dynamic programming, namely,
the linear quadratic approximation and the value function iterations,
have provided many useful applications in economics, but there are
many models of interest that can not be addressed with these numerical
techniques. The value function iterations need a large grid on the
state space to be imposed , so that the computational constraints of
existing hardware are binding, and the linear quadratic approximaticn
has the problem of not being applicable in models with inequality
constraints, and it does not  provide an arbitrarily  good
approximation. Also, these techniques are designed to solve a
planner’s problem, and sometimes it is difficult to cast equilibrium
models in planner’s problems.

The parameterized expectations approach can, in principle, give
an arbitrarily good approximation to the rational expectations
equilibrium, it is flexible enough so that it can be applied to a
large class of models, and it can solve suboptimal equilibria
"directly"”, without having to characterize the equilibrium as the
solution to a planner’s problem. Even though the techniques described
in the present paper seem quite useful it is certainly not the case
that they uniformly dominate the dynamic programming methods. For
example, there are models where the linear quadratic approximation can
be applied and where it is a fairly good approximation; since PEA is
more computationally intensive, in these cases one would want to use
the LQ approximation. In models where the decision variables are

5

See the Taylor and Uhlig [1990] paper for a comparison of some of these

techniques in solving a simple growth model.




discrete and they can take on very few values, iterations on the value
function are likely to be a a better approach. The recent techniques
of Coleman and Judd can be applied in similar circumstances as PEA. We
will discuss the advantages and disadvantages of PEA in front of the
alternatives in the text.

We propose several numerical algorithms to calculate a certain
fixed point involved in the solution. The algorithms we suggest in
this paper converge to the fixed point if the model at hand is stable
under a particular kind of non-linear least squares learning
mechanism. This provides some peace of mind in that those models that
are stable under learning can be calculated with these algorithms.
Also, for models with multiple equilibria it is often the case that
only one of them is stable under learning; for these models, the
algorithms proposed here would find the stable equilibrium, and the
researcher does not need to worry about the other equilibria.
Finally, one should keep in mind that stability of least squares
learning algorithms is a fairly mild requirement, as most dynamic
models that have7 been analyzed in the learning literature turn out to
be locally stable.

We start by discussing the general idea of the algorithm, and
move gradually to more systematic applications. In section 1, we
describe the parameterized expectations approach, its motivation, we
show how it can be applied to several models. Section 2 discusses
numerical algorithms for solving the fixed point problem involved in
the parameterized expectations approach, and how to use the homotopy
approach for this purpose. In section 3 we solve an asset pricing
model with endogenous production by PEA; we discuss some practical
considerations that arise in solving a simple growth model, and we
discuss the speed of the algorithm; we study the implications of the
model for the term structure of interest rates, and the volatility of
stock returns. Section 4 contains some conclusions and suggestions for
extensions.

®For a review of simulation algorithms of dynamic stochastic models and
their applications see Marcet [1991].
4

See Marcet and Sargent [89a], [89b] for some of these results and for

other references




1. The Parameterized Expectations Approach

The problem at hand is to find numerically the solution to the
endogenous variables of a stochastic, dynamic model as functions of
the exogenous variables and for given parameter values of the
parameters of the model.

More specifically, consider a dynamic model with rational
. . . n
expectations, where the economy is described by a vector z € R". Each

period there are s exogenously given i.i.d. shocks u € R®, and agents
have an information set Qt. There is a large class of models where

the equilibrium process for { z, } satisfies
(1.1) gl E[ ¢(ztﬂ) Q1 z,2z ,u)=0 for all t,

2 .
for known functions ¢:Rn—>Rm and g:RrM "ELR" ; here n is the

number of variables in the vector zt, m is the number of conditional

expectations involved in the system (1.1), and s 1is the number of
i.i.d. shocks in the system. Here, the functions g and ¢ will depend
on the parameters of the model; This dependence is left implicit for
most of the paper. Equations that will typically be part of the system
(1.1) will be Euler equations, resource contraints, laws of motion of
exogenous processes, market clearing conditions, implementability
constraints, etc.

Throughout the paper we will assume that, in equilibrium, the
variables of the model have a law of motion that can be written as a
time invariant function of a finite set of state variables, and we
will assume that the researcher is interested in analyzing the
stationary distribution of the model. The procedure can be adapted to
cases where the law of motion depends on time (for example, Marshall
[1988] solves by PEA a model with a time varying process for forcing
variables), cases where the researcher is interested in the analysis
away from the steady state (for example, Marcet and Marimon [1991]
study by PEA the growth path from a low level to the steady state
level of capital stock) and where it is not known if there is a finite
number of state variables (for example, models with private
information). Also, since we are interested in the steady state
distribution, all the mathematical expectations in this paper are
taken with respect to this distribution unless otherwise specified.

It is easy to write down systems like (1.1) for many interesting
models, but it is much harder to write down the equilibrium law of
motion of z. We think of (1.1) as a complete description of the

economy; in other words, we have to include enough equations in this
system so that only the solution {zt) that we are seeking satisfies




the above system of equations. In some models, there are side
conditions that have to be satisfied in order for the system (1.1) to
be sufficient: these side conditions may involve second order
conditions, Kuhn & Tucker conditions, non-negativity constraints of
some variables etc., and they can be considered part of the system g.

Notice that, by characterizing the model with a system like this
one we can solve models without having to cast them in a planner’s
problem: problems with distorting taxes, monetary models, models with
inequality constraints, private information etc. can be cast into
(1.1) quite easily, but only some of them are the solution to a well
known planner’s problem

We now show some examples of models that fit (1.1):
Example 1.1 (Lucas [1978] asset pricing model) .

A representative consumer chooses optimal paths of consumption of
a perishable consumption good; we denote his consumption by c,- This

consumption good is produced by a tree that yields dt units of the

consumption good every period. Shares of ownership to the tree can be
traded in a competitive market. The agent receives exogenous labor
income W, The variables (wt, dt) follow an exogenously given Markov

process of order m, and they may have a continuous distribution.

The representative agent solves

o}
(1.2) max Ej [ T st ule,) 1
(ct ,At) t=0

subject to c, * ptAt = (p,c + dt) A w

+ )
t-1 t

(Ct’At) measurable with respect to Qt'

where At denotes shares of ownership of the tree bought at time t, P,
is the price of each share in units of consumption good and Qt is the

information set at t, which includes observations on all variables up
to time t. The representative agent behaves competitively, taking
prices as given.

Finally, we follow Lucas and introduce a shortselling contraint

At =2 K , for some K < 1. Introducing this constraint has no effect

on equilibrium, but its absence would make the maximization problem
ill defined.

There is a net supply of one share, so that equilibrium in the




market for shares guarantees that

(1.3) At =1 for all t .

The consumption good is traded competitively in spot markets, so
that in equilibrium

(1.4) c=d+w
t t t

The Euler equation for the maximization problem can be written
as:

(1.5) u’(ct) p,= S EI u’(ct+l) P { S'lt ]+

+ E [ ulc ) d | Q 1
t+l t+l

Let us map this model into (1.1). The vector z, is given by

z = c,A,d,w,d w
t (pt‘ A A A A S AR T t-m-1 t-m-1

where we have included the endogenous variables and the relevant lags
of the exogenous variables (recall that (wt, dt) are Markov of order
m), and u, will be the innovations in (wt, dt)'

In this model, the system corresponding to (1.1) is given by
(1.3), (1.4) and (1.5), plus the law of motion for (dt, wt). Note

that, by the spot-market version of Walras’ law the budget constraint
will then be satisfied; hence, this equation can be ignored.

Example 1.2 (Simple Stochastic Growth Model)

Let us consider the following generalization of the model by
Brock and Mirman [1972]




[+2]

t 1=y B
max E_ tZoa [ct ] / (1-y)

o
(1.6) s.t. c, * kt -pk = 8, k ,

where 4 denotes consumption, kt is the capital stock and the

productivity shock 8, obeys the following process:

t

(1.7) log( 6t } = p logl( et—l ) o+ €, ,

where €_is i.i.d., distributed N(O,crz), and [pl<1 .2

The first order condition for optimality is

(1.8) c_7=6E|:c—2r (e aka_1+u)]
t t] t+l t+1 t
In this model, the set of variables in the economy is z, = ( ct,
kt , 9t ). The system g in equation (1.1} is given by the resource

constraint (1.6), the law of motion of the productivity shock (1.7)
and the Euler equation (1.8}, and u, is the innovation to the

productivity shock €.

One issue that may come up is if this system of equations is
sufficient to characterize the solution, or if we need other side
conditions; in particular one might be worried about satisfying the
transversality condition. However, we know from dynamic programming
that this model has a unique solution, and that this is uniquely given
by the FOC and the requirement that the policy function is time
invariant. Therefore, as long as we make sure that our solution
follows a time invariant law of motion we know that the FOC is
sufficient for optimality.

& This is also the model solved by the NBER Non-Linear Rational

Expectations Modelling Group. The results for this and other solution
methods are reported in the January 1990 issue of the Journal of Business
Economics and Statistics. Den Haan and Marcet [1990] discuss the solution
to this model by PEA in greater detail in that issue.




Example 1.3 (Asset Pricing Model with Habit Persistence)

Let us consider the same model as in Example 1.1, with the
simplification that wt=0 and that dt is Markov of order one, but with

the complication that the instantaneous utility function depends on
lagged consumption. Now the agent’s utility function is given by

This model has received considerable attention recently, among other
authors, by Heaton [1990], Constantinides [1990] and Singleton [1991].

The conditions for equilibrium are now the same as in example 1.1
except that the Euler equation becomes

(1.9) [u(c,c)+6E[u(c ,c)IQ]]p=
1t 2 ta’ t t

6E[[u(c , )+ 8ulc ,c )1(p +d)|Q],
1 ot+l’t 2 Tte2 Ttel t+1 t+l t

where ul(.) represents the partial derivative of u with respect to the

i-th term.

For this model

and the system (1.1} is now given by (1.4}, (1.5}, (1.9) and the law
of motion of dt.

Example 1.4 (Simple Growth Model with Lower Bounds on Investment)

This example is meant to show that inequality constraints are
easily handled by the PEA framework.

The simple growth model of example 1.2 is sometimes written with
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inequality constraints; in particular, investment is often assumed to
be non-negative. In this case we have to add the restriction

(1.10) i z0
t

to the optimal problem in Example 1.2. With this restriction the first
order condition (1.8) is replaced by the Kuhn & Tucker conditions:

(1.11) i[c—w-aE[c—w(e aka_l+p)]]=o ,
t t t| Tte1 t+1 t
plus the inequalities
(1.12) c"za}z[c'z’ (o aka_l+p)]
t t] tel tel t

and (1.10).

In this case the vector z, is the same as in example 1.2, but

(1.11) and the inequalities replace (1.8) in that example. Hence, the
model with inequality constraints can be put into the framework of
(1.1), since the first order condition (1.12) can be imposed as part
of the function g. Marcet and Singleton [1991] discuss in detail how
to solve models with inequality constraints with PEA.

For a given model, there are many alternative systems (l1.1). In
particular, by letting current variables go in or out of the
conditional expectation it is possible to represent a given model with
different functions g and ¢; for example, in Example 1.1 the Euler
equation is often written as

(1.13) w(ic)=8E[ulc J(p +d )/p | Q]
t t+l t+1 t+l t t

We will see below that this parameterization would not be useful for
our approach, since it would make it impossible to obtain simulations
for stock prices. More generally, the function g has to be written in
a way so that given z and u the system (1.1) provides a unique

solution for z,. In principle it is possible to find this solution

since we have n equations for n unknowns.

Assume, for simplicity, that there is a finite vector of state
variables X5 then there is a function f(.) such that

10




E [ ¢(Zt+l) | Qt] = f(x) .

If we knew the function f then we could substitute it in the first
order conditions and (1.1) would become

(1.14) gl f(xt), z, Z ut) =0 for all t .

Clearly, (1.14) provides a solution for z, in terms of z and

the shocks, and this solution gives us the equilibrium law of motion
of Zt' Hence, if we knew the function f, we could obtain simulations

solving for z, in (1.14) at every period. Unfortunately, the function
f depends on the equilibrium process z if we knew the equilibrium
law of motion for z we could probably derive f, but this law of

motion is precisely what we are trying to find. This is the reason
that solving models with rational expectations is complicated: the law
of motion depends on the expectations, but we can not find the
expectations until we have the law of motion.

The approach we propose avoids this vicious circle by starting
with a parameterization of the conditional expectations in (1.1) as a
fixed function W(B,xt), where B is a set of parameters, and Xt is a

sufficient vector of variables in the information set; choosing X /
and B, so that w(B,xt) is as close as possible to E | ¢(2t 1) | Qt 1.

Substituting this approximated conditional expectation we have

(1.15) g( Vl(B,xt(B)), zt(B), Zt—l(B)' u ) =0 for all t

For a fixed choice of y, B8 and X, it is easy to obtain a solution for
(zt(B)) from this equation and, if the parameterized expectation is
indeed close to f, then (zt(B)) is close to the equilibrium process
for zt. Of course, for an arbitrary selection of ¥, B, and Xt this

solution will have little to do with the rational expectations
equlibrium.  The next paragraphs discuss how these selections should
be made in order to have a good approximation. Notice that we make
explicit the dependence of (21(6)) on B, and we leave the dependence

on X, and ¢ implicit.

11




Choice of X

The variables in Xt have to be contained in the information set

of the agents and they should be rich enough so that, in equilibrium,
E( q&(zt 1) [ X, ) is equal to the expectation in (1.1). In most
+

models, we know enough about their solutions to make an informed guess
about X for example, in models where z can be obtained by solving a

dynamic programming problem, X should be the vector of state

variables.

Clearly, there are many choices of variables that satisfy the
above requirement. For example, in the growth model of example 1.2 we
could choose either [];ct 1,et] or [kt,et]; since both of these

choices form a  sufficient set of state variables. Another
consideration in choosing X, is that, depending on the choice of x we

can make to facilitate solving for zt(B) in (l.15). In Example 1.2,

using the beginning of period capital stock we can solve for capital
recursively, but using kt would involve solving a non-linear system

for finding kt at every period. It is worth noting that the criterion

described in this paragraph may conflict with the criterion in the
previous paragraph.

Choice of ¢

The function ¥ will be selected in this paper to belong to a
class that can approximate arbitrarily well any function. Since we
are trying to approximate conditional expectations, it is enough to
approximate this function in the L~ sense. A natural choice for this
class of functions is a polynomial; but, in principle, other classes
like splines or neural networks could be used. Again, it is important
to choose Y so that we can solve for zt(B) in (1.15).

If we decide to use a polynomial, the idea is to select a
polynomial of degree high enough so that the function (8, -) is close
to the conditional expectation f(.). One obvious way to check if the
degree of the polynomial is high enough is to compare the solutions at
different degrees of the polynomial; other ways of checking for
accuracy are described in den Haan and Marcet [1989]. If the
researcher were using splines, the researcher would have to use more
refined partitions of the state space in order to obtain arbitrary
accuracy.

We can discuss the choice of X, and ¢ in the context of the

previous examples:

12




Example 1.1

One candidate for a state variable would be the stock holdings
At, because this is a state variable in the maximization problem of

the agent. But we know that, in equilibrium, A,L is a constant so that

it carries no information on future variables; therefore, we do not
have to include it in X, Also, only m lags help predict future values

of the exogenous variables. Hence, we choose X, equal to the

sufficient set of state variables

X =d,w,d ,w , .. d , W )
t v Y el - t-m-1"  t-m-1

Notice gthat there are two expectations that have to be
approximated’. One possible choice for ¢ in each expectation is a
regular polynomial.

Example 1.2

Per our previous discussion, we could choose xt = (kt l,E)t).

As for the choice of functions, we note that the left hand side
of (1.8) is strictly positive, as well as the functions inside the
conditional expectation. In this case it is advisable to choose a
function ¢ that can only take positive values; if we used a regular
polynomial, this could take a negative value and make it impossible to
solve for ct(B). Also, forcing ¢ to be positive captures a feature of

the true conditional expectation which, we know, can not take negative
values. One alternative is to use the exponentiated polynomials exp(
P (xt)), which can only take positive values and can approximate
n

arbitrarily well the true conditional expectation.
Example 1.3

This is an interesting case, because even though the set of state
variables of the model is (ct r dt), the conditional expectations

9 . . e .

These two expectations could be grouped into one. Usually it is advisable
to reduce the number of expectations when doing numerical work, since this
reduces the number of parameters that we have to iterate over. We separate

the two expectations in (1.5) because this facilitates the analysis
and Bf later in this section.

13




involve values of future and present values of the dividend process
and, since dt follows a Markov process of order one, these

expectations depend only on the current value of the dividend. Hence,
we can choose

Example 1.4

Here the state variables are as in Example 1.2. In this case,
there is no need to force Y to be positive; a negative value of the
expectation simply means that, for that period, the solution is it=0.

so that the -equation (1.11) and the inequality (1.12) are both
satisfied.

Choice of B

Once we choose a functional form we have to decide the
coefficients B in this function. For example, if we choose a
polynomial, B represents the coefficients in the different terms of
the polynomial; if we choose a spline, 8 will contain the partition
points as well as the coefficients in each interval.

The idea is to choose B so that, if we find the solution with
this parameter, this is the parameter that best predicts ¢¢5(2t 1(B)).
This is justified because, if f(xt) represents the +true conditional

expectation under rational expectations, then this function minimizes
the mean square error when we try to predict ¢(2t+1) with a function

of xt; more formally, it satisfies

f = argmin E || hix,) ~ ¢(z )||2 ,
t t+l
heF

where F = { h:R"H>R™ } . Given the solution (Zt(B)}, we can ask the

following question: what is the parameter value that minimizes the
mean square error when we predict ¢¢5(zt ‘(B)) , if we restrict
+

ourselves to functions of the form y( . ,xt(B))?. This is given by the

following mapping:

(1.16) S(B) = argmin E || ¥(B%x (B)) - ¢(z. (B) ||
B* t t+1

14
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Here, S maps Rv into itself, and v is the number of coefficients in B.
The mapping S can be interpreted as the mapping from perceived to
optimal expectations, in the sense that if agents perceive W(B,xt) to

be the best way to forecast qb(zt 1) with information at t, in fact,
+

the best forecast that can be made if we are restricted to forecasting
with the function ¢, is given by w(S(B),xt).

We then choose B=Bf=S(Bf). By definition of the mapping S, the

fixed point is such that, if agents use Bf in their forecasts, then

the series that satisfies the first order conditions will confirm that
this is the best forecast that agents could possibly wuse within
functions of the form w(-,xt). Therefore, our numerical solution is

given by (zt(B )}

f

It is beyond the scope of this paper to prove existence or
uniqueness of the fixed point. In particular, one could be suspicious
about uniqueness of the fixed point, because we know that if {g } is a

n

sequence of polynomials such that g —>h as n—>w , even if h has a
n
unique fixed point, g will have, in general, many fixed points.
n

However, the fact that y could be polynomial which will have stronger
oscillations for high degrees does not mean that S displays similar
behavior when we increase the degree of the polynomial. This is
illustrated in the following example, where we calculate S and B’f

analytically for the model in Example 1.1; in particular, we will show
that S is linear and it has a unique fixed point for any degree of the
polynomial.

Example 1.1 Stability of S, Existence and Uniqueness of Bf

The key element of this model that facilitates the analysis is
that X, consists only of exogenous variables. Equations (1.3) and

(1.4) immediately give us the law of motion for ct and At, so that the

only variable that we have to solve for is P,-

The parameterized expectation will take values in RZ, since two
conditional expectations are involved in (l.5). We choose each
element of Y to be a regular polynomial of degree v. Then we can
express Y as

w(s,xt) = B, B, P o flx),

t

where f(xt) is a vector containing all terms of the form
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(xn)q'(xjt)q, for integers q,q'z0 such that g+q'’sv, and for X Xy
€ X, - Here, Bl and f(xt) are column vectors of the same length.

Now we substitute the conditional expectations in (1.5) with the
parameterized expectations, to obtain

(1.17) u’(ct) pt(B) =38 (Bl+ Bz)’ f(xt)
This is the system (1.15) in this model.

Now, observe that

E [ U’(ctd) pM(B) I f(xt) ] = Sl(B)’ f(xt)

A

E [ U’(ctﬂ) d | | f(xt) ] = SZ(B)' f(xt),

where E(X|Y) denotes the linear projection of X on Y. This equality
follows from the definition of S, the definition of a linear
projection and because y is linear in f(xt).

Since ct, dt, and f(xt] are all exogenous variables, S2 = y for a

vector % independent of B. Finally, we find a formula for S by
observing that if P, is given by (1.17), then

~

E [ u’(cm)ptﬂ(B) | f(x)] =E [ 6([31 + B fx ) I f(x )] =

6(81+ Bz)’ r f(xt) SI(B)’ f(xt),

where the square matrix I' satisfies E(f(xt+l) ] f(xt)) =T f(xt), and where

(1.18) SI(B) S (Bl * Bz), r

SZ(B)

¥

Also, it is easy to check that the fixed point Bf satisfies

— — ’—1
Bf—(I §I7)

1 Iy
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(1.19)

These are analytic formulas for S and Bf up to knowledge of ¥ and
. It is in this sense that we say that in this model S and Bf can be

solved analytically. The parameters y and I’ will usually have to be
calculated numerically by running the appropriate OLS regressions.
This formula illustrates the point that S is well behaved: for any
degree of the polynomial v, S is a linear mapping with a unique
fixed point. Also, these formulas will help in establishing stability
under learning and convergence of iterative algorithms for this model.

In the next section we will how S(B) can be calculated by running

non-linear regressions of ¢(zt+1) on l,ll(.,Xt); taking this into

account, we can finally describe the algorithm as a sequence of steps:

Step 1I: Given the system (l.1), choose X, and the class of

functions  appropriately; substitute the expectations in the system
(1.1) by the parameterized expectations "b(B’Xt) in order to obtain

(1.15).

Step 2: For a given parameter B obtain a simulation (21(3))3-1

for large T, using (1.15).

Step 3: Run a non-linear regression of ¢(Zt+1) on l,ll(.,Xt); the

result is {an approximation to) S(j).

Step 4: Find the fixed point Bf=S(I3f).

The Solution as an Approximation and Comparison with other Algorithms

The intuition of why this is a good approximation to the rational
expectations equilibrium is clear: we choose the polynomial that
satisfies the crucial property of the conditional expectation, namely,
that it minimizes the mean square prediction error. A rigorous proof
that this procedure in fact approximates arbitrarily well the true
solution is difficult; one can not invoke directly the
Stone-Weierstrass theorem because the variables that are being
predicted themselves depend on the parameters of the polynomial; also,
there is the issue of the non-linear regressions being only an
approximation to S(8), and the issue of having initial conditions of
the state variables that are not drawn from the steady state
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distribution. A proof of convergence when X, contains only exogenous

variables (as in Examples 1.1 and 1.3) can be found in Marshall
[1988]); a more general proof is the object of current research.

Independently from the approximation properties of the solution
when the polynomial is arbitrarily large, the solution for a given
polynomial degree can be interpreted as the equilibrium when agents
are restricted to using a certain functional form in forming their
conditional expectations. So, if the researcher has to use a low
degree polynomial due to computational limitations, at least he can be
confident that the solution he obtains is interpretable as a well
defined equilibrium concept.

One important advantage of this algorithm is that it works by
doing endogenous oversampling. One common problem of algorithms that
use grids in the state space is that, since the researcher does not
know beforehand what values of the state variables will happen more
frequently, he may impose a very large grid, but only a few points in
this grid are important. This problem could be overcome by spending
some computer time updating the grid, trying to adapt to the solution,
and giving more importance to those points that happen more
frequently. PEA does this procedure automatically, because the
polynomial is fitted on the domain of the variables that happen often
in the long run simulation. The problem with endogenous oversampling
may be that, since the computer has to search what area of the state
variables is rellevant, the algorithm may end up looking in areas that
are irrelevant; more precisely, the long run simulations may be
explossive. In other words, endogenous oversampling may leave too much
work to the computer. This can be solved in part by the homotopy
approach discussed in the next section, and by changing the long run
simulations by repeated short run simulations as in Marshall [1988]
and Marcet and Marimon [1991].

Also, PEA can be thought of as using a Monte-Carlo method to
calculate the integrals (more precisely, the expectations) in the
model, since the long run simulations are used to determine S{B8) which
is, in fact, determined by expectations. Monte-Carlo integration is
useful, particularly in models with several exogenous random shocks,
where quadrature may be too computationally intensive. Notice that the
endogenous oversampling and the Monte-Carlo integration are done
jointly in Step 2, when the long run simulation is calculated.

Similar ideas for finding solutions to dynamic models have been
presented in the literature. Some of the ideas on how to set up this
problem and how to find the fixed point Bf were present in Marcet and

Sargent [1989a, 1989bl. Also, they showed that stability of the
S-mapping determined convergence of least squares learning schemes in
linear rational expectations models.

The method of Townsend [1983] can be thought of as selecting ¢ to
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be linear, and performing particular kinds of iterations on the
mapping S in order to find Bf. The setup in this paper separates the

problem of specifying ¢ and x, from the problem of finding the fixed

point B, allowing for more flexibility in the class of models that can
be addressed.

The backwards solution method of Sims-Novales-Ingram can also be
interpreted in light of the above framework. This method involves
guessing about the true process for the endogenous variables, and
using this guess to substitute the expectation in the FEuler equation
by a convenient expression; then we can solve for the exogenous
variables. The "guess" about the process for the endogenous variables
can be thought of as guessing for ¥, X, and Bf. One of the main ideas

of PEA is that we should substitute the conditional expectations in
the Euler equations by a ‘convenient’ expression that makes it
possible to solve for the endogenous series, an idea that has been
taken from the backwards solution procedure.

The Euler equation methods of Coleman [1989], Bizer and Judd
[1989] and Judd [1990], parameterize the law of motion and iterate on
this law of motion until the Euler equation is satisfied at a grid
imposed on the space of state variables; in these papers, the
expectations in the Euler equations are calculated by quadrature . In
general, since PEA does Monte-Carlo integration, one would expect it
to be faster in the presence of several exogenous random shocks. Also,
it has the advantages (and disadvantages) of endogenous oversampling.
Finally, parameterizing the law of motion or the expectation may be a
matter of taste; some advantages of parameterizing expectations are
that the solution 1is then interpretable as the limit of a well
specified learning process and that the number of state variables is
sometimes smaller, since we are only worried about their predictive
power (this is the case in example 1.3 above and in Marcet and Marimon
[1991]1). Also, in models with private information we know that
additional lags, or additional functions of the observed processes,
are relevant if they have predictive power, so that this gives us a
guideline as to what terms should be introduced in the expectation to
obtain a better approximation.

10

Judd shows how these procedures and PEA can be interpreted in terms of a
more general framework. He also points some similarities with numerical
procedures used in physics and engineering.
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2. Numerical Solution to the Fixed Point of S.

In this section we discuss how to find the fixed point of S for a
given choice of Y and X, The first problem is how to find S(B).
Notice that we can simulate a long series of zt(B) from equation

(1.15). Also, S(B) satisfies

These are just the first order conditions corresponding to the
minimization problem (1.16).

Hence, given a series {zt(B)):_1 , we can run a non-linear least
squares regression (NLR) of ¢(zt+l(f3)) on the function w(-,xt(B))

Since the non-linear regression can be interpreted as the GMM
estimator with orthogonality conditions given above, we know that as T
goes to infinity the result of the non-linear regression converges to
S(B). Thus, we can calculate S(B) with arbitrary accuracy by using T
arbitrarily high. In practice, one can check if a given T 1is large
enough by comparing the solution with several realizations of the
shocks.

Compared with algorithms that wuse quadrature to evaluate
expectations, calculating S with the above procedure is related to
using Monte-Carlo integration to evaluate the expectations in the
first order conditions for the minimization problem. Using Monte-Carlo
methods is a very efficient way to calculate expectations in a model
with several exogenous random variables, which is the wusual case
except in extremely simplified models. While the cost of performing
quadrature integration grows very rapidly when the number of shocks
increases, the calculations involved in the regression are unaffected
by the number of underlying shocks in the economy.

The non-linear regression does become more expensive if we
increase the number of state variables. However, unlike in grid-based
methods, the cost does not grow exponentially: for a polynomial of
degree v, the mlx)mber of coefficients in the regression increases at a
rate less than n , where n is the number of variables in xt. The next

paragraph argues that, in practice, we usually have to calculate much
fewer terms than that.
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In adding higher order terms of the polynomial, it turns out that
many of these terms do not have any predictive power over the terms
that already existed. For example, in the growth model of example 1.2,
in going from a first degree to a second degree polynomial, it turns
out that the cross term kt_let does not have any predictive power when

the other second order terms are introduced, so this term does not
have to be introduced and there are fewer parameters involved in Bf.

Whether these terms have to be introduced or not can be checked before
they are actually introduced, as discussed in den Haan and Marcet
[1989]. In this way it is possible to handle relatively large state
vectors.

The next step consists of finding an iterative scheme that will
allow us to find the fixed point of S.

An Iterative Scheme to Find Bf

We will discuss algorithms that converge if the least squares
learning mechanism is stable. Consider the differential equation

(2.1) B = S(B) - B.

Along solutions to this differential equation, B is adjusted
infinitesimally towards S(B). Clearly, the only equilibrium of (2.1)
is at Bf.

Marcet and Sargent [198%9a, b] show that in the linear case and
under various assumptions concerning the variables in the information
set, least squares learning schemes are locally stable if, and only
if, the above differential equation is locally stable. Some of these
results have been extended to the non-linear case by Bansal [1988]. We
will now prove that for the model in Example 1.1, (2.1) is stable and
the least squares learning mechanism is stable.

Since S is a linear mapping, (2.1) is a linear differential
equation, and all we need to show in order to prove global stability
of (2.1) is that the eigenvalues of the derivative of S are all less
than one. But the eigenvalues of S are all equal to 6-&1, where El is

some eigenvalue of T. We already argued at the end of the last
section that IEIISI; since 0<8¢1 , we have that (2.1) is stable, and

the rational expectations equilibrium in Lucas’ asset pricing model is
stable under least squares learning. Since the variables used in
predicting the future are exogenous, using an argument similar to
Corollary 2 of Marcet and Sargent [1989a] we can prove that the least
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. . 11
squares learning mechanism converges.

The relationship between (2.1} and stability of learning schemes
justifies using algorithms based on this differential equation. More
precisely, we will perform iterations on 8 of the form

(2.2) B_t L= (1-A) BT + A S(Br)’ for some O<A

+

If these iterations converge, they converge to Bf. If they do not

converge even for very small A, it can only happen because the
rational expectations equilbirium is locally unstable under least
squares learning.

Obviously, we could also use some gradient algorithm for finding
solutions to non-linear systems of equations. These algorithms follow
more direct routes to the solution but, since the gradient has to be
calculated, the wusual algorithms will often be too computationally
intensive for the problems we consider. The algorithm (2.2) follows a
zig-zag path to the solution but, since it is very easy to update, it
is usually faster. Finally, and no less important, algorithm (2.2) is
extremely easy to program.

A Fast Stochastic Algorithm.

Another way of calculating Bf is using an algorithm from the

stochastic approximation literature. The model we simulate is given by
the following equations:

1

(2.3) B

+a R
t+1 Bt t ot

Dwt’[ ¢(Zt+1) - W(Bt,xt) ]

t
(2.4) R R + (/) | Dy - Dy’ - R | = (/) EO v, ¥/

1 . . . ;
lStmctly speaking, the model of section 2 does not fit the Marcet and
Sargent framework because f[xt) is a non-linear function of X, but it does

fit the framework of Bansal [1988].
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o]

(2.5) gl w(Bt,xt), z, 2z ,u )y =0

where Dwt =t v , for all t.
a8

This can be interpreted as a model of learning in a non-linear
environment. If we choose @ = 1/t, equations (2.3) and (2.4} are a

form of the recursive non-linear least squares estimator given the
expectation function . The coefficients B‘L are updated every period

using a new observation, and this coefficient is used in the forecasts
at t, in equation (2.5). Schemes like this have been used in the
adaptive control literature, and they are discussed thoroughly in
Ljung and Sdderstrom [1983].

It is well known from the literature of stochastic approximation
(see for example Ljung and Soderstrém) that algorithms of the type
(2.3)-(2.5) only converge to points B* satisfying

12

E [ [¢(2t+1(B"‘)) - w(B"‘,xt(B*)) ] Dwt(B‘) ] =0

Then, by definition, ﬁ?f = B* and this recursive scheme can only
converge to Bf. This recursive algorithm has the property that it

converges to the fixed point that we are seeking ‘automatically’,
without having to perform the regressions and the iterations on Br

separately.

This is why the+ latter algorithm can be less computationally
intensive than performing the iterations in (2.2). There, every time
that S(Br) is evaluated, we have to go through the simulated data

several times in order to perform the non-linear regression, while in
the above scheme we only use one data point at each period. The
advantadge of performing iterations in (2.2) is that they are
non-stochastic, so that it is easier to determine if we are at a fixed

12 . . . . .
To obtain the left hand side of this equation, we take the expectation of

the element multiplying @ where the expectation is taken with respect to

the stationaty distribution of zt(B). See Marcet and Sargent (1989a,b) for

another application of this recursive approach to least squares learning
models.
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point, while the stochastic nature of the algorithm (2.3)-(2.5) makes
it harder to control and to determine if we have arrived at a fixed
point.

In practice, we find it is best to start calculating solutions to
a given model with algorithm (2.2); once we feel comfortable with the
model and the nature of its solution, we can move to the recursive
algorithm of (2.3)-(2.5) to do the more computationally itensive
tasks.

Also, it turns out that using oct=(1/t) is not very efficient; the

reason is that these weights go to zero too fast; while this is what
warrants convergence of the algorithm it also makes convergence very
slow, because too little importance is given to the new observations.
In the engineering literature it is common to set @ =€, where ¢ is

a fixed small number; this allows "tracking” systems that may
experience large changes in the structure generating the data. Of
course, the problem is that unless @ goes to zero there is no chance

for Bt to converge; the solution is to set oct constant in a few

periods and then let it go to zero. In the next section we describe
how to do that for a particular growth model and how this can be used
to track changes along a homotopy.

These two algorithms, will converge whenever the model is stable
under learning. In principle, it would seem desirable that our models
would have some type of stability properties under learning schemes;
furthermore, recent findings in the learning literature indicate that,
even though it is possible to find models where learning is unstable,
these are more the exception rather than the rule.

Even though local stability of these algorithms is often
warranted, global stability is harder to check. More importantly, it
is possible that in the course of the iterations of the form (2.2) B'c

will enter a region where z, has explosive paths, making S(Br)

ill-defined and causing our algorithm to break down; this can happen
because the non-linear difference equation implied by (1.15) may, be
explossive for arbitrary choices of B, even though it will be stable
near the fixed point if this is a good approximation to the true
conditional expectation.

Using the Homotopy Apmoach.13

The rest of this section addresses the problem just described
using the homotopy approach. In effect, this is just a way of finding

13 . .. . .
Guido Tabellini pointed to me the usefulness of this literature.
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good initial conditions for the iterations on Bf and avoiding

explossive solutions during the iterations. Our experience indicates
that, for most models where endogenous variables enter in xt, it is

necessary to use this approach.
Let us briefly discuss the homotopy approach in general. We

follow in part the exposition of Garcia and Zangwill [1981]. Assume
that we want to solve the following system of equations:

F(x,a) = O
for F:R"xR™5R", for some o*. Denote the solution x*, so that F(x*,a*)
= 0. Assume that we know that for some parameter . the solution is

X, SO that F(xo, a ) = 0. The idea is to move gradually from the

known solution Xo' to the solution that we are interested in x*.
Define a homotopy H:R"x[0,115R" as a function that satisfies
H(xO,O) =0 and H(x*,1) = 0.

A path x(t) satisfies H(x(t), T) = 0 for all T € [0,1]. Under some
continuity assumptions on H it is easy to guarantee that this path

exists. Then we can use algorithms that necessitate "good" initial
conditions and, letting T go gradually from O to 1, we will follow
this path to move gradually from the known solution x(0) = X, to the

solution we seek, x(1) = x*.

The idea of homotopy is very simple, but it is also extremely
powerful. In many models it possible to go from a known solution to
the solution we are seeking by using our knowledge of economic theory.
If this fails, one can draw from a large literature in mathematics on
how to construct homotopies.

In the simple growth model of example 1.2, the case when ¥=1 and
=0 is the one solved by Brock and Mirman [1972], so we can go from
this known solution to the desired parameter values (usually, for
yearly data, we would like to set p=.9 and the risk aversion parameter
should be higher than one). Since we know the solution of the Brock
and Mirman model analytically, we know Bf for those parameters, and we

use it as an initial condition for the homotopy.

More generally, we can create a homotopy if the solution we know
and the solution we seek are both nested in a more general model, and
they correspond to different parameter values for the same model.
Formally, H can be defined as follows. It was implicit in the
definition of S that this mapping, and therefore its fixed point,
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depend on the values of the parameters of the model*. Letting «
represent the parameter values of the model, and writing the
dependence of S on a explicitely, we have the mapping S(«,8) with the
fixed point Bf(oc) = S(oc,Bf). Assume that we know the solution of the

fixed point for a given set of parameters . is Bof and we want to

calculate the solution for «a*; we can set up the homotopy as
H(B,T) = S( a*T + ao(l-—'r). B) -B;

clearly, for 7=0 the solution is Bof’ and for T=1 it is the solution

we seek.

Generically, continuity of the homotopy guarantees existence of
the path almost everywhere. If g and ¢ in equation (1.1} are
continuous, S is continuous; then we know that the path will
generically exist, and so will the intermediate fixed points. This
assumes that the model is well defined at the intermediate point of
the path.

For another example, consider the case where we just want to
change the instantaneous utility function from h to another functional
form f, and these functions are not a special case of each other. For
example, f could be a CRRA utility function, and h could be the
exponential utility function. Then, we could construct a homotopy bty
solving the model with the utility function: (l1-t)} g + T f. Clearly,
by letting T go from zero to one the solution moves to the solution we

are seeking. It is worth noting that this function preserves the
property of concavity of utility functions, so that the ‘intermediate’
solutions are well defined. This approach is related to the ‘linear

homotopy’ described by Garcia and Zangwill.

Another useful homotopy is obtained by starting the solution by
fixing the whole stochastic process z as an arbitrary linear

stationary process, depending on extraneous shocks, and moving to the
true solution. More precisely, we would obtain zt(B) by solving

(2.6) T gl w(B,xt(B)), zt(B), Zt-l(B)’ u, ) +

More precisely, the functions g and ¢ and the process for the exogenous
variables depend on the parameter values.

26




(1-7) | zt(B) - A zt_l(B) -, ]1=0 for all t

where m, are some extraneous shocks, unrelated to ut, and where A is a

matrix with all eigenvalues less than one in modulus. Again, letting T

go from zero to one we will go from the trivial solution of the
difference equation to the solution we seek.
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3. An Asset Pricing Model with Endogenous Production.

Different versions of the asset pricing model with exogenous
production have been widely explored in the literature. In their
seminal paper, Mehra and Prescott [1985] (MP) argued that, for
reasonable values of the risk aversion parameter, the equilibrium
model described in Example 1.1 could not explain the equity premium
observed in real data. They assumed that dividends equalled
consumption and that it was a two-state Markov chain. Since then, a
large number of papers has attempted to explain this puzzle.

The literature has focused on models with exogenous production
and has tried to find more interesting preference structures or
dividend processesls. While part of this focus may be due to technical
limitations, it may also due to the belief that a model similar to
Lucas’ where production is made endogenous by explicitely modelling
the capital accumulation process will only make it harder for the
model to match the data, since it means increasing the number of
restrictions imposed on the data. Since asset prices only depend on
the dividend and consumption processes, introducing capital only makes
it harder to match the data.’

Recently, there has been a renewed interest in modelling
explicitely production in order to explain asset prices; some
references are Rowenhorst [1989] and den Haan [1990bl. In this section
we argue that modelling production explicitely may help explain some
features of the data; in particular we will show that the model can
produce a humped-shaped term structure of interest rates precisely in
recessions, somehow agreeing with the observations of Fama [1984] on
the empirical behavior of interest rates, while the model with
exogenous production can not generate this observation. Also, we will
study the risk premium when stock returns are made highly volatile.
Finally, Schwert [1989] shows empirical evidence that the volatility
of stock returns is higher in recessions, and Rowenhorst [1989] argues
that the model with endogenous production is able to generate this
observation; we will point out that, in fact, most equilibrium models
display this behavior.

Another advantage of modelling production explicitely is that we
have a well articulated economic structure that justifies the dividend
and labor income process. This means that we can study the
relationship between the stock market and real economic activity, like
investment, productivity shocks, etc. We will use this feature of the
model to create a model with very few parameters where the volatility

15See, for example, Riesz [1988], Backus, Gregory and Zin [1989] and Epstein
and Zin [1989].

l6See, for example, Mehra and Prescott [1985].
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of stock returns matches that of the data, a feature not displayed by
the Mehra and Prescott model, where consumption equals dividends.

Trying to construct a model of this kind that explains all
aspects of the data would be beyond the scope of this paper; the
reader is referred to Rowenhorst [1989] and den Haan [1990b] for a
much more detailed analysis. Instead, we will show how, with very few
parameters, we can generate rich patterns of asset prices. The model
fails to explain the risk premium in the data, but the risk premium
increases considerably compared with the one that would happen if
consumption was equal to dividends, even with a standard deviation of
stock returns that matches the data.

The rest of this section is organized as follows: first we
discuss how to solve for the real variables of the problem, then we
specify the model with securities and show how to price them, and
finally we study the properties of the model.

Solving a Simple Growth Model

The model will be a version of Brock [1982], and will be fully
specified in the next subsection. As Brock showed, the real part of
the economy is described by the simple growth model of Example 1.2, so
that the real variables, namely, consumption, investment and capital
are given by the solution to that model. So we will first discuss how
to solve for the real variables in Example 1.2.

t-1
our vector xt; parameterizing the expectation in the right side of the

The state variables are known to be (k R Gt), which we take as

Euler equation we obtain

_7 _
(3.1) c, (87 = 5yl 8 k_(B), 6 )

We choose as our functional form for the parameterized
expectation

(3.2) Wi(B, kt—l' Gt) = exp | Pr(log(kt—l)' log(et)) ],

where Pr is a polynomial of degree r. The main reason for this choice

is that ¢ takes only positive values: since ¢ is positive valued, the
conditional expectation f(.) has non-negative values and by imposing
the same restriction on y we can presumably approximate f better.

This choice does satisfy the requirement that it can approximate
the function f with arbitrary accuracy: letting
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ff(xl,xz) = f( exp(xl), exp(xz) ),

we have that ff( log(kt_l),log(et) ) equals the conditional
expectation, so it is enough to argue that the function exp(Pr)
approximates ff. A polynomial Pr can approximate the function log(ff)

arbitrarily well; hence, exp(Pr) can approximate ff arbitrarily.”

Another practical reason for this choice of ¢ is that the right
hand side of (3.2} is guaranteed to be positive, so that it is easy to
solve for consumption.

Finally, we can set up a homotopy that goes from the Brock and
Mirman solution with y=]1 and u=0 to the solution we seek with lower
depretiation

Let us go through the steps of the algorithm as described in
section 1, using an exponentiated polynomial of degree one. Then (3.1)
becomes

-y _ Bz B3
(3.3) ct(B) =B kt—l(B) et

1

so that (1.6}, (1.7) and (3.3) form the system (1.15) in this model.
This completes Step 1.

Obtaining solutions for consumption and capital for a given B is
trivial: at time t the state variables are predetermined, so Ct(B) is
obtained directly from (3.3} and kt(B) from the production constraint;

this completes Step 2.

Step 3 consists of running a non-linear regression trying to

ALl of these approximations are in a compact set of the space of the state
variables, so that we can apply the Stone-Weirstrass theorem. Strictly
speaking there is no guarantee that our state variables will be on a
compact set with probability one at all periods, but this is not a
practical problem as long as we are solving a model with an ergodic
distribution. If one wanted to be more strict, it would be possible to
simulate a modified model with one additional constraint that prevents the
capital stock from being higher than a very large upper bound; since
inequality constraints are easy to handle with PEA this would be easy to
simulate, while a model with a very large upper bound is essentially the
same model as without the constraint and the solution should be very
similar, as long as the capital stock has a stationary distribution.
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predict

®7 (e, a kt(B)a—1+ W) with ol k (B), 6

t-1 i

t+1 t
and the result would be our approximation to S(B)IS. Then it is
straightforward to apply the first algorithm in section 2 to find the

fixed point in Step 4 of the algorithm.

The following table summarizes calculations of the fixed point
and computation times for the homotopy that goes from the solution we
know (Brock and Mirman) to the solution to the solution we seek u=l.

u Blf BZf B3f time(sec.)
0.0 1.53 -0.33 -1.00

0.1 1.49 -0.35 -0.97 10
0.2 1.45 -0.37 -0.94 8
0.3 1.42 -0.39 -0.91 10
0.4 1.40 -0.41 -0.87 8
0.5 1.39 -0.43 -0.83 12
0.6 1.40 -0.46 -0.78 8
0.7 1.44 -0.49 -0.72 8
0.8 1.53 -0.52 -0.65 18
0.9 1.74 -0.56 -0.55 25
1.0 2.47 -0.65 ~-0.36 65

To calculate the equilibrium with a higher polynomial degree we
could use the solution for the first degree polynomial toe run a
regression of ¢ on a second degree polynomial, and use the result to
start the iterations for the fixed point of the 2d degree exponential
polynomial. Using this initial condition is better than starting the
iterations at the previous solution with zeros in the second degree
terms and it only takes one regression per expectation to find these

18 . ) .
It is not correct to run a linear regression on the logs, because the

error term in the expectation is not additive.

"This table is taken from den Haan and Marcet [1990]). The remaining values
of the parameters in the model are &=.95, o*e=.1, A=l. We wused 2500

observations to run the non-linear regressions and four digits of accuracy
to determine covergence of the iterations on 8. The computer was a Compag
386, 25 megahertz and a floating point processor.
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initial conditions. The solution changes slightly when going to the
second degree polynomial, indicating some relevant non-linearities in
the problem; notice that the standard deviation of £, is quite large,

which accounts for the importance of the non-linearities.

When we used the stochastic algorithm of Section 2, first we set

at=.001 and we start at u=0. Then we move the depretiation to u=1 in

steps of .1 and, because of the tracking characteristics of the
algorithm, we get fairly close to the fixed point for up=1. Finally, to
make it actually converge, we set = 1/t. All of this process takes

about five to six times less than the total of the above computing
time in the previous table. The drawback, is that we had to experiment
considerably with the level of fixed o that would be stable but would
converge fast enough, and we had to experiment with the time that we
switch to the weights 1/t.

We also calculated the fixed point with the Gauss-Newton method
using numerical derivatives. The fact that the derivatives had to be
calculated numerically made this algorithm two to three times slower
than the simple algorithm described in the previous table.

The emphasis of this paper is not on obtaining the maximum speed
for the algorithm; there are many techniques that could be used to
increase computational speed but, to keep things simple, we are
concentrating on the simplest version of PEA as described in Sections
1 and 2. Nevertheless, and given that some researchers have questioned
the speed of PEA, we are forced to say something about this not too
exciting issue. First of all, we note that comparisons of speed should
be made with extreme care; it is known to anybody who has ever used
numerical algorithms that the speed reported in a paper can be
increased dramatically by choosing appropriately some parameters in
the calculations. For example, the above computation times would be
cut by a factor of four if one used an accuracy criterion on the fixed
point of .00l instead of .0001, and if one used half the number of
periods in the simulation, while the solution would be virtually
unchanged.

Also, the computation times are greatly reduced by choosing the
initial conditions shrewdly. The above table does not choose initial
conditions shrewdly; it is intended to demonstrate the homotopy idea
of moving gradually from a known solution to the desired solution, and
it chooses initial conditions in a terrible way if one is interested
in speed. The above solution uses the initial conditions for the case
where p=0 to move gradually to the case where u=l; these solutions are
very different, since the average level of the capital stock is many
times higher when p=1. So, it is extremely unfair to interpret the
above table as saying that one needs 2 minutes to calculate the
equilibrium of the simple growth model with PEA, since this time could
be greatly reduced by choosing the appropriate initial conditions.
Judd [1989], for example, chooses an initial condition based on the
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non-stochastic steady state, so that the initial condition already
starts with a level of the capital stock that is much closer to the
equilibrium one.

Finally, the speed for a given model is not very indicative of
how the algorithm may perform if the model changes slightly. As we
pointed out earlier, some models based on discretization and
quadrature integration will suffer more from increasing the dimension
of the state and the exogenous variables in the model than will PEA.
Since the simple growth model has very few variables, it does not
exploit all the advantages of PEA. Rather than engaging in speed races
with ambiguous rules of the game, it seems more productive for
researchers to generate interesting applications of the different
algorithms to develop an understanding of what algorithms work better
under what conditions.

A Model of Asset Prices with Endogenous Production

The representative agent maximizes the expected discounted
utility as in Example 1.2 andhe can trade stocks of ownership of the
(only) firm in this economy and bonds at maturities k=1,...,K ; so his
budget constraint is given by

K K
k k k
(3.4) c, *s Pps + Z bt pbt =S ( pt+dt )+ z bt_k +w
k=1 k=1
where st R pst , bt s pb: represent, respectively, holdings and

prices of one share of ownership of the only firm in this economy, and

holdings and prices of a k-period riskless real bond; dt are the

dividends distributed by the firm, and w, is the wage received by the

agent when he inelastically offers one unit of labor every period. The
consumer behaves competitively in the securities, consumption and
labor markets. He has one unit of labir which he supplies
inelastically.

The representative firm owns the capital stock, maximizes
expected discounted profits, subject to the constraints

c +i =fk ,l,8)
t t t-1"t" t
i =(kt_“kt- )

t 1

taking prices as given and distributing the profits in the form of
dividends. The productivity shock Gt is as in Example 1.2.
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If we require that

(3.5) f(k 1, 8,) =0,k ,

t-1 t t t-1

this means that the consumption and capital series are the same as in
the model of the previous sub-section, so that the real variables are
given by that model. Other than (3.5), we give ourselves enough
freedom on the functional form of the production function f in order
to consider different labor income and dividend processes. Clearly, W

will be the marginal productivity of labor and dt=ct—wt
We know that the stock and bond prices satisfy

-7 _ -7
¢ pst S Et [ ¢ +1 (pst+l+dt+l) ]

(3.6)

c? pr = E [SJ c ]
t t+)

Once we have a solution for the real variables, these conditional
expectations can be approximated by running one non-linear regression.
Now we describe the behavior of the model with Impulse-Response
functions.

Impulse-Response Function of the Variables

First of all we describe the behavior of the equilibrium path of
consumption, investment and capital. This is important for
understanding the behavior of asset prices.

Since the endogenous variables in each period depend on the state
variables and these are endogenous and correlated with each other it
does not make much sense to ask how each variable reacts to an
increase in the state variables. We describe the behavior of the model
by looking at how each variable reacts to an increase in the i.i.d.
shocks to the economy, namely, the innovation to the productivity
shock. At the fixed point:

zt = h( € € p Eior oo ) o,

where h:R”—R" . Although we could back out the function h implied by
the approximated solution, the result would be very non-linear and
hard to analyze. Instead, we consider the projection of zt on current

and past €'s
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zZ, = b € ,
t Pt nt
1=0

s 2
where the b’s are chosen to minimize the mean square error E L We
can interpret n, as the non-linear part of h . Since €'s are i.i.d. we

know that

2
bi—Elet_izt]/Eletl ,
so that they can be easily approximated with sample covariances of the
simulated series.

The coefficients { bf } scaled by cre/crz give the response of

)

the j-th element of Z in terms of its standard deviation, to an

increase of one standard deviation in £, Besides describing how each

variable responds to a shock in productivity, these coefficients will
help us in explaining the covariance patterns that the model displays,
because

[+ ]
J oy _ 2 J ¥ J i
(3.7) cov( z., % ) = o Z bl+k bk +a o
k=0
so that the convolution of the b’s tells us what is the covariance, up
to the non-linear terms 7 which, in practice, are very small.

We simulated the simple growth model with the following
parameters: r=4. , 8=.99 , u=.98 , p=.95 , 0‘€=.OO9 and «=.33 . The

choice of 8 and u suggests a quarterly model. All the calculations
reported were done with 20.000 observations in the long run
simulation; none of the substantive results changed when we did the
same exercise with 5000 observations. We wused a second order
exponentiated polynomial to parameterize expectations; this did not
make any difference for the real allocations but in the Euler equation
for the stock price there was evidence of inaccuracy for a first
degree polynomial.

The impulse-response functions for consumption, capital and
GNP(Ect+kt—ukt_l) are shown in figure 1. We see that the response of

capital goes up for a long time, it is very permanent. The response
of consumption is also hump-shaped, but it starts to decrease after
four or five periods. Finally, GNP shows an exponential decrease. Let
us provide some intuition for these shapes.
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Figure 1

Impulse-Response for Real Variables

Consumption
Y
T
Investment
—
Capital
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Clearly, investment responds much more quickly to a positive
shock than consumption, so that investment absorbs most of the
variation. So, after a positive shock, investment goes up immediately;
this causes -capital and production to be higher in the next few
periods and capital is higher in the next few periods. Therefore, the
hump-shaped IR for consumption is an effect of the desire for
consumption smoothing that risk averse agents have and that, in a
model with endogenous production, causes the volatility to be
transferred to investment and not consumption. By constrast, a first
order Markov process for consumption of the type that is often used in
asset pricing models with exogenous production, would generate a
decreasing IR function of consumption.

Bond Price Behavior and the Term Structure

If the bond prikces are given by (3.6), then the k-period interest
rate is given by l/pbt .

The IR of these bond prices are given in figure 2. These IR
functions could have been guessed from the IR for the real variables.
Consider the one-period interest rate, so that k=l; this interest rate

depends only on C and the expectation of a function involving Coul'

The IR of consumption tells us that an increase in g, has a bigger
effect on Ciel than on e therefore the right side of (3.5) decreases
¥

more than the term c .’ , so 1/pbi responds positively to a positive

shock in €. However, when we consider the effect of Et—j , if j is
large enough to be on the decreasing region of the consumption IR, the

impact of a positive shock in lagged £ on C:’ is higher than the

impact on c [

te] and the interest rate responds negatively to such a
shock.

For a longer-period interest rate, if k is large enough to be on
the region where the IR function is decreasing, the effect of a
positive shock in € _, onc for any j (including j=0) is higher than

the effect on C ’ SO that the response of the long-term interest

rate to a positive shock is negative.
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Figure 2

Impulse—-Response for Security Prices

b Bond prices at different maturities

b Stock Returns

o lag

4
-
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This means that the response of short term interest rates to a
positive innovation in productivity is opposite from the response of
the long term interest. Therefore, in this model one can observe a
hump-shaped term structure: if a few positive shocks in € are

followed by a few negative shocks, the short-term interest rates go
down, while the positive and negative shocks cancel out in the long
term interest rate. In this model, a humped shaped interest rate
indicates a sudden drop in productivity, from better than average to
worse than average. It is this sense that the Fama [1984]) observation
is replicated by the model.

Behavior of Stock Prices

The price of the stock PS, depends on the specification of the

production function f, which will imply a different process for dt’

One possibility is to consider dt=c formally, this corresponds

t ’
to the case where labor is not productive. The returns of stocks and
the correlations are the same as if dt is a fixed proportion of

returns or, equivalently, if labor gets every ©period a fixed
proportion of consumption. In this case, the price of the stock is
very highly correlated with consumption, and its IR is essentially the
same as that of consumption.

Under this assumption, the standard deviation of stock returns
turns out to be almost the same as the standard deviation of
consumption growth, which is a counterfactual implication of the
model, and also one that makes it harder for the model to explain the
equity premium_ puzzle. The equity premium in the model is of the order
of .15 per cent™, far from the 5 per cent in US data.

Another possibility for determining dividends is assuming that
the production function has constant returns to scale

20

We say that the risk premium is 'of the order of’' because it exact value
may change depending how the model is exactly simulated; these risk premia
are so small that their exact value is affected by the numerical error; so
using a different realization of 20.000 periods to calculate the fixed

point one can find risk premia that go from .0016 to .0013

differences may seem large relative to the simulated risk premium, but they
do not change our conclusion that the model is far from explaining the

empirical risk premium.
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(3.8) f(k

so that the wage equals a (l-a) portion of the total GNP. Under this
assumption we know that kt=pt .

Relative to the previous scheme where Ctzdt , now the wage

absorbs a larger part of the randomness of the economy, and the
implied dividend process is less volatile than before. Then the
standard deviation of stock returns is about .0019, almost one-tenth
the standard deviation of GNP growth. Therefore, this model goes in
the opposite direction: it makes stock returns much less volatile than
GNP growth. The risk premium is almost exactly zero; in fact it turns
out that not only the mean, but also the standard deviation of bond
and stock returns are equal.

Finally, we consider the case where the labor income is constant.
In this way we cause all the variance in consumption to be totally
absorbed by dividends; as we increase the fixed wage the variance of
the dividend stays constant but its mean goes down, so that the
standard deviation as a proportion of the mean can become arbitrarily
high. This can be justified by the following production function

(3.9) flk, . L,

a

et) = 6t kt—l + C (lt—l) )

and a perfectly competitive labor market as well as by various models
with imperfect labor markets. The production function (3.9) has
constant returns to scale on labor and decreasing returns to scale in
capital, so there are decreasing returns to scale overall and the
maximization problem of the firm is well defined. In this model, wt=§

and dt= Ct_c .

We choose a level of wage that delivers standard deviation in
stock returns of .04, . The correlation coefficient of stock returns
and € is .97 so that, as with consumption growth, the impulse response
function is concentrated at zero. Even with so much volatility,
however, the risk premium is only .32 per cent. This means that even
after increasing the volatility of stock returns we can not explain
the risk premium in the data.

Time-Dependence of Volatility in Stock Returns

As pointed out by Rowenhorst, the model matches the empirical
evidence suggesting that volatility of stock returns is higher in
recessions. We would like to argue that, in fact, this is true of many
equilibrium models, and it is not particularly a result that depends
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on the endogeneity of production.

In most equilibrium asset pricing models, including the one in
this paper, the stock price is almost perfectly correlated with
dividends, and the stock return is very highly correlated with the
innovation to production. This can be checked by simulation and by
several analytic solutions that are available. In this case, ptE K dt

for some constant K. Also, assume that the innovation of dividends has
a constant variance o . Then, the conditional variance of the stock

return is given by

p; +d p; +d
E {+1 {+1 - E {4»1 {01 & (l/d )2
t d t d t

(K+1)* o°
t t n

Clearly this is large when dividends are small, and in equilibrium
models dividends are small in recessions. Since the stock return is
practically i.i.d. (by virtue of being almost perfectly correlated
with the innovations to the exogenous processes), this implies that
volatility will be higher in recessions.
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Conclusion

In this paper we have introduced a method for solving nonlinear,
stochastic dynamic models with rational expectations and we have
applied it to the analysis of asset prices in a production economy.
The solution procedure can get around many problems that appear often
in simulation: it works from the Euler equations, equilibrium
conditions and budget constraints, so that there is no need to have a
planner’s problem describing the equilibrium and it can approximate
non-linearities arbitrarily well. The model is flexible enough to
easily accomodate models with distortions, heterogeneous agents,
inequality constraints and discrete choice.

Many of the computational barriers that are faced by other
methods are not immediately binding here: the computational costs do
not grow exponentially with the number of state variables; because
instead of wusing quadrature as a method of integration we wuse
Monte-Carlo integration we can easily handle a large number of shocks
in the economy. There is already a large number of applications of
this algorithm to different types of models.

In this paper we have concentrated on discussing the
applicability of the method and its validity, and we have not
discussed ways of increasing the computational speed; research on this
area is being done at present. The algorithm can be improved in
several directions: the fixed point Bf could be calculated with a

number of techniques, the expectations involved in S(B) can be
approximated more efficiently using techniques for fast Monte-Carlo
integration, there should be classes of functions other than the
polynomials used in this paper that <can capture better the
non-linearities in particular models. Speed can be improved byrunning
the non-linear regressions in only one step (in the fixed point this
will not matter), by using in the regression only a sampled process
and by efficient ways of calculating the derivative of S. However,
one of the advantadges of the parameterized expectations approach is
its great simplicity, and it is likely that these improvements will
complicate considerably the application of the algorithm.

One of the main advantages of PEA is that it endogenously selects
the region where the policy function is approximated and that, at the
same time, it performs Monte-Carlo integration, so that relatively
large models can be easily handled.

Other extensions of the algorithm are designed to handle problems
where there is no steady-state distribution or the researcher is
interested in looking at the model away from the steady state. In this
case, the long run simulations of Step 3 should be replaced by
repeated short run simulations, as in Marshall [1988] and Marcet and
Marimon [1991]. Another extension that has not yet been pursued is to
models with private information; it is possible to imagine how the
algorithm could be modified to handle this case, where additional
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lags, or functions of the observed variables would be introduced
according to their predictive power.

In our analysis of asset pricing in a production economy we saw
that the model could generate an interesting pattern of stock and bond
prices. With a very simple growth model it was easy to generate asset
prices with second order properties very different from the ones in
the usual model when consumption is exogenous, equal to dividends and
given by a Markov process of order one, and it was possible to
generate a humped-shaped term structure of interest rates in
recessions. The reason for the hump-shape was the possibilities and
the desire for consumption smoothing present in a model with
investment and risk averse agents. This is important because some
researchers may have been driven away form this model thinking that it
imposed too many restrictions on the data, so that its empirical
performance was bound to be even worse than that of exogenous
consumption. This is one of those conforting developments in economics
where better performance is obtained by imposing more structure in the
model instead of the usual approach of making the model more general
and increasing the number of parameters.

We also argued that the evolution of the volatility of the stock
returns across time matched the one observed in the data, and that the
risk premium was higher than usual, but still far away from the
observed in postwar US data. Contrary to previous papers, we showed
how the higher volatility of stock returns in recessions is easily
reproduced in most equilibrium asset pricing models, so both of these
results do not differ much from others that can be obtained with
exogenous production.
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