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Abstract

We provide robust examples of symmetric two-player coordination games in nor-
mal form that reveal that equilibrium selection by the evolutionary model of Young
(1993) is essentially different from equilibrium selection by the evolutionary model

of Kandori, Mailath and Rob (1993).
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1. Introduction

The evolutionary models for games of Kandori, Mailath, and Rob (1993), henceforth KMR,

and of Young (1993) have many similarities.

They are alike in concept: both study dynamic processes defined from some kind of bound-
edly rational behavior, where players try to learn from observations of the behavior of other

players.

They are alike in formalization: both first define an ”unperturbed” dynamic process where
players play best replies to the behavior they observed, and then define a ”perturbed”
process by adding a small trembling probability to the unperturbed process.

They are alike in mathematics: for both models the unperturbed process is a Markov
chain and the perturbed one (also a Markov chain) is a regular perturbation of this. The
very strong equilibrium selection results are in both models obtained by studying the

stochastically stable states for the perturbation.!

They are alike in results: both of the above mentioned papers study equilibrium selection
in simple 2 x 2 coordination games and both find support for the "risk-dominance” selection

criterion of Harsanyi and Selten (1988).

They are even alike in what drives the results: for both models the selection of the risk-
dominant equilibrium hinges on the fact that this equilibrium has, according to the unper-
turbed process, the largest basin of attraction, and the little trembling of the perturbed
process implies (when there are only two strategies on each side), that this property is

turned into the stronger one of being almost the only equilibrium observed.

These similarities may give the impression that the two alternative evolutionary approaches
are "structurally” close and that they will quite generally give the same equilibrium selec-
tion. In that case it would be more or less a matter of taste or convenience which type of

model should be preferred.

We demonstrate here, however, that the two models are structurally different and may
well give rise to completely different equilibrium selections. We give two examples of
games which are very close to the games studied in the mentioned contributions of KMR
and Young. Both are simple and symmetric two-player coordination games, each with two

strict Nash equilibria. The games also have some non-equilibrium strategies (the strategies

IFor formal definitions of Markov chains and associated concepts such as absorbing sets, regular per-
turbations, and stochastically stable states, and for the graphwise characterization of the latter used below
to identify long run behavior, see the orginal contributions by KMR (1993) and Young (1993).



usually omitted ”for simplicity”). The presence of the non-equilibrium strategies makes
the KMR and the Young processes work differently and result in opposite equilibrium

selection.

In the KMR approach, there is one population of N individuals and in each round every-
body is randomly matched to an opponent with whom he plays a symmetric, two-player
game. After a round of play, it can be observed how the population played. According
to the unperturbed KMR process there is for each player in each round independently a
probability  of ”strategy revision”: with probability 1— ¢ the player takes the same action
as in the last round, and with probability 6 he takes an action that is a best reply to the
mixed strategy made up of the relative frequencies of strategies in last round’s play by the
population.? How the population played in rounds before the immediately preceding one
is (forgotten and) not used. The perturbed process is defined by the modification that
there is for each player in each round independently a probability € that the player takes

a random action. The interest is in the perturbed process for small ¢.

In the Young approach there is a population for each of the (two) player positions in the
game. In each round of play, one player is picked randomly from each population and the
picked players play the game between them. After the round everybody can observe what
was played and everybody keeps for each position in the game a record of the actions taken
the last m times the game was played. According to the unperturbed Young process, a
player, who has been picked to play, draws a random sample of k observations from the
record on the opponent, k& < m, and plays a best reply to the mixed strategy made up
of the relative frequencies of strategies in the sample. The perturbed process is defined
by assuming that in each round and for each picked player independently there is a small
probability e that the player takes a random action. Again, the interest is in the perturbed

process for small ¢.

There are several differences between the two approaches, some of which are inessential (for
equilibrium selection) and some of which are arbitrary. The strategy revision probability
0 appearing in the KMR, but not in the Young, approach is inessential; the KMR process

will give the same equilibrium selection for all § €]0, 1].

The difference with respect to the number of populations is arbitrary: a KMR process could

20r perhaps he takes an action that was a most or more successful one in last round’s distribution of
play. Since the KMR paper only considers games with two strategies for each player, there is no sharp
distinction between the best reply dynamics that we consider here, and imitation dynamics, and both are
covered as alternative ”Darwinian dynamics” by the original formulation. Since we study here a KMR
process for games with more strategies, we have to make a choice. We follow such contributions as Noldeke
and Samuelson (1993), Kandori and Rob (1996), and Robles (1997), and study best reply dynamics.



as well be defined with one population for each of the player positions in the game, and for
symmetric games a Young process could as well be defined with just one population. The
number of populations may, however, matter for equilibrium selection, a feature well-known
from, e.g., replicator dynamics. To demonstrate that it is not simply the difference in the
number of populations that make the two approaches structurally different, we consider
one-population versions of both processes, defined, of course, only for symmetric games.
For the one-population Young process it is assumed that in each round one player is picked
randomly and takes an action. He will receive payoff depending on his own action and the
action taken in the next round as given by the considered game. He forms an expectation
of next round’s action as in the usual Young approach, by drawing a k-sample from the
record of the actions taken in the last m preceding rounds, etc. It will be clear from the
forces driving our results, however, that one could also construct examples where both
types of process were defined with two populations, or where one were defined with one
and the other with two, and still get that equilibrium selection would be different between

the two approaches.

The sampling occurring in the Young process when k£ < m is a third difference. It is known
that the presence and degree of sampling may indeed be of importance for equilibrium se-
lection, but it is not essential to the fact that the two approaches give different equilibrium
selection. In our first example, given in Section 2, we consider a Young process with full
sampling, £ = m, and the two processes select opposite equilibria. The basic effect that
gives rise to the difference would disappear if, in the Young process, one assumed ”suffi-
ciently little sampling”, as suggested by Young and often seen in applications. However,
our second example, given in Section 3, demonstrates, that with less than full sampling,
and in particular with sufficiently little sampling, another effect becomes important and

may imply that the two approaches give opposite equilibrium selection again.

We are thus led to conclude that the difference in equilibrium selection in our examples
must be explained by the remaining difference, i.e., by the fact that in the KMR approach
players learn from observing the behavior of the full population in only the last round,
whereas in the Young approach players learn from observing the behavior of players in a
string of earlier matches going back in time. This means that there is no way around the
difficult question of how players learn: is the KMR or the Young learning approach the
most plausible? This question would not be important for the issue of equilibrium selection

if the two processes gave rise to the same selection.?

30ne can, of course, redefine the two approaches until they are the same. If one assumes in the
KMR approach that players learn from population behavior in the last m rounds of play, and in the
Young approach that in each round all players are matched with an opponent, then the two processes

become identical with respect to from what players learn. Our results should then rather be read that



Each of the examples we give is robust; if the payoffs are changed a little, the two processes
still select the two different equilibria as before. Further, the examples are constructed such
that each player gets the same payoff in both of the game’s strict equilibria, so by changing
the payoffs a little in one direction or the other, one can make one equilibrium or the other
Pareto dominating. Thus, an implication of our analysis is that it is not the case that one
of the processes is systematically more reluctant to select Pareto inferior equilibria than
the other. Rather, there are cases where the Young process selects a Pareto efficient, and

the KMR process a Pareto inferior, equilibrium, and cases where it is the opposite.

2. First Example

Below a symmetric two-player normal form game with row player payoffs is displayed. It
has two equilibria in pure strategies, (a,a) and (d,d). We will examine long-run behavior

according to the two described processes for this game.

a |b |c|d
alll0{0 |68
b 7 101]0
c 121010
d 0 [7]10

In the KMR approach a state is a description of the population’s play in the last round,
a vector {wg, Wy, We, wq }, where w, is the number of players who used strategy a etc., and
We + wp + wWe + wg = N. The unperturbed and perturbed KMR processes are defined as
described above. If a player who has been drawn for strategy revision has a tie - several
actions are best replies against last round’s population behavior - it is for the unperturbed
process assumed that the player picks a random best reply, but such that all best replies
have positive probability. Each process will for any two states give rise to a well-defined

transition probability and hence each is a homogeneous Markov chain.

In the Young approach a state is a description of play in the last m rounds. Where there
is just one population, this means that a state is a vector (wi,ws, ... ,w), where w; is
the strategy, a,b,c, or d, taken ¢ rounds before the current one. The unperturbed and

perturbed Young processes are defined as described above. In this section we will assume

it is essential for the equilibrium selection obtained by any one of the approaches from what players are
specifically assumed to learn, e.g., for the KMR approach if players are assumed to learn from only the

last, or from the last m, rounds of population play.



full sampling, & = m. If there is a tie, all best replies have positive probability. Again,
each of the processes will give rise to well-defined transition probabilities and hence is a

homogeneous Markov chain.

Both in the KMR and in the Young approach long run behavior is given by the stochas-
tically stable states defined from the perturbed process. These are the only states that
will be observed frequently in the long run when the trembling probability is small. Only
states that belong to absorbing sets (recurrent classes) of the unperturbed process can be
stochastically stable. It is therefore of interest first to find these absorbing sets, so first we

show that only the states corresponding to the pure strategy equilibria are absorbing,

Proposition 2.1. The sets {(N,0,0,0)} and {(0,0,0, N)} are the only absorbing sets for
the unperturbed KMR process.

Proof: Due to the best reply structure of the considered game, if one of the above states
has been reached the state in the next round will be the same for sure according to the
unperturbed process. Any player drawn for strategy revision will have the action already
used as best reply. Start in any other state. It has positive probability according to the
unperturbed process that in all of the following three rounds all players are drawn for
strategy revision. After one such round (with positive probability) everybody plays the
same, and after two more either everybody plays a or everybody plays d, and one of the

two states has been reached. [J

Proposition 2.2. The sets {(a,...,a)} and {(d,...,d)} are the only absorbing sets for

the unperturbed Young process.

Proof: Clearly, if one of the two states has been reached the unperturbed process stays in
it for sure. Start in any other state. Now if a is a best reply in the state, then with positive
probability a is played and the new state can only contain more a’s. Then in the next
round a is still a best reply etc., and so the process will with positive probability reach the
state (a,...,a) after at most m rounds. Similarly, if d is a best reply from the initial state,
then d remains a best reply and the process reaches (d, ...,d) with positive probability. If
neither a nor d is a best reply to the initial state, b or ¢ or both must be. As long as this
is the case the state will be filled up with b’s and ¢’s. This may imply that suddenly a or d
is best reply and we are done by the above. If a and d continue not to be best reply, then
after less than m rounds b will stop being best reply, since b is not a best reply to b or ¢ or

to any combination of only bs and cs. The state will now be filled up with ¢’s. This will



eventually make d a best reply and we are done. So, from any other state it has, according

to the unperturbed process, positive probability to reach (a,...,a) or (d,...,d). O

Now we characterize the stochastically stable states for each process. First, if players learn
and tremble as described by the KMR process, and the trembling probability is small, then
only the equilibrium strategy d will be observed frequently,

Proposition 2.3. If N is sufficiently large, then (0,0,0, N) is the unique stochastically
stable state for the KMR process.

Proof: Only (N,0,0,0) and (0,0,0, N) are candidates for being stochastically stable. Let
the state be (0,0,0, N). If [%N |+ players simultaneously tremble and play a, then in the
next round the only best reply to the state then prevailing is a. It then has positive
probability according to the unperturbed process that all players are drawn for strategy
revision, and the process ends up in the absorbing state (INV,0,0,0), where all play a.
Obviously, the described trembling is the one that requires the fewest trembles, so the
resistance in the transition from state (0,0, 0, N) to state (N, 0,0,0) is [ N]..

Now start in (N,0,0,0). With [¢N], simultaneous trembles by the players to strategy
b, the best reply to the current state will change to b. Now there is positive probability
according to the unperturbed process that all players are drawn for strategy revision and
hence choose b. Again in the next round it has positive probability that all players get
a "learning draw” and then all will play c. Finally, in the next round it has positive
probability that all players learn and all play d. So, the resistance in the transition from
(N,0,0,0) to (0,0,0, N) is [§N]... Since this is smaller than [¢N], for N sufficiently large,
the stochastically stable state is (0,0,0, N).OO

Second, if players learn and tremble as described by the Young process, and the trembling

probability is small, then only the equilibrium strategy a will be observed frequently,

Proposition 2.4. If m is sufficiently large, then (a,...,a) is the unique stochastically

stable state for the Young process.

Proof: Like for the KMR process, the minimal number of trembles required to go from

(d,...,d) to (a,...,a) is [

sm]4., which is thus the resistance in this transition.

Now consider transition from (a, ...,a) to the (d, ..., d). This must start with a number of

trembles to either b, c, or d which are sufficient to make the best reply shift away from

a. Consider first trembles to ¢. It will require [12m]; such trembles before the best reply



C best response

D best response B best response

A best response

Figure 2.1: The best response regions given only actions a, b and ¢ are used by opponent.

shifts (to d). For trembles to d, it requires [2m]; to make the best reply shift (again to
d). Finally, consider trembling to b. First it requires [m] . of these before the best reply

changes and it changes to b. Without further trembling b will be best reply and hence

be played until the state consists of [m], times b (and m — [tm], times a). Then ¢

becomes best reply and remains so until the record consists of [#m] b’s, [&5m]4 ¢’s (and

m — [gm]y — [fym]4 a’s). But then a is best reply again, and without further trembling
the process returns to (a,...,a). So, the [ém]Jr trembles are not sufficient to escape this

state, further trembling is required.

So, go back and assume that just after the [ém]Jr trembles to b there is further trembling.

If this is to d, it will require [%mh additional trembles to make the best reply shift (to
d). If it is to ¢, it requires [S5m], additional trembles to make the best reply shift (again
89
582

shift (to ¢), in which case the unperturbed process indeed will go to (d, ...,d) with positive

to d). Finally, if it is to b again, it requires further [£5m|, trembles to make the best reply

probability. See figure 2.1, which shows the best replies given only the strategies a, b, and

¢ are used.

The total resistance in the transition from (a, ..., a) to (d, ..., d) is therefore [gm], + [Sm]

which, for m sufficiently large, is strictly higher than [¢m],. So, the stochastically stable

state for the Young process is (a, ..., a).0



The obtained difference in selection mainly follows from a difference between the two ap-
proaches with respect to the number of players who can, with positive probability according
to the unperturbed process, update behavior in a single round. In the KMR model it is
possible that all players update behavior in one and the same round. Thus, it is possible
that the behavior of the entire population shifts from one round to the next. This is differ-
ent from the Young model, where exactly one player updates in each round and therefore
the frequencies of play in the record only change slowly. Using a landscape metaphor, if
the basin of attraction is a deep hole, then in the example it is possible for both processes
to climb to the top of a platform standing in the middle of the hole by a little trembling,
but to escape from the hole it is necessary to make a big jump to the edge of the hole. The
KMR process is capable of doing that whereas the Young process can only make a small

jump and will therefore fall down into the hole again.

3. Second example

Sufficiently little sampling in the Young process will imply that the two approaches select
in the same way in the above example. Our second example reveals that also with partial,
in particular with very little, sampling in the Young process this may well select differently
than the KMR process, only due to another effect. We consider the symmetric two-player
game with row player payoffs as given below. The game has two pure strategy equilibria,
(a,a) and (e, e).

a |b |c |d]e
al10(6 |9 [8]2
b0 (0O |5 [0]6
cl||8 (9]0 [(0]0
d|7 [(-3]10[0]0
effO (8 [0 |7]10

The processes are defined as above except for the modification that we now assume k < m/3
in the Young process, and that states for both processes are redefined to capture that the

game now has five strategies.

As for the first example only states corresponding to the two pure strategy equilibria can
be absorbing. To demonstrate this goes just like the proofs of Propositions 2.1 and 2.2

above. We therefore state without proof,



Proposition 3.1. The sets {(N,0,0,0,0)} and {(0,0,0,0, N)} are the only absorbing sets
for the unperturbed KMR process.

Proposition 3.2. The sets {(a,...,a)} and {(e,...,e)} are the only absorbing sets for

the unperturbed Young process.

The following propositions state that the long run behaviors of the two processes are again

different. The KMR process selects the equilibrium (a, a), while the Young process selects

(e,e).

Proposition 3.3. If N is sufficiently large, then (N,0,0,0,0) is the unique stochastically
stable state for the KMR process.

Proof: To escape from the state (0,0,0,0, N) at least [%N |+ trembles are required before
the best reply changes to an action different from e. If the mistakes are all to a, then there
is, according to the unperturbed process, positive probability of transition to the state

(N,0,0,0,0). So, the resistance in this transition is [%N]Jr.

From state (N,0,0,0,0), if trembling is to actions different from b, more than [%N |+
trembles are required before the best reply changes. For trembles to b only [2N], mistakes
are required before the best reply changes to c. Note that b can only be a best reply if the

state contains more than %N times e (otherwise a will be better).

For e to be a best reply to a state with at most [%N]Jr b’s, and only a’s and ¢’s otherwise,
further [2N], mistakes to e are required (then e is best reply if the state consist of [2N]
b's, N — [EN]; — [EN],c’s and [BN]; e’s.

For d to be a best reply at most %N can have used strategy b. So, for the process to
reach a state from which d’s will enter, at most %N can have used b. Now, for the best
reply to change to e further trembles are required, either to b or to e. If players tremble
to b, then at least [3—70]\7 |+ mistakes are required (in this case there is positive probability
of reaching a state with [2N], b’s and 1 — [2N], d’s). If players tremble to e, then [(5N].
are needed (in this case there is positive probability of reaching a state with [{cN]_ b’s,
1 — [5N]- — [ N]+ d’s and [5N]; €’s).

In conclusion, the resistance of the transition from (N, 0,0,0,0) to (0,0,0,0, N) is at least
[£N]; + [&N]; which is larger than [$N], for N sufficiently high. Therefore(N, 0,0,0,0)
is the only stochastically stable state for the KMR process.[]

Proposition 3.4. If k is sufficiently large, then (e,...,e) is the unique stochastically

stable state for the Young process.



Proof: To escape from (e, ..., e), at least [%k]+ trembles are required before the best reply
changes to something different from e. If the trembles are all to a, then there is, according
to the unperturbed process, positive probability of transition to (a, ..., a). So, the resistance

in the transition from (e, ..., €) to (a,...a) is [§k].

From (a,...,a), it requires [%k’]Jr trembles to b before best reply changes to something
different from a (with positive probability according to the unperturbed process). Then
there is positive probability according to the unperturbed process that the players in the
next [2k], rounds all draw a sample consisting of [2k]; a’s and [2k]_ b’s and consequently
all choose c. After that, there is positive probability according to the unperturbed process
that the players will sample [2k]; ¢’s and [$k]_ @’s in all of the next [2k]; rounds and
consequently play d. Then there is positive probability according to the unperturbed
process that the players sample [2k], b’s and [2k]_ d’s in all of the next k rounds and
hence all play e. Finally there is positive probability according to the unperturbed process
that the players in all of the next m — k rounds always sample these k e’s and hence play
e. The process has now reached the absorbing state (e, ...,e). It follows that this is the

only stochastically stable state since [3k]; > [2k], for k sufficiently large.]

The force driving the difference in the selection this time comes from the way the play-
ers make conjectures about opponents’ choice of strategy. When the players update their
strategies in the KMR model, they only consider the actual play in the last round. This im-
plies, when no trembling occurs, that a player’s believed likelihood of a particular strategy
that was not a best reply to his previous conjecture, cannot increase. Thus, the players’
believed likelihood of a particular strategy will decrease weakly as long as this strategy is
not a best reply and no trembling takes place. This is different in the Young model with
incomplete sampling. Here, even without trembles, the believed likelihood of a particular
strategy can increase, although this strategy was not a best reply to the conjecture held
in the previous round. This follows since it is possible for two players in adjacent rounds
to pick samples from different parts of the history. In the example, in order to escape
”cheaply” from the equilibrium strategy a, first the believed likelihood of strategy b has to
be at least %, which can only happen due to trembling, but then, for the unperturbed pro-
cess to continue all the way to the other absorbing state, it is necessary that the believed
likelihood of b first decreases and then increases. As explained above, this is possible in a

Young model with incomplete sampling, but not in a KMR model.

10
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