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This paper extends previous results on optimal insurance trading in
the presence of a stock market that allows continuous asset trading and
substantial personal heterogeneity, and applies those results in a context
of asymmetric information with references to the role of genetic testing
in insurance markets.

We find a novel and surprising result under symmetric information:
agents may optimally prefer to purchase full insurance despite the pres-
ence of unfairly priced insurance contracts, and other assets which are
correlated with insurance.

Asymmetric information has a Hirschleifer-type effect which can be
solved by suspending insurance trading. Nevertheless, agents can attain
their first best allocations, which suggests that the practice of restricting
insurance not to be contingent on genetic tests can be efficient.

1. INSURANCE AND THE MARKET

In some states in the U.S., as in most countries, insurance companies
are explicitly forbidden from using genetic tests in determining the cov-
erage and prices offered to consumers. In contrast, the U.K. government
has taken a pioneering role in allowing life insurers to use a limited num-
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ber of genetic tests in setting rates. It is too early to tell what the result
will be but there is and has been for some time a debate as to whether
such genetic ‘screening’ should be allowed.

This paper considers one aspect of this debate, namely the importance
of incorporating the information gathered from genetic testing into insur-
ance transactions. We find it is important to extend previous insurance
models to incorporate the effect of having actively traded exchanges, such
as stock markets and insurance derivatives markets (Chicago, Bermuda).
These exchanges allow continuous trading and full diversification. We
also incorporate substantial personal heterogeneity in our model. First,
we analyze the extended insurance model under full information and
complete markets, and we find substantial differences in agents’ insur-
ance behaviour with respect to static models. Then, we introduce asym-
metric information and consider a way to design insurance markets in an
efficient manner and in a way that ensures equilibrium exists. We find
that if one only takes account of purely informational reasons, the steps
taken by the U.K. government are not justified.

Allowing for continuously traded securities is not a trivial extension
of classical insurance models and leads to different conclusions. Classic
insurance theory states: agents will never find it optimal to purchase
full insurance in the presence of positive loadings - i.e. if the price of
insurance was higher than its expected value (also called its fair price).
We find that permitting dynamic trading in some assets alters this clas-
sical result. The extra trading opportunities imply that a smaller num-
ber of assets will be required in order to complete the market (Duffie
and Huang (1985), Penalva(1999)). According to some results in the
literature (Smith and Mayers(1983) for example), the introduction of
additional securities could affect agents’ demand for insurance in unpre-
dictable ways. We find that insurance demands in modern economies
with active and continuously open exchanges are quite predictable. In
fact, optimal insurance demand is: buy and hold full insurance. This
insurance demand is independent of the returns of other assets in the
economy and whether insurance in fairly priced or not. The effect of
unfair pricing of insurance is incorporated into the agent’s problem as a
reduction in wealth which then affects optimal consumption. This opti-
mal consumption will not depend on agent-specific events (accidents) but
on aggregate scarcity, which drives asset prices. Optimal consumption
will be attained by adjusting wealth using actively traded fully diversified
assets.

Once the properties of modern insurance markets have been established
we introduce asymmetric information. We only consider purely agent-
specific information. From the results of Grossman and Stiglitz(1980) we
know that markets will not be informationally efficient and hence will
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not be willing to pay the costs of genetic testing. The cost of the tests
is a net social welfare loss. In our analysis we show that this is because
this information has no value per se, as in Milgrom and Stokey(1982).
The new information will just increase the price of insurance for some
agents and reduce it for others without any efficiency gains. We consider
the effect of restricting insurance trading not to incorporate genetic in-
formation and find that it could be a potentially efficient solution to the
problems caused by asymmetric information.

2. THE MODEL

In our economy there are two consumption dates, t € {0,1}, and n <
oo agents indexed by ¢ € I, all of which have preferences described by
von Neumann-Morgenstern expected utility:

Agents’ endowments, e;, are of the classical insurance type: wj; if no
accident (event —A4;), and w; — L in case of an accident (event A4;). We
assume that agents have increasing, differentiable and strictly concave
Bernoulli utility functions. Also, let e denote the aggregate endowment
and assume that e > 0 (or equivalently that >, w; — nL > 0).

The initial probability that agent i suffers an accident is p;. Assume
there is an interval of length one of time in which accidents can occur
- prior to the consumption date. Then, if an agent suffers an accident
it will be immediately and publicly announced. We want to allow for
the possibility that the probability of an accident depends on the total
number of accidents. This generalization may be important if one wants
to incorporate the effects of contagion of infectious diseases (more acci-
dents, more risk), or technological advances in treatment which depend
on the extension of the disease (more accidents, less risk).

Let N¢(t) denote the number of agents who have suffered an accident
up to date ¢t € [0,1], N¢(t) = > ;c; Ni(t). Assume also that the arrival
time of the accident is given by an exponential distribution with pa-
rameter \; which depends on N¢(t), \;(N¢(t)); accident occurrences are
independent events, conditional on the aggregate number of accidents
up to that time, N¢(t). Let k be the number of different types of agents
according to their hazard function, \;(N¢(¢)). For j =1,... k, let I; be
the index of agents that have the same hazard function, \;(N°(t)). As
we shall see below, this parameter, k, is the only heterogeneity parame-
ter that plays an important role in the analysis. Naturally, in the special
case where there are no population effects: \;(N°(t)) = A; € R, then

pi=1—exp™ & N=—In(l-p).
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All information is common knowledge and costless. All agents act as
price takers.

For purposes of illustration we will consider an economy with 10 agents,
five of type A and five of type B, with quadratic preferences parametrized
as:

| |eifwi| L] A | pi |
| Type A |20 10| 5 | 0.02532 | 0.025 |
| Type B| 30| 15| 5 | 0.07796 | 0.075 |

We impose that agent’s accidents are independent for ease of compu-
tation although all the results in the paper apply to the more general
case (where the hazard can depend on the aggregate number of realized
accidents).

3. INSURANCE DEMAND

3.1. The Static Economy

Classical insurance theory (Malinvaud(1972), Borch(1990), Cass, Chichilnin-
ski, and Wu (1996, CCW), ...) considers the case in which trade occurs
before accidents can occur and there are no opportunities to retrade until
spot markets open and all information has been revealed, i.e. at date
one. We refer to this as the static economy. The standard insurance
demand problem is to decide how much coverage, «, to buy if for each
S; units of consumption you spend in insurance you receive L units of
consumption if you suffer an accident. Standard insurance demand says
that an agent of type A will purchase full coverage if and only if the price
of insurance is 0.125, its fair price. If the price were below its fair price,
say 0.120, she will overinsure (buy 1.08 units of insurance) while if the
price is unfair, say 0.130, she will underinsure (buy 0.92 units).

But even in the simplest case, with \;(IN¢(¢t)) = A;, the economy has
much more uncertainty than just A; and —A;. Uncertainty is given by
the 2% = 1,024 possible realizations of accidents or no accidents to each
of the 10 agents. Denote the states of the world by w and let 2 be
the set of all possible w. The \;(-)’s induce a probability on (£2,2%)
denoted by P. The consumption space is L, () the set of all positive
22_measurable functions. Such economies have well known properties,
in particular our parameterized economy has the equilibrium in state-
contingent commodity trading (7, (x;);) given in Table 1.
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|IN“(Lw)] O 1 2 3 4 5 6 7 8 9 10|

| m(w) |1.00 1.04 1.08 112 116 120 1.24 128 1.32 1.36 1.40|

| ¢w) ]098 1.02 1.06 1.10 1.14 118 1.22 125 1.29 133 1.37|

| za(w) |10.08 9.68 9.28 889 849 809 7.69 7.30 6.90 6.50 6.11]

| z5(w) |14.92 14.32 13.72 13.11 12.51 11.91 11.31 10.70 10.10 9.50 8.89|
TABLE 1.

State-contingent Walrasian Equilibrium

As is illustrated on Table 1, equilibrium prices (7, renormalized to &)
and optimal demands, x;, are a function of N€¢, the total number of ac-
cidents in the economy. This corresponds to the well-known property
of optimal risk-sharing or the existence of a representative agent (Wil-
son(1968), Huang(1987)).

Several things to note about this economy is the equilibrium price of
insurance is not fair: 0.130 for type A and 0.389 for type B, which rep-
resent insurance loadings! of 3.8% and 3.6% respectively. This would
suggest that agents would be underinsuring. On the other hand, insur-
ance contracts (in the static economy) are insufficient to span the 2'°
states of the world so that other assets need to be introduced. CCW
showed that there is sufficient symmetry to reduce the number of re-
quired assets. In particular, each agent would require 2 x 11 = 22 mu-
tual insurance contracts® and 11 Arrow securities (one for each possible
aggregate state of the world). As there are two® types of agents there
would be 44 types of mutual insurance contracts plus the eleven Arrow
securities and the bond. As each mutual insurance contract is indexed
by the agent who receives the contract, in practice there would be 220
actual contracts traded, plus the Arrow securities and the bond. Due
to the large number of possible contracts and the lack of sufficient space
we do not describe them here further. Unfortunately, CCW do not give
us general guidance as to what kind of insurance demand agents would
have. On the other hand, Smith and Mayers(1983) tell us that the pres-
ence of other assets will affect insurance demand although it is not clear
in which way or even if agents will over- or under-insure.

!The loading on an insurance contract is given by v; = (S; — p; L) /p: L.

2A mutual insurance contract is a contract of the form: “Pay agent ¢ and amount z if she
has y accidents and the total number of accidents in the economy is z”.

3We want to emphasize that in this example we have chosen to have the same number of
types of agents, 2, as types of hazards, 2. To illustrate the differences between our model
and that of CCW, we could have allowed all combinations of high and low ¢; and w;, and
hence four types of agents, and as long as there were only two types of hazards, k = 2, and
hence would not require extra assets.
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3.2. The Dynamic Economy and Equilibrium

We are interested in studying an economy which has access to contin-
uously open exchanges. In particular, consider the same economy, but
include assets and the possibility of trading these assets as information
is (continuously) revealed.

We have already included in the description of the economy how in-
formation about accidents arrives: accident arrivals have exponential
distributions with parameter A\;(N¢(t)). Let us expand the probability
space to include the realizations of the arrival times, 7;, and denote the
new probability space by € and the new states of the world w’. The in-
formation arrival is modelled using a marked point process?, N(t). This
process N(t) is a vector of counting processes (Ni(t),..., N,(t)) such
that N;(t,w') = 1 if 7;(w’) < ¢ and zero otherwise. Using the accident
arrival distributions we can naturally extend P to the probability space
(@', F1), and model the information revelation using the filtration gen-
erated by N, F;, where F; = B({?), i.e. the Borel sets over ().

As for the objects of trade, securities, these are defined in the standard
way as claims on real consumption at the consumption date, d;, indexed
by j € J and their price processes, S;(t), are semi-martingales measur-
able on the filtration (F;)cjo1) such that S;(1) = d; almost surely. The
space of feasible trading strategies is also standard, # € ©, © is the space
of P-uniformly bounded predictable and measurable processes on (F;).
Duffie and Huang(1985) establish that the number of assets needed for
markets to be complete is equal to the martingale dimension of (F;).

LEMMA 3.1. The space of martingales on (<, Fy, (Fi)i, P) has mar-
tingale dimension of at most n.

In this economy information flows sufficiently smoothly such that the
Pareto optimal state-contingent equilibrium allocations can be decen-
tralized by a dynamic asset trading economy with at most n risky assets
and a bond. In terms of characterizing agents’ trades, Penalva(1999) es-
tablished that introducing redundant assets (fully diversified contracts)
would reduce the number of assets each agent needs to use to attain her
optimal consumption allocation. A fully diversified asset is a contract
whose dividends depend only on aggregate events, i.e. d;(1) = f(N¢(1)).

LEMMA 3.2. FEach agent can attain her optimal Walrasian allocation
by trading in insurance on herself, k fully diversified contracts and a

bond.

*For further details on marked point processes see Brémaud(1981).
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This is because agents’ optimal net trades can be decomposed into
an agent-specific component and an aggregate component. The agent-
specific component is taken care off by the insurance contract and the
aggregate part is dealt with using the fully diversified portfolios. In the
parametrized economy, k = 2.

Our aim is to characterize insurance trading in that economy and com-
pare it to the results from the static one. In particular, we want to know
if agents would purchase full insurance, over- or underinsure. A full in-
surance contract is an asset that gives agent ¢ a dividend d; of the form:
d;(A;) = L and zero otherwise.

THEOREM 3.1. If agents have access to a full insurance contract and
k fully-diversified portfolios, the agent’s optimal insurance demand is to
purchase full coverage.

The intuition behind this result follows from Lemma 3.2. The agent-
specific component of the optimal allocation comes from the agent’s en-
dowment and the aggregate component from the agents’ optimal con-
sumption. By purchasing full coverage, the agent takes care of the
agent-specific component and then uses the remaining wealth to attain
the optimal consumption allocation, which depends only on the aggre-
gate component. Consumption is then achieved using the k£ redundant
fully diversified contracts. By allowing trading in these aggregate assets,
market prices will decentralize the allocation of risk such that when all
uncertainty is revealed markets clear.

This theorem helps explain why such new assets as catastrophe bonds
have been introduced in insurance markets: they bonds help reduce
transaction costs as agent’s purchase full coverage to protect their prop-
erty against earthquakes; insurance companies issue bonds that promise
a premium over the riskless rate of return if there are no earthquakes
but if an earthquake happens, those who purchased the bond stand to
loose their interest (and risk premium), as well as their invested capital,
which is then used to fulfill the obligations with insurees. By raising cap-
ital directly, using the bonds, rather than indirectly, using reinsurance
companies, insurance companies eliminate an intermediary and the costs
associated with that.

Also, the flexibility of the framework we are using allows one to model
potentially new securities such as bonds written on expensive epidemic
diseases, like AIDS. These bonds could be used by smaller health insurers
to raise capital and cover themselves against the large losses associated
with the disease. Our model provides equilibrium prices both for insur-
ance and the bonds, and the amount of capital raised should exactly
compensate the amount needed at each state of the world.
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Note also that the fully diversified contracts are redundant assets, so
that one cannot expect their supply to be zero. One can only expect that
the value of assets and liabilities nets out. The traditional definition of
a securities’ market equilibrium is that of Radner(1972), which requires
the net supply of every asset to be zero (our economy is a pure exchange
economy). This is is why we have avoided speaking of an equilibrium.
An appropriate notion for our context would be:

DEFINITION 3.1. An equilibrium with redundant assets for the
economy described above is an array ((S;);jes, (%, 6;)icr) of security price
expectations, consumption allocations and trading strategies such that:
(1) there exists 7 € R and @ such that

for all j € J, S;(t) = Egld;(1)|F]/(1+ ),

(2) forall i € I, (Iz,ez) € B(ei, Sj), and

Uz(l‘@) > Uz(.’E,) for all (ZE’,@) c B(ei, Sj),
(3) for all t € [0, 1], 35, 32, 6:(t)S;(t) = 0.

Note for any equilibrium of this kind, there is an equivalent Radner
equilibrium (same (7, Q) and same (x;)) with a set of assets whose net
supply is zero - that set of assets is the minimal set required for markets
to be complete defined by Duffie and Huang(1985).

We can now speak of the equilibrium initial price of insurance, which
would be 0.1298 and 0.3886 for agent types A and B respectively. Let
the two fully diversified assets have payoffs as defined on Table 2: An
asset with random payoffs, d.;, and a bond that pays a 20% return on
its face value if there are no accidents but if there are any accidents it
does not pay any interest and 10% of the invested capital is lost for each
accident that occurs.

IN“(Lw)|[O 1 2 3 4 5 6 7 89 10]
| dei(w) |60 55 49 44 38 31 24 17 9 0 91|
| deo(w) |12 9 8 7 6 5 4 3 21 0|

TABLE 2.

Fully diversified contracts

The prices of the two aggregate assets is 57.32 and 10.65. Initial equi-
librium asset holdings are given on Table 3.

The agents go short (supply) the first risky asset and use the money to
purchase insurance, the cat(-astrophe) bond style asset and save. Over
time, the agent reacts to news of accidents by rebalancing the riskless
asset, the cat bond and the other risky asset. It is clear that the net
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| Agent Type | Insurance Holdings | Agg Asset 1| Agg Asset 2 | Riskless Asset |

| TypeA | 1.0000 | —0.0821 | 0.0957 | 3.5579 |
| TypeB | 1.0000 | —0.1858 | 02154 | 7.9643 |
TABLE 3.

Initial Asset Holdings

asset holdings are non-zero for any one security, but the aggregate value
of asset holdings is zero.

3.3. Full Insurance in Partial Equilibrium

In this section we want to analyze further why agents act contrary to
the predictions of the static insurance models when purchasing insurance
at unfair prices. We find that this result is due to markets being complete
and that information flows gradually.

Let us look at the agent’s problem for a given set of (not necessar-
ily equilibrium) security prices. First define the agent’s budget con-
straint: for every agent i, let B(e;,.S;) denote the set of consumption
strategy pairs (z,6) such that 3°,;60;(0)S;(0) + 2(0) = €;(0), z(1) =
ei(1) +>2;0;(1)d;(1), and the dynamic trading strategy 6 € ©. Then,
the agent’s partial equilibrium problem is maximizing U;(z) by choice of
(x,0) subject to (z,0) € B(e;, S;).

The price processes, S;(t), are given and define the set of attainable
consumption allocations, A: A is the set of consumption allocations, x,
such that there exists an initial constant endowment e = (¢,0), ¢ € R,
and = € B(e,S;). We will assume that markets are complete, i.e. that
A =R x L(Q2). Hence, the optimal problem can translated into a two-
stage problem:

(i) Solve max, U;(z) subject to z(0)+e "Eg[z(1)] = €;(0)+e " Ege;(1)],
where the interest rate » € R, and the measure )’ are obtained from
S;(t) by no-arbitrage;

(i) Find the trading strategy, 6, that will attain z.

Varaiya(1975) shows that these two problems are equivalent and we
will use his characterization to analyze optimal trading strategies. Con-
sider an alternative set of security prices for our example: increase the
relative value of consumption when there are no accidents and reduce
that of states with accidents, but retain the representative agent charac-
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terization of prices. In particular, change £ to £ as follows:

IN“@w)] 0 1 2 3 4 5 6 7 8 9 10 |
| €(w) ]0.980 1.020 1.059 1.098 1.137 1.176 1.216 1.255 1.294 1.333 1.373|
| €(w) |0.995 1.004 1.017 1.035 1.059 1.090 1.129 1.177 1.234 1.299 1.374|

This change of measure implies insurance prices and holdings as de-
scribed in Table 4.

Agent Type |Insurance Price|Agg Asset 1|Agg Asset 2 | Riskless Asset |

|

| TypeA | 01263 | 5738 | 1068 | 100 |

| TypeB | 03787 | 5738 | 1068 | 100 |

| Asset Holdings| Insurance |Agg Asset 1|Agg Asset 2| Riskless Asset |

|  TypeA | 10000 | —0.0255 | 00280 | 1.041 |

| TypeB | 1.0000 | —0.0645 | 0.0707 | 2.577 |
TABLE 4.

Partial Equilibrim Example

We see that agents have lower insurance prices (although still unfair)
and the price of the other risky assets has increased, reducing their re-
turn. As can be seen in Table 5, the overall effect for an agent of type A
(and for type B it is similar) the overall price change leads to lower con-
sumption in the no accident state (and hence excess supply) and higher
consumption (excess demand) in the accident states.

More importantly for our analysis, agents readjust their non-insurance
asset portfolios but maintain full insurance coverage. They reduce their
supply of the first risky asset, and invest less in bonds. This increases the
relative weight of insurance and reduces the net availability of capital at
the loss states, making it impossible to satisfy insurance liabilities and
market clearing.

|N‘(Lw)] O 1 2 3 4 5 6 7 8 9 10|
| € za(w) |10.08 9.68 9.28 8.89 8.49 8.09 7.69 7.30 6.90 6.50 6.11]
|¢/, za(w)] 9.92 9.83 9.70 9.52 9.28 8.96 8.57 8.08 7.50 6.85 6.09 |

TABLE 5.

Partial Equilibrium Consumption

This is quite surprising; one would have expected agents to increase
their demand for cheaper insurance. The following theorem shows that
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we should not expect agents to change their demand for insurance for
certain kinds of price changes.

THEOREM 3.2. Suppose each agent has access to a full insurance con-
tract such that markets are complete and that the implied martingale mea-
sure Q' is defined by the Radon-Nikodym derivative dQ'/dP = &' (N¢(1)).
Suppose further that there is a complete set of (redundant) fully diver-
sified contracts and a bond. Then the agent’s optimal trading strategy
can be described as: buy and hold full coverage and dynamically trade
the diversified contracts and the bond.

The full insurance property we observed in Theorem 3.1 extends to
the partial equilibrium optimal asset demand problem and leads to two
interesting corollaries which require no proof:

COROLLARY 3.1. Under the conditions of Theorem 3.2, agents can
optimally purchase full coverage independently of whether the insurance
contract is fairly priced or not.

COROLLARY 3.2. Under the conditions of Theorem 3.2, all agent’s op-
timal demand for insurance will be the same, regardless of the correlation
of its price with that of the fully diversified assets in her portfolio.

This is clearly counter to classical results. The reason has to do with
two things: one, information is revealed nicely and two, there is an (ef-
fectively) full set of assets. The more intuitive effect is that of complete
markets. Smith and Mayers(1983) consider a context where markets are
incomplete. Assets play a dual role: they serve as wealth transfer instru-
ments (accross time and states of the world) and they define the incom-
pleteness in markets, the restrictions on how wealth can be transferred
accross states. These cross state restrictions distort insurance demand
in as far as the insurance contract helps aleviate these restrictions. As
we consider complete markets, assets become simple wealth transfer in-
struments and the role of insurance as an agent-specific transfer can be
separated from the role of transferring consumption accross states of the
world with different aggregate consumption.

The gradual revelation of information plays a key role in furthering
the separation of agent-specific trading and aggregate diversification.
Dynamic trading allows the agent to react to the gradual revelation
of information. In as far as that information separates agent-specific
news from aggregate news, the agent will be able to reflect that distinc-
tion in her trading behaviour. Allowing for the hazard to depend on
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the aggregate number of accidents still respects that separation. The
agent can eliminate her agent-specific risk by purchasing a full insurance
contract and then adjust her wealth holdings in response to aggregate
relative scarcity as reflected in the prices and returns of fully diversified
portfolios.

In our example, the announcement of a loss to an agent implies the
same loss for the economy, L, at date one. But, because this loss implies
one less agent at risk, this will affect the probabilities over future losses
depending on whether the agent was of type A or type B. The proba-
bility that the total number of accident is two, conditional on the first
announcement of an accident, depends on whether there are 4 agents of
type A and 5 of type B still at risk, or 5 of type A and 4 of type B.
This is why in our example & = 2 and we needed two fully diversified
contracts. Two is the right number of assets to have enough flexibility
to allocate our wealth optimally depending on which type of agent has
an accident, and fully diversified assets are the right kind needed to deal
with aggregate risk. Even if the agent’s hazard depends on the aggregate
number of losses would we still need only two assets.

We have seen why agents prefer to purchase full insurance in this econ-
omy that allows continuously traded assets. Positive insurance loadings
are a natural outcome of the decentralization process as they are needed
to compensate the providers of capital for aggregate uncertainty. Agents
need to be encouraged to acquire net negative aggregate positions in
states of the world in which there are aggregate losses and the only way
to do so is by offering a positive return on the aggregate assets which
compensates them for that risk. This way, the insurance market’s assets
and liabilities net out: they use premium income to compensate capital
providers when losses are few so that they can use that to compensate
insurees when losses are high.

4. ASYMMETRIC INFORMATION AND RESTRICTED
TRADING

We want to use this framework to study the problem of asymmetric
information. In particular, we want to consider the problem of how to
regulate genetic testing in insurance markets (specially life and health
insurance). Our model is that of an exchange economy and should be
considered as a first step toward a more extensive study of the problem.
The main characteristics of the problem we want to consider here is that
information acquisition (the test) is costly to do systematically but in
some cases it is obtained for free. The existence of the possibility of doing
and interpreting these tests correctly can lead to problems of asymmetric
information in insurance markets. This asymmetric information can be
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on the side of the insuree, who knows the results of the test and refrains
from disclosing it (whether for legal or privacy issues). It can also be on
the part of the insurer who has all details of the test and its implications
due to better access to data and expertise in interpreting the informa-
tion. We will continue to assume that all agents are price takers and the
Walrasian auctioneer plays the role of the insurance industry in setting
competitive prices.

4.1. The Problem and Possible Solutions

There has been a tendency for insurance prices to remain relatively sta-
ble and agents to remain with their insurance company for long periods
of time. This trend is changing and we are observing more activity both
by the insurer (changing rates and adjusting coverage) and the insured
(switching companies). These changes are most probably due to private
information. We want to know what this means for the stability and
future properties of insurance markets, and interpret it in the context of
genetic testing.

The problem we want to consider is what happens if there is a method
for obtaining information which reveals whether an agent is more or
less at risk than previously thought and that information is not shared
by all parties (the agent and the insurance companies with which she
works). In many countries, this situation arises as privacy laws protect
those who do not wish to reveal the results from genetic tests, and as
insurance companies who have genetic information (via blood tests or
other tests) use it to obstruct or deny coverage.

The context we are considering is equivalent to that considered by
Grossman and Stiglitz(1980, GS) and they conclude that information-
ally efficient markets are impossible with costly information acquisition.
The alternative left is informationally inefficient markets, i.e. for prices
not to reflect all available information. The question we try to answer is
whether informationally inefficient markets are possible and allocation-
ally efficient. We base our analysis on the initial insights of Milgrom and
Stokey(1982).

Our model illustrates the problem quite clearly: suppose the insurance
company pays for the genetic test on agent ¢ and does not reveal the result
of the test. If the test makes agent ¢ more at risk then the insurance
company can do two things: hike up the price of insurance or cancel
the coverage. If the price goes up, nothing happens: the agent already
holds the insurance contract and its value goes up but she continues to
want to hold the same amount of coverage (if the new price fully reveals
the information); the insurance company sees its liabilities increase. To
compensate, the insurance company needs to test all its insurees which
will reveal that the increased liability from 7 is balanced out by all the
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others and the balance sheet is fine. The gain for the insurance company
is zero, but it has spent all this money testing insurees, so adjusting
prices and doing all the tests is not worthwhile (hence, not an equilibrium
outcome).

If, on the other hand, the company denies coverage, then the agent will
not find another insurance company which will take her - lost coverage
implies a risk too high for current rates. But this means that the agent
wants to purchase insurance at current rates but no one will supply it -
again, we find ourselves out of equilibrium (demand does not equal sup-
ply). The other insurance companies will only accept her if she pays a
higher premium, but the agent, when she lost coverage, was not compen-
sated for the cancellation of the coverage at the higher post-test rates,
so that she will need to readjust her wealth allocation and break the
initial equilibrium. The economy is left with two possibilities for equilib-
rium: either include the price of the test in the initial insurance contract
together with a guarantee of coverage (this is equivalent to Tabarrok’s
“genetic insurance” - see Tabarrok(1994)) or not do the test at all. The
first case, if possible, is Pareto dominated by the second. But not doing
the test is only possible if the tests are never done. If for some reason
(say via a free test prior to blood donation, for scientific purposes, ...)
the test information can be obtained for free then the second alternative
disappears as an equilibrium.

An alternative would be to consider suspending trade. According to
Milgrom and Stokey(1982) if agents can negotiate ex ante efficient con-
tracts then the new information will not generate any trade so the sus-
pension of trade does not add inefficiencies. The problem is that if one
does not allow trading we return to the static insurance economies and
we will find that market completeness requires too many or too complex
assets.

Since GS’s paper there have been a number of alternative models of
general equilibrium with asymmetric information addressing the exis-
tence issue in different ways®. Some have included noise in price setting
which would translate to: the results of the tests on increased coverage
are not fully deducible from prices (Hellwig (1980), Diamond and Verec-
chia(1981), Admati(1985)); others have added imperfect competition in
price setting where agents are aware of the effect of their asset demands
on prices (Kyle(1985, 1989), Bhattacharya and Spiegel(1991), Holden
and Subrahmanyam(1992)); and yet another group has considered dif-
ferent non-linear pricing schedules to ensure equilibria exist (Prescott
and Townsend(1984), Bisin and Gottardi(1998, 2000)). We retain price-

5There is also a very large literature on asymmetric information in game theory and with
partial equilibrium. Some particularly relevant papers are Doherty and Thistle(1996) and
Strohmenger and Wambach(2000).
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taking behaviour, exclude additional sources of uncertainty (such as noise
traders) and maintain linear prices (whenever trading is permitted). Nev-
ertheless, our model is closest to those with minimal non-linearities in
prices by Bisin and Gottardi(1998, 2000)

4.2. Our Approach

The way asymmetric information can be incorporated into our model
is by adding signals which are received between consumption dates. If we
just look at the results of the previous section, an interesting and strik-
ing feature of insurance trading behaviour is that despite the revelation
of information (how many agents have suffered accidents, ...) agents do
not wish to change their insurance holdings. So any agent who wants
to change her insurance holdings immediately signals that she has some
information not known to the insurer. Similarly, any attempts to re-
duce coverage, add restrictions on existing coverage, or add unexpected
charges on the part of the insurer also reveals that the insurer has infor-
mation not known to the insured.

Not doing the test at all is the non-informationally efficient price equi-
librium and corresponds to the “full information” model in the previous
sections - full information in the sense of common priors, common knowl-
edge and full public disclosure of news. It is an equilibrium as long as
the signal cannot (or is too expensive) to appear. Given historical insur-
ance trading behaviour one could argue that in the past there was some
kind of formal or informal institutional arrangement that kept common
knowledge and public (lack of) information, and that arrangement has
broken down - presumably because information acquisition has become
cheaper or easier. As we will see, being uninformed may not have been
inefficient and the increased flow of information may be making the in-
surance market unstable - Hirschleifer(1971) has already pointed out that
more information is not necessarily better.

Let us introduce asymmetric information into the model formally. Let
y;(t) be a random process, which we will call a signal on agent 4, and
let §(t) denote the vector of signals on all the agents. Rather than
introducing complex notation to describe the filtration that incorporates
y, we will just add a second argument to the conditional expectation
operator and extend the terminal o-algebra from F to F V Fy, Fy =
o(g(s), s < 1). The interpretation of the notation should be obvious.
Let the vector of signals have the following properties:

No initial signal There are no signals at the start date: § = (0,0, ...,0).

Individual Non-neutrality The signals contain information: there exists
te€ (0,1)and A € F,14 € Loo(Q2, FVFy, P), such that Ep[14|F:, §(t)] #
Ep[14|F;
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Aggregate Neutrality The signals do not affect the distribution of the
aggregate endowment process: for any real valued function, f,

Ep[f(w(W)|Fup ()] = Eplf (w(1))[Fu,-

To illustrate these definitions return to the example we used in the
previous section. Let all the parameters be the same except change the
hazards, A;. Impose that all hazards are zero up to date ¢ = 1/2. Then,
imagine a lottery that randomly assigns five agents to have \; = 0.051
and the other five \; = 0.156. Each agent finds out whether she has a
high or low hazard, but no one else does. This signal clearly satisfies
the individual non-neutrality as the probability of a loss changes for
each agent. In order to satisfy the second assumption we cannot let
agent’s risks be independent otherwise the probability of future accidents
depends on whether the last accident was of an agent with high or low
hazard. We let accidents come in pairs: when there is an announcement,
both an agent with high and an agent with low hazard have an accident.
This ensures that private information does not have aggregate effects.
Then the question is what is the best way to deal with this asymmetric
information.

Clearly, the assumption of aggregate neutrality of signals is a strong
one. We wish to concentrate on signals that have only a purely agent-
specific content and with a finite number of agents one needs a strong
assumption such as this one for signals to have purely agent-specific
information. We would not need this assumption if we had a continuum
of agents but then again assuming that there are as many agents as real
numbers in an interval is also a strong assumption. Clearly aggregate
neutrality is only valid when there is a sufficiently large number of agents
that knowing that a single agent has a higher or lower hazard has a
negligible effect on one’s perception of the value of assets whose payofts
depend on economy-wide variables.

We have seen above that the economy without the signal has an equilib-
rium, but that equilibrium cannot be implemented if some agents receive
the signals. An agent with a signal on himself that is not publicly known
wants to alter his insurance trades if we keep the prices from the no-
signals economy. But, as he is the only one with this information, the
rest of the market does not want to alter their allocations to accomodate
his change in demand (at those prices). If prices reveal all the informa-
tion, agents will maintain the same insurance trades and attain the same
allocations:

THEOREM 4.1. If in the economy of Theorem 3.1, the insurance con-
tracts available for each agent are full coverage insurance contracts, d;(1) =
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14,L, and the price of agent i’s insurance contract at date t € [0,1) is:

s() = T
1+7r

where dQ/dP and r are the same as in Theorem 8.1, then there exists

a redundant asset equilibrium where agents can attain the same Pareto

optimal Walrasian equilibrium allocations using the same strategies as

those in Theorem 3.1.

But, this equilibrium requires that everyone has genetic tests whose
results are sufficiently public to be incorporated into prices. Trivially,
if those tests require some expense, ¢ > 0 for the whole economy, the
equilibrium with full information plus the cost is Pareto dominated by
the equilibrium of Theorem 3.1, which attains the same consumption
allocations without incurring the loss of c.

The issue now is what does the government do knowing that genetic
tests are costly and aware that some genetic tests are being done. It
cannot impose a non-informationally efficient equilibrium because some
agents have or will have access to genetic information costlessly - hence
destroying the equilibrium. It could impose the full information equilib-
rium at considerable cost for the economy. It could suspend all dynamic
trading, but this would eliminate dynamic trading opportunities and
complicate the existence of complete markets and hence the attainabil-
ity of efficient allocations. Another alternative, which is the most com-
mon current policy, is to restrict trading but only partially: it can allow
agents to acquire genetic information but not allow that information to
enter into insurance transactions. The last option has the problem, sug-
gested by insurance practitioners, that even if that information cannot
officially enter transactions, somehow it will eventually leak into those
transactions, and “A consent law which hid information de jure but not
de facto could be worse than no law at all” (Tabarrok, 1994). Another
way to implement no intermediate trading in insurance is to rule out
new insurance transactions (leaving global asset market transactions as

before).
THEOREM 4.2. If in the economy of Theorem 3.1,

1.the insurance contracts available for each agent are full coverage in-
surance contracts, d;(1) = 14, L;

2.agents are restricted to buy-and-hold strategies on these insurance
contracts, 6, ,(0) € R, Vt € (0,1], 0;;(t) = 6;:(0); and,

3.there is a signal vector process, §(t), that satisfies the individual non-
neutrality and aggregate neutrality properties,
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then there exists a redundant asset equilibrium where agents can attain
their Pareto optimal Walrasian equilibrium allocations independently of
the identity and the number of agents who observe §(t). The price process
of the fully diversified portfolio and the optimal trading strategies will be
those of Theorem 3.1.

COROLLARY 4.1. In the economy of Theorem 4.2, if for all i € I, we
allow agent i to observe the two processes (N(t),y:(t)) then there exists a
redundant asset equilibrium such that for all i € {1,...,n}, agent i can
attain her optimal Walrasian equilibrium allocation.

The intuition is quite straight-forward. The economy at date zero
looks just like the perfect information economy of Theorem 3.1 and the
same optimal consumption allocations and trading is feasible. If we
keep the same price processes for all assets, then allowing any agent
to observe any number of the signals then, by the aggregate neutrality
of signals, she would only want to change individual insurance-related
trades, but those are ruled out by construction. The agent-specifity of the
information allows to partially suspend trade in the contracts that were
ex-ante efficient (insurance) and dynamically trade to optimally diversify
in the presence on new aggregate information (trading in stock markets).
As the consumption allocation was optimal among feasible consumption
allocations that only depended on the aggregate endowment, the current
allocation is optimal and within the span of the aggregate assets.

This result implies that non-insurance prices can adjust to incoming
accident information (because of their aggregate information content)
and private insurance prices can only change according to the same in-
formation as before genetic testing: accident history and ex-ante risk
type (the properties of the hazard function). Agents are then allowed
to choose their insurance allocations at the beginning and are forced to
hold them till the end. This is equivalent to enforcing long-term insur-
ance contracts, negotiated prior to the possibility of attaining private
information.

As Hirschleifer anticipated, the early realization of uncertainty can only
eliminate risk-sharing possibilities. Informationally efficient markets are
not valuable per se. The introduction of genetic testing will only lead to
an arms race of testing that will eventually just readjust prices without
improving the welfare of future generations and possibly raising the costs
of insurance.

If on the other hand we were allowing for production of some sort,
where information on the realization of accidents affects the optimal al-
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location of resources, then there may be some value for this information
and that value has to weighted relative to the cost of acquiring the infor-
mation. In terms of genetic testing, there is no need to spend resources
on tests if those test only serve to increase the insurance rates for some
agents and lower those of others. If the tests help coordinate resources,
say by constructing a more efficient network of specialized hospitals, ef-
ficient preventive treatment, ... then the costs of testing have to be
weighed against the benefits. If the gains are higher then the tests can
be done and the hospitals constructed. But there is no reason why this
information has to affect the price of individual insurance - the risk is
optimally shared before the tests are out.

5. GENERALIZATIONS OF THE MODEL

We have seen above that insurance demand becomes independent of
other assets demands if there are enough other assets. Above one needed
k assets to deal with the k different classes of hazard functions. One
question to ask is whether rather than have agents with different hazards
they could have different magnitudes of losses. In general the answer is
yes, k is determined the number of risks that describe the aggregate
endowment process and one can allow for different hazards, different
properties of hazards (add Markov processes on which hazards depends,
...). A more general study of the kinds of risks that could be treated in
this framework and the number and types of assets needed to deal with
them has been studied by Penalva(1999).

This generalizations apply also to the full insurance result of Theorem
3.1. By extending the notion of a full insurance contract as one that
compensates one-for-one all losses suffered by the agent, Theorem 3.1
can be generalized in ways that will take us too far from the aim of this
paper but which include multiple loss magnitudes, different risks, etc.
The most obvious extension is to consider the possibility of more than
one loss per agent. By extending the notion of full insurance to cover all
the losses we can apply the arguments in the proof of Theorem 3.1 to
show that the same result holds.

As for the efficiency properties of suspending insurance trade, as long
as we retain the same properties of the signals, the extensions are totally
analogous. The only thing to recall is that the assumption of aggregate
neutrality is only meaningful in contexts were individual information
has little aggregate content, such as when there are many agents with
independent or weakly correlated risks.
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6. CONCLUSION

We have shown that an economy with insurance markets and with
other continuously traded assets behaves quite differently than the ones
in classic insurance theory. In particular, we have found that agents buy
full insurance even if prices are unfair and there are assets with payoffs
correlated with that of insurance contracts. In terms of insurance pric-
ing, insurance companies, as intermediaries between the individual at
risk and the global asset market, should charge positive loadings in as
far as those loadings are required to compensate asset markets for the
aggregate risk they generate. Despite those loadings agents should be
able to attain efficient consumption levels. The possibility of efficient
insurance purchases in such a context is primarily due to the optimality
of eliminating agent-specific risk and the possibilities of separating in-
surance trading from the trading on fully diversified portfolios permitted
by the way information is revealed over time.

We have also seen that information can generate problems for the exis-
tence of markets and that the revelation of information is not necessarily
welfare enhancing (the well-known Hirschleifer effect). In particular, it
is impossible for markets to be informationally efficient if information
acquisition is costly and the presence of information can destabilize non-
informationally efficient ones. Hence, the suspension of informational
trades (implicit in Milgrom and Stokey, 1982), which can be considered
the equivalent of restricting insurance transactions not to be based on
genetic information, stabilizes the market and insures efficient insurance
purchases. If such legal measures are not sufficient, they could be im-
plemented by imposing long-term health contracts, based on pre-test
information. Changes of insurers could be done at prices established at
an industry level via consensus or government mandate. These prices
would incorporate all appropriate public data, as is done under risk ad-
justment policies. As for the diversification of risks accross insurance
companies, this can be done ensuring them access to dynamic secondary
markets that aggregate and diversify these risks effectively. As long as
the private information has no aggregate effects, such markets need not
be concerned about it.

Our model has concentrated on the purely informational effect of ge-
netic testing. The cases in which genetic testing has real efficiency effects
in terms of production of resources, such as optimal allocation of spe-
cialized hospitals or equipment, and the existence of efficient post-test
therapies, have not been considered explicitly. Nevertheless, it is possible
to analyze those effects separately and compare them with the cost of
the tests, while isolating insurance transactions from this information.
The debate on the role of genetic testing is a rich and complex one and
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we have only addressed a single issue and on a limited basis. We hope
that this paper serves as a contribution to clarify this debate.
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7. APPENDIX
7.1. Proof of Lemma 3.1

This result follows directly from the martingale representation theo-
rem (see Last and Brandt(1991) for a general version and proof of this
theorem). The filtration (F;).c)0,1) is by construction the filtration gener-
ated by the marked point process N(t). Define the ((F;), P)-martingale
process M(t) = N(t) — Ji M(s)ds, where \(s) is the vector of hazards
(A1,...,An). As the dimension of this vector is n and (by the martingale
representation theorem) for every ((F;), P)-martingale, X (t), there is a
predictable process h(t) such that X (¢) can be represented in integral
form as:

X(t) = X(0) + /Ot h(s) dM(s),

then the dimension of the space of ((F;), P)-martingales is at most n.

7.2. Lemma 3.2

The proof of this Lemma is somewhat involved so we will only run
through the main steps. For a detailed proof see Penalva(1999).

Duffie and Huang(1985, DH) demonstrate how to decentralize a Wal-
rasian equilibrium as an equilibrium in security trading (a Radner equi-
librium). Their demonstration shows that for each agent there is a strat-
egy that will allow her to attain her optimal consumption. That strategy
is obtained by replicating a martingale, which we shall refer to as the
wealth martingale, X, (¢).

Penalva(1999) takes that martingale and shows that, under the con-
ditions of risk considered in our model, it can be decomposed into an
agent-specific component and an aggregate component. With this de-
compositions he proves that X;(¢) is in the span of k fully diversified
portfolios and the insurance contract, and hence those assets (plus the
riskless bond) are sufficient for i to attain her optimal consumption al-
location.

7.3. Proof of Theorem 3.1
In order to prove this result we need some auxiliary lemmas.

LEMMA 7.1. Given a Walrasian equilibrium pair (m, (z;):cr) there ex-
ists a measure () and an interest rate r such that for all feasible con-
sumption allocations, y, m(y) = y(0) + Egly(1)/(1 + )], where Egl[-] is
the expectation with respect to the measure Q). Also, dQ/dP = £(e(1))
and for all i € I there exists g; : R — R such that z;(1) = g;(e(1)).
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The measure and the interest rate correspond to a renormalization of
the price vector. The properties of ¢ and z; arise from the existence of a
representative agent characterization of (, (z;)) (see Huang(1985) for a
general version of this statement).

Let us introduce a new vector process, N.
- Zi€11 N’l (t)

N(t) = . .

Zielk N’l (t)

Let (Gi¢)tcpoa) be the filtration generated by N (t). Naturally, for all ¢,

G, C F, and N(t) admits the intensity process A(t), where

- ZiGIl AZ (t)
A(t) = . .

Let 77(t) denote the time of the last jump of the process ;¢ 1, Ni(t)
up to time ¢. As for all ¢ = 1,...,n, N(t) = A(N°(t)), then for all
j - ]_,...,k, Zie[l )\z(t) — Aj(Ne(t),zielj NZ(T‘?)>, SO that )\(t) iS gt—
measurable and predictable.

LEMMA 7.2. For allt € [0,1], f : R — R, the (F;, P)-martingale,
X(t) = Ep[f(N¢(1))|F] is a (G, P)-martingale.

Define it as

Proof: For any n € N, let A4, = {N°1) = n}. Clearly (4,) is
the minimal partition that generates o(N¢(1)). As o(N°¢(1)) C G,

f(N¢(1)) € Gy. The rest follows from the properties of N, A\, and mar-
tingales. -

Also, by applying the martingale representation theorem as we did in
Lemma 1, the dimension of the space of ((G;), P)-martingales is at most
k.

Proof: [Theorem 3.1] Following the same arguments as were used in
Lemma 2, all we need to show is that X;(t) is spanned by a full insurance
contract and the k fully diversified insurance contracts.

Recall the definition of X;(¢) in DH:

(z:(1) — ei(1))
(1+7)

B (z:(1) — ei(1))

- Fe l (T+7) M e

(zi(1) — ei(1)
(1+7r)

Xi(t) = Eg [(%(0) —¢;(0)) + ‘Ft] — Eq l(xi(o) —€i(0)) +
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where C; € R. For the purposes of analyzing the martingale properties
of X;(t) we can ignore C;.

The equilibrium price of insurance is S;(t) = Q(A;,t)L/(1 + r), where
Q(A;,t) is the probability agent i suffers a loss (event A;) given the
information up to time ¢, then for ¢ € [0, 1],

Xi(t) = Si(t) = Eqg l( ((11)+r)( ) ft] — Si(t)
B 2i(1) — w; 4+ 14,L Q(A;, t)L
- o [M A | - SR
(1+7r)Xi(t) — Si(t) = Eglzi|F]) —w; + Egl1a,| R L — Q(Ai,t)L
= Eqlzi|F] —wi + Q(Ai, t)L — Q(A;, )L
Xi(0) - () = 2R

The agents problem is now to replicate X;(t) — S;(t). From Lemma
7.1:

Ep [§(N°(1))gi(N°(1))| 7] —
I+r

Xi(t) = Si(t) =

Which implies that X;(t) — S;(t) € G, by Lemma 7.2. Returning to the
formal full definition of X;(t), X;(t) — S;(t) is an (F;, Q) —martingale as
both X;(t) and S;(t) are so. As the dimension of the space of ((G;), Q)-
martingales is the same as that of the ((G;), P)-martingales and that of
the latter is k, one needs at most k assets to replicate X;(t) — S;(¢). As
one can construct those assets by using d;(1) = f;(IV¢(1)), those assets
can be fully diversified portfolios. .

7.4. Proof of Theorem 3.2

Proof: By the proof of Theorem 3.1, it should be clear that all we have
to show is that given &'(N¢(1)), the optimal consumption allocation for
agent ¢, z* is of the form (zf,27(N¢(1)), or rather that there exists
h; : R — R, such that z*(1) = h;(N¢(1)).

This is relatively straight forward to demonstrate by contradiction:
suppose that the optimal allocation is not of the form z% = h;(N¢(1)).
This implies that there is at least one n € IN such that z*(1)14, # cp1a,
where ¢, € R. (recall A, = {N¢(1) = n}). Consider the alterna-
tive allocation 2’ such that 2'(0) = 2*(0) and 2'(1) = Lg\a,2*(1) +
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14, Ep[z*(1)14,]. Let = Ep[z*(1)14,]. If we compare the expected
utilities of both consumption bundles we obtain

Ui(a) = wi(2'(0)) + B; Eplui(«'(1))]
= ui(27(0)) + Gi(Eplui(” (1))~ An] + Eplui(7)| An])

uwi(z7(0)) + BiEplui(z*(1))] + B:(Ep[ui(7)|An] — Eplus(2*(1))|An])
Ui(") + Bi(Ep[ui(7)| An] — Eplui(2*(1))|An])

By the strict concavity of u;(-), Ep[ui(7)|An] — Ep[ui(27(1))[An] > 0 so
that U;(z') > U;(z*). But the value of 2’ is given by:

2'(1) 1o\a,2%(1) + 14, Ep[z*(1)14,]
1+7r 1+7r

ZE,(O) + EQ

=ﬁ@+mk

=ﬁ@+mk

1+r 1+r 1+7r

But as £ = £(N°(1)), there is a constant &, such that £ ProofofTheorem3.2A,, =

& ProofofTheorem3.2A,,, which implies

14, Ep[z*(1)14,] e (Dla, | _ , Eplz*(1a,] , Eplz*(1)14,]
—Ep|{———| =&

=0
1+r

EP 6 _gn

147 1+r 147
So 2’ is feasible and preferred to #* which contradicts z* being optimal. =

7.5. Proof of Theorem 4.1

Let us compare the economy without the signal, £(£2, F, P), with the
one with the signal, £'(Q', F V Fy, P’). For any Walrasian equilibrium
pair (m,x) of £, there is an equivalent Walrasian equilibrium for &',
(', x) where for any event A € F, m(14) = n’(14). This follows from
the assumption of no initial signal: the addition of the signal is like
adding a sunspot to the {0, 1} state-contingent commodity economy.

If we now add security markets, then the signal is no longer a sunspot,
because of the individual non-neutrality assumption. The signal can have
two effects: allow for arbitrage opportunities and allow for additional
arbitrage-free equilibria.

Nevertheless, if we take the change of measure d@/dP and the interest
rate r from Theorem 3.1. The price processes

Eq[L|F,Y)]

Sit) = 147

Y

x*(l)] + Ep [élA"EP[x*(l)lA"]] — Ep [5%

|
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are trivially @)-martingales on the extended probability space, they do
not allow for arbitrage opportunities and by completeness, imply the
same measure on F. Hence, they allow the same consumption allocations
as those that were available in Theorem 3.1. The only possibility left is
that they also allow for better consumption allocations than in Theorem
3.1. But as at date zero, the signal is a mean-preserving spread and
d@/dP is a function of the aggregate endowment, the extended budget
set adds, at best, mean-preserving spreads of x, which (by the concavity
of u;) can never be better than the original x. By the aggregate-neutrality
assumption, the same aggregate trades are feasible, and as the bond and
the insurance trades are also trivially feasible, we are done.

7.6. Proof of Theorem 4.2

Consider the economy without the signals. Then, one can apply Theo-
rem 3.1 and obtain a redundant asset equilibrium with full insurance, k
fully diversified portfolios and a bond. Let (z;) denote agent i’s (optimal)
allocation in equilibrium and consider the same economy with signals.

Because there is no initial signal and aggregate neutrality the prop-
erties of N and the prices of the fully diversified portfolios remain un-
changed. Hence, the budget set B(e;, S;) is the same as the one without
signals only smaller. If the z; was the best among those in the budget
set, it will continue to be the best if we shrink the budget set, as long
as it is in that smaller budget set. But, the new restrictions on feasible
trades are that agents cannot dynamically trade insurance. By Theorem
3.1 for all t € [0, 1] it is optimal for 6;,;(t) = 1. Hence, the old trading
strategy continues to be feasible, which implies that x; € B(e;, S;). As
this is true for all ¢ we are done. .



