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This paper extends existing insurance results on the type of insurance
contracts needed for insurance market efficiency to a dynamic setting. It
introduces continuously open markets that allow for more efficient asset
allocation. It also eliminates the role of preferences and endowments in
the classification of risks, which is done primarily in terms of the actuar-
ial properties of the underlying risk process. The paper further extends
insurability to include correlated and catastrophic events. Under these
very general conditions the paper defines a condition that determines
whether a small number of standard insurance contracts (together with
aggregate assets) suffice to complete markets or one needs to introduce
such assets as mutual insurance.

1. INTRODUCTION

Insurance companies have an image of being very conservative and re-
luctant to be taken up by the enthusiasm of emerging financial markets
and financial innovations. In the past, insurance contracts were sold for
a relatively long period of time, prices readjusted little, and the risk from
insurance contracts was dealt with either by reselling it as reinsurance
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or absorving and managing it using relatively stable capital reserves. As
financial theory develops and financial markets are liberalized, more fi-
nancial type approaches are being introduced into risk management -
via the entry or influence of banks, and via a greater financial training
among insurance professionals. This phenomenon is moving the indus-
try towards more active risk management and requires a more dynamic
theoretical treatment of insurance risks. We propose a framework which
can is used to interpret the behaviour of insurance companies in the
midst of financial market liberalization, and relate it to the problem of
insurability and efficient risk sharing.

Risk is a major component of modern economic analysis. The efficient
management of risk in an economy involves, for the most part, a real-
location of this risk: optimal risk sharing. Arrow and Lind(1970) argue
that most of these risks are of an idiosyncratic nature and Arrow(1965)
underlines the importance of understanding the scope of risk sharing
and of understanding the restrictions imposed by insurability. This has
been studied in an essentially static context and our paper extends the
analysis by allowing dynamic asset trading. Our insights extend the ini-
tal extension of insurance to dynamic trading made by Ellickson and
Penalva(1997). As we will show, dynamic trading allows the efficient
management of correlated and catastrophic risks, but the number and
type of assets needed will depend on how nicely does information about
risks flow.

Insurance markets are considered to be the main vehicle for dealing
with agent-specific risk, hence it becomes crucial to understand when
such markets provide an efficient reallocation of risk. Malinvaud(1972)
has argued that the key property is the possibility of applying the Law of
Large Numbers. This is because private insurance contracts cannot deal
with economy-wide scarcity in addition to the risk of an agent’s endow-
ment loss. To ensure ex-post market clearing there cannot be aggregate
risk. Idiosyncratic risks (and hence insurable risks) are those that can
be “socially removed by the operation of the law of large numbers” (Ma-
linvaud, 1972).

Borch(1990) has taken a more pragmatic point of view. Given the
possibilities provided by Lloyd’s of London to ensure a wide range of
risks, a large number of which would be classified in the uninsurable
category, he concentrated on the issues of moral hazard and adverse
selection as the main obstacles for a risk to be insurable. Every risk that
does not include moral hazard or adverse selection is then insurable.

Cass, Chilchinski and Wu(CCW, 1996) consider an intermediate case:
a finite number of agents and several types. All agents of the same
type have identical preferences, identical ex-ante endowments and un-
certainty over their final endowment is described by an exchangeable
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random variable, which allows for aggregate risks. They show that effi-
cient risk-sharing can be attained with a sufficiently low number of in-
surance contracts and Arrow securities. This extends the types of risks
that can be dealt with efficiently but it introduces two additions to in-
surance markets: the need for “mutual insurance” (contracts written on
individual and aggregate events), and the use of non-insurance related
securities to deal with aggregate risk.

These advances in the theory of insurance have largely taken place
independently of advances in finance theory. Ellickson and Penalva(1997)
started to bridge this gap. They construct a model with discrete time
consumption and no intermediate trading. They impose that at most
one accident in the whole economy occurs between consumption dates
and should be considered as a discrete approximation to a model with
continuous time consumption and trading. Our model extends theirs by
allowing intermediate trading and explicitly modelling the continuous
revelation of information. We extend their results by providing a much
more detailed analysis of risks and their effect on the type and number
of asset traded to attain complete markets in equilibrium, more general
definitions of insurance contracts, and explicit consideration of correlated
risks and catastrophic risks.

In the finance literature, the role of financial markets for optimal diver-
sification has been addressed under the heading of complete markets and
effective completeness. Christensen et al(1999) and Zhou(1995) try to
refine Duffie and Huang’s (1985) result on the minimal number of assets
needed for complete markets in a dynamic context. They use Brownian
motion and consumption at every trading date. We find both assump-
tions more appropriate for finance than insurance. They also characterize
insurance as contracts that cover the idiosyncratic component of agents’
risks and are interested solely on the number of assets needed for effec-
tive completeness, without much comment on the insurance implications
or interpretations. This gap between insurance and finance theory needs
to be covered both for theoretical completeness and to be able to ad-
dress the specific issues that arise in the insurance industry as financial
markets liberalize and innovate.

Our approach extends the study of insurability to a dynamic setting,
extending the results of Malinvaud and CCW and including them as
special cases. This requires the definition of an appropriate general no-
tion of risks and of the types of contracts used: private insurance, mu-
tual insurance, and diversified portfolios. In this new setting the issue
of whether risks are insurable or not continues to depend on whether
insurance markets are effectively complete or not, and whether simple
insurance contracts suffice, or one has to introduce more complex con-
tracts such as mutual insurance as proposed by CCW. We depart from
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the finance literature by not using Brownian motion or general Levy
processes to describe the revelation of uncertainty, but rather prefer the
use of a discrete marked point process, a generalization of Poisson pro-
cesses. Also, the types of risks we are analyzing have a fundamental
agent-specific component which does not arise in most finance models,
and the contracts we look at are based on standard private insurance con-
tracts and not on risk conditioned on the aggregate state of the world,
as proposed by Zhou and Christensen et al.

Our analysis shows that insurability does not depend on there being a
large number of identical agents, or on the preferences and endowments of
those agents. The important characteristics for insurability are those of
the risks involved, where risk is defined as in done in insurance practice:
the characteristics of the potential loss and the distribution of the loss
function (i.e., the properties of the stochastic loss process). We allow for
risks to have aggregate effects as well as a very rich set of correlations
and joint effects. We find a condition that determines whether such
risks can be decentralized using standard insurance contracts or whether
they require more sophisticated contracts such as mutual insurance (as
proposed by CCW).

This paper is structured as follows: this introduction is followed by a
description of the model and the main assumptions. We then consider an
initial description of risk in the economy, and define insurance contracts
and markets. Section four presents the first result describing how insur-
ance markets could function with the initial description of risk, which is
then generalized in subsequent sections. This generalization starts in sec-
tion 5, which defines risk in a generic sense and introduces several ways
in which this risk could be described (independent risk, exchangeable
risk, Markov risk). Section 6 states the key condition that determines
whether simple insurance contracts suffice or not, and the corresponding
general results. Section 7 includes extensions and discussion and section
8 concludes. All proofs are relegated to the Appendix.

2. THE MODEL

Other authors studying optimal risk sharing in a dynamic context have
used continuous consumption and trading models®. I choose to separate
consumption from trading dates both for theoretical and for practical
reasons?.

! Aase(1993), Christensen et al(1999), Zhou(1995).

2For the theoretical part, see Hindy and Huang(1993) on the problems raised by continuous
time consumption. In practice, consumption data is gathered at time intervals much wider
than financial data. For more detailed discussion on these issues see Penalva[1997].
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The separation of consumption and trading dates implies having a
standard discrete time economic framework on which consumption dates
are defined T;= {0,1,...,T}, and allow trading in between consump-
tion dates, so we have a continuum of trading dates: 7 := [0,7]. This
approach (which extends that of the original asset pricing models of
Harrison and Kreps(1979) and others - see Merton(1990) for further ref-
erences) combines the benefits of existing continuous time and discrete
time models in a single framework, while avoiding some of the problems
with modeling time either as continuous or as discrete.

The fundamental uncertainty in the economy is described by (€2, F, P, F),

which is defined by N, a Marked Point Process®(MPP), where N(t) =
(N1(t), No(t), ..., Nk(t)), is the vector of counting functions generated
from the marks, Ni(t),t € T :=[0,7] (T can be either finite or infinite).

Basically each element of the vector N, Ni(t), keeps track of how many
times something (whatever we choose k to represent: an earthquake,
agent i’s house burning down, ...) has taken place® up to date t.

Assumption 1. The marked point process, N admits a uniformly

bounded, absolutely continuous intensity A = (A1, Ag,..., A\x) and for
each j, N;, admits the intensity A;. For all t € 7, define

N(t) = 3 Ny(t).

Let  be the space of all possible paths of the MPP N. F is the filtration

generated by N,F := (F,)er, where® F, := o(N(s), s < t), and F =

#For more details on MPPs see Bremaud(1981) or Last and Brandt(1995). Essentially,
they are a vector extension and great generalization of Poisson processes.

“To be more formal, Ny(t) is a random variable which counts the number of jumps of type
k that have taken place up to and including time ¢. Hence, N(t) is a random vector which
describes the total number of jumps of each type up to time ¢, and (N(s))ser is a vector
process. Note that although I have used the vector process N (t) to describe the MPP, I
could equally well have defined the MPP over sequences of random variables, (Tn, Zy ), where
Tn is the time of the n-th jump and Z, € {1,2,..., K} the mark of that jump. This implies
that N (t) can be written as

Ni(t) = Z 1o, <tlz,=k-
n=1

where 1. is an indicator function. For the most part we will use the process description of the
MPP, but at some points we will find it useful to revert to the jump time/mark specification.

®Note that o(x(s),s < t) denotes the o-algebra generated by the process z(t) up to and
including time ¢. Also, I assume throughout the paper that for all ¢ € 7, all random
variables, z(t), are measurable with respect to the internal history of N, Fi, unless explictly
stated otherwise.
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Vier Fi. \ is F measurable and predictable. P is the probability measure
on (2, F) implied by A = (A, ..., Ax).

Assumption 1 describes the kind of uncertainty facing the economy.
The main things to note are:

e Uncertainty is exogenous and entirely described by N. This assump-
tion is quite restrictive but is the necessary starting point. It precludes
problems that involve moral hazard and adverse selection, but such is-
sues are difficult for general equilibrium frameworks in general and are
already recognized as a problem for insurability.

e By assuming that N admits a bounded intensity, I am giving the
rate at which accidents can take place a uniform finite upper bound.

e A bounded intensity means that accidents are spread out over [0, 7.
This ensures that with probability one, the number of jumps in any finite
time interval will be finite®.

e Standard statistical methods are applicable. By assuming that each
of the point processes associated to a mark admits its own absolutely
continuous intensity we can define the intensity of the aggregate process”,
N, A= Zﬁil A;, and can talk about the probability of a jump of type j

conditional on past history (which is now well-defined).

I will use a standard perfectly divisible commodity space:

Assumption 2. The commodity space, L, is the space of non-negative
absolutely bounded real-valued functions® on Q x T, measurable on F;
forall t € T :={0,1,...,T}, the index set of consumption dates L :=
Lo )T ={2]z: QxT —R, Vt € T, z(t) € F, bounded}. The dual
of L (the space of prices) is denoted L* := L;(2)T as we use the Mackey
topology.

The set of agents will be finite and with standard time-separable, state-
independent utility functions:

Assumption 3. There are n < oo agents indexed by i € I :=
{1,2,...,n}. Each agent is described by a consumption set, X; = L,
an endowment, e; € L., and Von Neuman-Morgenstern preferences of

6Uniform boundedness ensures A implies a measure in case T' = oo.

"The intensity of a point process, it is intimately linked to the intuitive notion of the rate
at which jumps take place and is a generalization of the statistical concept of a hazard rate
(also referred to as a survival rate). See Brémaud(1981) chapter II for further details and
the corresponding definitions and theorems: D7, T8, T15.

8Naturally, I identify functions as being equal up to sets of measure zero, P a.s.



INSURANCE WITH FREQUENT TRADING 7

the form

teT

> ﬁfui(x(t))] ) (1)

where u;(x) is a monotone increasing, concave real-valued function sat-
isfying the standard Inada conditions. Denote the aggregate endowment
by e = >,c7 €. Assume e > 0 P-a.s.

Note that I am assuming agents have common priors. This isolates
prices as a reflection of scarcity, rather than of differences of opinion (and
also eliminates issues of asymmetric information, moral hazard, etc, as
mentioned above). Also, it ensures that ‘insurance companies’ can calcu-
late the risk, a condition for insurability one finds in insurance textbooks.
The assumptions on endowments, consumption sets and preferences are
quite standard.

This economy is completely described by & := (L, (U, €;):er)-

3. INSURANCE IN THE DYNAMIC SETTING

Our economy in discrete time, £, is a very general yet well-behaved
economy. It has a Walrasian equilibrium in state-contingent commodi-
ties satisfying the two basic welfare theorems (Bewley(1972)). For any
Walrasian equilibrium, the equilibrium price functional can be expressed
as a function of the aggregate endowment, i.e. there is a representative
agent; and, agents’ optimal consumption allocations are a function of the
aggregate endowment (Huang(1987)). Furthermore, one can apply Duffie
and Huang’s(1985, DH) result to show that the Walrasian equilibrium
can be decentralized as a Radner equilibrium with as many long-lived
risky assets as the martingale dimension of (2, F, (F;)icr, P), which in

our case is at most K, the dimension of the vector process IV.

Ellickson and Penalva(1997) assumed that there were enough assets
for markets to be complete. We want to use the structure provided by
insurance markets and inquire deeper. In particular, we want to address
the issue of effective completeness: does one really need K risky assets
(plus a bond) or can one use fewer; and how does an agent trade in an
insurance context: does an agent need to use all available assets or only
a subset, and how does she use them.

3.1. RISK

In insurance circles we find: “risk is defined as uncertainty concerning
the occurrence of a loss” [Rejda(1995)]. This is particularly important



8 JOSE S. PENALVA ZUASTI

in the context of actuarial science where a great deal of research has
gone into analyzing the properties of risk in its two dimensions of (I) the
probability of the occurrence of a loss, and (II) the magnitude of that
loss when it occurs. Economic theory, on the other hand, has stayed
away from this conception of risk and focused primarily on uncertainty,
to which we owe the global scope of the economic theory of risk which
applies to finance as well as insurance. On the other hand, we find
ourselves drawn back to the insurance definition. As we will see, the
number and types of assets traded in insurance markets depends on the
classification of the risks in the economy using the insurance definition,
and not preferences and endowments.

As the different types of risks can considerably cloud the discussion,
we will start by assuming there is a single and simple type of risk in the
economy and establish our results in that context. Then we will allow
for a wider variety of risks. The type of risk in the economy is similar to
that in classic insurance theory papers (Malinvaud, Arrow, Borch, ...),
i.e. for every ¢ € I the following holds:

Assumption 4.a.  The endowment of agent i € I, e;(t) € F; t € T, is
described by a fixed quantity, w; € R, at each consumption date ¢t € T,
which is subject to potential losses all of which are:

(1) Of the same magnitude, L,
(2) With arrival distribution driven by an independent Poisson process
with parameter, .

To ensure that nobody’s endowment becomes negative or that e < 0
(Assumption 3 holds), we impose the global feasibility conditions: L >
min; w; and for at least one agent w; > L, and, the Poisson process is
truncated so that each agent can have at most one accident between ¢
and ¢ + 1. ~

In terms of our MPP, N(t¢), this means that we have to track the
accidents suffered by each agent, so we let k& = i: the process N;(s)
counts how many accidents agent ¢ has had up to date s € 7. Our
restriction on losses means for any ¢ € T, N;(t + 1) — N;(t) € {0, 1}.

3.2. Insurance Markets

The first thing to note is that in our finite agent economy, this risk has
both an agent-specific component, in that each lost unit of consumption
is a unit of consumption taken away from some specific agent’s endow-
ment, and an aggregate component, in that it also represents one less
unit of consumption available in the whole economy.

We need to define formally what it means for an asset to depend on
what happens to an agent. We have defined agent i’s risk using the



INSURANCE WITH FREQUENT TRADING 9

process IV; hence define the filtration generated by this process: let F; =
((F})ieT), where F} = o(N;(s),s < t). The filtration F; describes how
information about the process INV; in made known over time.

DEerFINITION 3.1.  The set of possible insurance contracts on agent ¢
is the set of real bundles’ which are measurable on the filtration F; at
consumption dates, t € T.

Which means that an insurance contract on agent ¢ pays at date ¢
conditional on what has happened to agent ¢ up to that date.

A key ingredient of modern financial markets is stock exchanges. We
want to include them in the usual, highly stylized way, by allowing agents
to trade assets continuously. Stock exchanges deal with claims on com-
panies, in our case, insurance companies. There is no explicit mention of
companies in the model but they can be easily incorporated as bundles
of assets and liabilities. These would be held by agents in the economy
and stock exchanges provide the forum in which to trade them. As we
have efficient and frictionless financial markets, all of the firm’s unique
risk will be diversified away so that agents only hold fully diversified
portfolios. These portfolios are modelled as contracts specifying pay-
ments conditional on aggregate events (i.e. the number of earthquakes
with the relevant consumption dates they affect) and we refer to them
as mutual funds (although they could be fully diversified portfolios of
insurance company stocks, derivatives, reinsurance contracts, ...).

In order to define these securities formally, as we have done with insur-
ance contracts, we need to determine the relevant processes describing
the aggregate endowment, which in our simple case is the total number
of accidents, N(t). As done with insurance contracts, define the filtra-
tions over trading dates: F. = (Ff)ier), where Ff = o(N(s),s < t) is
all the information known about the process N up to date t. Then:

DEFINITION 3.2.  The set of mutual funds is the set of real consump-
tion bundles which are measurable on the filtration F..

We proposed that our model would include previous results as special
cases. For that we need to introduce what CCW refer to as mutual
insurance contracts, which require an additional definition. Construct
the joint filtration F;y., where F:V¢ = o(F:V F¢) for s € T. This is the
filtration generated by information on e; and e.

°T am working with real, not nominal assets, although as long as markets are complete
the difference is not important.
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DEeFINITION 3.3.  The set of possible mutual insurance contracts on

agent ¢ is the set of real bundles which are measurable on the filtration
FiVe-

It will be useful to have a risk-free asset to transfer consumption from
one date to the next. For simplicity and without loss of generality I
will assume that there exists a sequence of zero coupon bonds that are
issued at every non-terminal consumption date ¢ # T" and pay one unit
of consumption at date ¢+ 1 for sure. This sequence of bonds I will refer
to as a riskless bond, and count as a single asset eventhough it clearly
is not. Nevertheless, this is equivalent to the standard normalization of
prices in asset pricing models and equivalent to a single additional asset
(for example, see Merton(1990)).

As far as asset prices are concerned, we use the standard description
used in financial markets, namely, for any asset described by dividend
process (d(t)).eT, its price is a semi-martingale on the space (2, F, (Fs)ser, P).-
Prices from the real economy will be extended to financial markets by ex-
tending @ to 7 using a procedure similar to that used in Penalva(1997)
(see Lemma A.3 in the Appendix).

4. EFFICIENT INSURANCE MARKETS

The question to be solved is: when is it possible to specify what type of
concrete contracts will be efficient? In particular: when can consumers
attain Pareto optimal consumption allocations in an economy where they
can only trade in the type of restricted contracts described above (insur-
ance contracts, mutual funds, and a bond)? How many of these assets
will they need to do so? What will their informational needs be? And,
what will their trading behaviour look like?

From the previous literature we can either look at DH, and say agents
need to trade in K long-lived assets (in this case K = n), or following
CCW, one would need to trade in “mutual insurance” contracts for the
agent-specific risk and Arrow securities for the aggregate endowment. As
CCW does not allow for dynamic trading, we could expect the mutual
funds to replace the Arrow securities and that one would need fewer ones,
but we cannot tell ex-ante what would replace mutual insurance.

As there are n private insurance contracts DH tell us that in general
markets will be complete. Unfortunately, the ensuing Radner equilibrium
would imply that agents are buying and selling other people’s private
insurance contracts. It is as if each of us had to buy and sell insurance
on the milkman, the pizza guy, a Wall Street broker, ... - not a very
believable state of affairs! What we have found is that if one allows
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trading in mutual funds, as defined above, such complex trading is not
necessary. In particular, let Assumption 4.a. hold for all 7 € I together
with the feasibility conditions on NN, and refer to this economy as “€
with a single risk”. Then:

THEOREM 4.1. The economy £ with a single risk requires at most n
insurance contracts, a single mutual fund and a riskless bond to decentral-
ize the Pareto optimal allocation from any Walrasian equilibrium. Fvery
agent, © € I, needs at most to trade only in her own private insurance
contract, the mutual fund and the bond.

This means that agents do not need to buy and sell eachother’s in-
surance contracts. Each agent purchases insurance on herself from the
market, and trades in a mutual fund which in our case culd be a di-
versified portfolio of shares in insurance companies. Insurance and the
fund’s prices are such that one’s demand for insurance is exactly covered
by the capital provided via the stock exchange to insurance companies.
Hence markets clear, even if there is aggregate risk (as in CCW) but
in contrast with previous results, the mutual fund is itself a redundant
asset - naturally, as it is the sum of all the individual’s private insurance
contracts.

Note two additional points: one, we have allowed agent heterogeneity
in preferences and endowment (w;). The restriction we have imposed
is only on risk (the magnitude and probabilities associated with losses).
Two, the type of assets used are insurance contracts of the type one is
used to seeing in practice: if you lose x I will pay you y - they depend
only on what happens to the agent and do not make statements about
what happens in the economy as a whole.

5. GENERALIZED RISK AND INSURABILITY

In the introduction we have claimed that the above result implies
that insurability extends beyond there being a large number of identical
agents. It should be clear that we have already shown that in the sense:
(a) the above result is true for any n, in particular, it is true for a small
n, say 10 or 15 agents'®; and, (b) we have allowed agent heterogeneity
in terms of preferences, (5;, u;), and endowments, w;. Nevertheless, we
can go still further - beyond identical and independent risks.

5.1. Modelling Risk

10 Although in such cases the Walrasian, price-taking behaviour may not be considered
generically valid but this an issue entirely outside the scope of this paper.
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In the abstract model there is no specific notion of a risk, only uncer-
tainty described by N. In our single risk case, the link was: a change
in N;(s) at s € (¢,t + 1] implies that agent i’s endowment at date ¢ + 1
goes from w; to w; — L. In order to generalize the potential risks we
want to consider we need to formally establish this relationship between
the processes describing uncertainty, NV, and risk - the consequences on
economic variables. We proceed by first defining when the underlying
uncertainty generates risk and how to classify risks.

The underlying uncertainty, (Ny(#))X |, is a vector process whose ele-
ments change by a fixed amount (in steps of one) every time there is a
jump?!. If we are being very strict about interpretation, the jump cannot
mean a direct loss of endowment as it occurs at times when endowments
are not defined, yet they can be interpreted as announcements of future
endowment losses. The marks of the underlying process describe what
the content of the announcement is. Potentially, these announcements
could be quite varied and could have very diverse consequences: it could
mean a single agent looses a fixed amount at the next consumption date
(as it did above), it could mean that ten different agents loose ten dif-
ferent amounts at the next consumption date, or that an agent looses
20 units this consumption period and 30 all periods thereafter, .... The
first thing is to establish what the risk associated with announcements
of a given type, i.e. given an announcement indexed by k € {1,..., K},
what are its economic consequences.

Assume that uncertainty is non-anticipated by real economic factors
(preferences, endowments and agents’ information at date ¢ are all mea-
surable on F;). Given an economic process, z, i.e. a process defined
at consumption dates, T (such as agent i’s endowment), we want to

determine the processes in N, which affect x. For this we need to de-
fine all events that are relevant for z, i.e. the filtration F, = (F7)cr,
where FF = o(z(s),s = 0,...,t) - the careful reader would have seen
the parallel to F; and F. above; the reason should become obvious as we
proceed. 3

Given the MPP, N, consider the following thought experiment: fix a
point in time s € 7 and a process Ni(t), k € {1,...,K}. Consider
deleting all the jumps of this process at this point in time, i.e. impose
Vw € 2 ANg(s) = 0. Then one can distinguish between the history up
to time ¢ along path w, w(t), and the same history without ANg(s) = 1,
w(t)— (s, k). Naturally, w(t) = w(t) — (s, k) for all t < s and for all w € Q

1Tn actuarial science and the general theory of MPPs one allows for the sizes of the
jumps to belong to more general spaces than R¥. In our context such generalization would
cause substantial problems for market completeness (finding a unique equivalent martingale
measure), which is a generally recognized problem of such models.
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such that ANj(s) = 0 before the deletion operation. Then, w(t) — (s, k)

could define a (possibly different) history for N up to time ¢, and we will
assume that w(t) — (s, k) is always possible'?. Recall that a history is
also an event in F so that we can speak of probabilities conditional on
that event in the usual way. Hence, define:

DEFINITION 5.1.  The process Ni(t), k € {1,..., K} is a generator
of risk for process x iff there exists an s € 7, w(t) t € T, n € N and
A € F}., such that P(A|w(t)) # P(Alw(t)— (s, k)). We also say that Ny
generates risk for process z. Let Y, (¢) be the vector of all processes that
generate risk for process x and refer to it as x’s risk process. Naturally,
F, will be filtration generated by Y,’s internal history!?.

This definition determines the first part of risk, the probability of a loss:
whenever a process ' Ni(s) alters the future probabilities of process z it
generates risk for that process. It also allows one to identify the effects
of the announcement as opposed to other changes that could be taking
place due to other non-uncertain factors in a more general version of
the model, such as income growth, retirement, etc. Let Y; denote the
risk process which arises from all the processes that are generators of
risk for agent i’s endowment, (e;(t))ieT, and Y. that arising from the
generators of risk for the aggregate endowment, (e(t))er. F; and F, are
the corresponding filtrations, and F,,. the filtration generated by both
risks. Under Assumption 4.a, for example, Y; = N; and Y, = N.

Recall the definitions above for z, and w(t). Define a more general
history (a larger event) wy_x(t) as all the possible histories obtained by
switching the indeces between processes k and k’. That is, a history of
N up to time t € 7, w(t) includes a (possibly empty) set of jump times

2For all (s, k) such that there exists w’ € Q such that (s, k) € N(w'), there exists w” € Q,
such that w” = w’ — (s, k). This implies that all counterfactuals are well-defined.

13This means that Y (t) is what is left after deleting from N all the processes that do not
generate risk for process z. Also, note this extends F, from T to 7.

4Note we are imposing that a risk be described by an entire process and do not look
for a more microscopic definition of risk that could involve jumps individually. One could

potentially construct a single process that describes different risks, for example: N(t) =
Ni(t); risk is given by: the first jump implies agent ¢ loses L and the second jump implies
agent j loses I'. We rule these out not because we think such processes do not exist
but because we believe that in such cases the modelling strategy should be different. In
particular, one could maintain a direct relationship between the description of the underlying
agent-specific uncertainty, N, and the risks it generates by constructing the model as follows:
let N = (Ni1(t), N2(t)) be two-dimensional (one process for each agent) and make the hazard
of the process for the second agent, Na(t), depend on the realizations of the first, Ni(t).
The new model would have k(1) = 1, Y1 = N; and k(2) = 2, Yo = (N1, N2). For agent 2,
there are two types of risks, N1 which puts her at risk, and N2 which implies the realization
of a loss. This makes the relationship between the risks and uncertainty transparent by
construction and risks would be suitable for the type of analysis we propose.
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for both processes {74 }u) and {7i }w. The history wyo.w is the set of
all histories w'(t) such that all NV, # Nj, Ny, have the same number and
timing of jumps as along w(t) and {75 fr ) U{Tw }ur(ty = {7k o) U{ T feore)-
With this define the equivalence between processes as:

DEFINITION 5.2. A process, Ni(s), is xz-equivalent to process Ny (s)
iff for all ¢t € T, Ace JTtw P(A]w(t)) = P(A’wka/(t)).

This definition requires that substituting the index of two processes
does not alter the future probabilities for process x. Note that our def-
inition allow the inclusion of risks that do not directly imply losses but
just changes in probabilities over future losses - hence including risk fac-
tors as well as loss announcements. For the major part of the analysis we
will consider constant magnitudes and consider different risks in terms
of their effect on the arrival of losses. We pospone introducing variable
risk magnitudes for a single agent till Section 7, where we ill see that
they just increase the number of assets needed to optimally deal with
risk.

Nevertheless, our notion of equivalence includes both the arrival and
the magnitude, and hence can be used to classify risks in general. When
we defined Y, we used all the counting processes that generate risk for
z. This number can be reduced, in particular, the following is true:

LEMMA 5.1. If the two processes Ny, N;, k,j € {1,...,K}, are z-
equivalent they can be summarized in ¥y by a the process Ny = N + N;.

Two things to note are: (1) we have allowed different classifications
for aggregate and agent-specific risk. The reason is that the classifica-
tion of risks we propose above could be quite different, depending on
whether one was looking at aggregate or agent-specific risks, and this
has substantial consequences for the number and types of assets consid-
ered (as we will see below). (2) Agent i’s risk is being referred to as
agent-specific and not as idiosyncratic risk. We have seen above that
this is an important aspect, specially in finite agent economies, because
the subject of insurance is not uncertainty but agent-specific risk and
that risk will have two components: a diversifiable one and an undiver-
sifiable one. This agent-specific risk becomes idiosyncratic only in the
context where the law of large numbers applies; formally, in continuum
economies' such as those analyzed by Al-Najjar(1995).

5 There are some models using an uncountable infinity of agents but they are the excep-
tion.
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5.2. Introducing Some Symmetry
The insurance literature, in particular Malinvaud(1972,73) and CCW(1996),

suggest that an important aspect of well-functioning insurance markets
is the existence of symmetry. They impose symmetry in terms of agents’
endowments and preferences, but we have seen above that that kind of
symmetry is not necessary. Nevertheless, it seems some symmetry is
required in order to have a certain degree of parsimony in the number
and types of contracts (insurance and otherwise) needed to decentralize
a Walrasian equilibrium. Clearly from the above discussion, that sym-
metry has to come from the fundamental uncertainty and its effect on
the economy, i.e. from the risk processes. We propose the symmetry
assumptions considered by Malinvaud and CCW, plus the general class
of Markovian risks. Recall we are assuming a fixed loss magnitudes,
hence the assumptions apply to the properties of the distribution of loss
announcements’ arrivals. Later, we will allow for different magnitudes of
losses and for losses to have consequences that persist over time.

5.2.1. Independence

The first, classic form of symmetry is assuming that agents’ risks are
risks of independent losses which are felt by one agent at a time. For-
mally, this condition is formalized as agent i’s endowment satisfying:

Assumption 4.b. (Independent Private Risk: InPR). The endowment
is described by a fixed quantity, w;, at each consumption date ¢, which
is subject to potential losses:

(1) Of a fixed magnitude L,

(2) With arrival distribution described by &'(i) C {1,..., K}, such that
the processes (Ny(;)) is the vector of processes that generate risk for e;
and (i) is equivalent to a single point process'® (k(i) = 1): Y; = (IV;),
which admits an intensity, )\;, measurable on the information generated
by N;(t); and (ii) for any j € I, j # i, K'(1) "K' (j) = 0.

These processes are independent because (i) their hazard functions do
not depend on information outside of that provided by the N; process
itself, and (ii) the process N; does not affect any other agent. This
first case already generalizes beyond time independence (the time ho-
mogenous Poisson case considered in the section above). It allows for
non-time homogenous Poisson, i.e. A\; = A;(¢), and for self-exciting pro-
cesses, \; = A\(7 — t), where 7 denotes the last jump time of the IV;

16The use of the index sets K'(i) in this case is not necessary as by assumption Y; = N;
but it is important to keep it in order to make this assumption comparable to others that
follow.
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process. Basically, we allow for any hazard rate that depends on clock
time t and the past of the process N;.

We have distinguished between two index sets: £'(i) and k(7). This
distinction is very important and arises from the dual definition of ;.
In general the /(i) processes obtained from marks of the MPP N are
equivalent to a smaller number of processes when defining Y; denoted by
the second index: the fundamental processes in N are indexed by k'(i)
and the more succint description of the processes that affect agent ¢ are
indexed by k(). In a couple of paragraphs we will see an earthquake
example that should help further clarify this distinction.

5.2.2.  Locally Independent Private Risks

One could generalize the independence condition by assuming agent
1’s endowment satisfies a weak version of independence:

Assumption 4.c. (Locally Independent Private Risks: LInPR). The
endowment is described by a fixed quantity, w;, at each consumption
date t, which is subject to potential losses:

(1) Of a fixed magnitude L,

(2) With arrival distribution described by &'(i) C {1,..., K}, such that
the processes (Ny(;)) is the vector of processes that generate risk for
e; and is equivalent to a single point process (k(i) = 1): Y; = (IV;),
which admits an intensity, )\;, measurable on the information generated

This condition implies independence locally - among the processes
whose indeces describe the risk for agent ¢ - but by allowing an agent’s
risk process to share indeces with other agents, independence accross
agents may fail. In particular, this allows there to be marks generating
risk for a group of agents and hence allows for correlated losses in gen-
eral and catastrophic losses in particular. Let us illustrate this (and the
distinction between k(i) and k(i)) via an earthquake example:

An earthquake can be modelled as follows: suppose n = 100 and each
agent has a fixed endowment of the consumption good each period w; =
5,000. The risk of an earthquake is modelled as a massive endowment
loss, say of 100, 000 units of consumption. Suppose there can be at most
one earthquake between two consumption dates (to avoid problems of
negative endowments) and the arrival time of the earthquake is given by
the hazard rate!™ A = A(¢).

1" This implies that if AN(s) = 1, s € (¢, + 1], then for s’ € (s,t + 1], A(s') = 0.
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All agents face the same risk: given an earthquake has occurred, they
all have the same probability of loss: 20 names are picked at random and
those 20 lose 5,000 units of consumption at the next consumption date.

The appropriate marked point process, N, contains 100!/(20!80!) >
10?° marks corresponding to independent Poisson processes: one for
each possible combination of the 20 names. For any agent i, k(i) =
99!/(19!80!), those marks that contain i’s name and hence generate risk
for agent i. But as the risk for ¢ is the same (the loss of 5,000 units
of consumption) they are all equivalent so that k(i) = 1, and the cor-
responding hazard, A; is 1/20th the one for an earthquake. Obviously,
agents’ losses are not independent accross agents, but the losses of any
one list of 20 is independent of that of any other different list of 20
agents'®. )

Note that the martingale dimension of N is 100!/(20!80!) but the def-
inition of equivalent risks above allows us to exploit symmetry and will
have important consequences for the number of assets needed to effec-
tively complete the market, as we will see below.

5.2.3.  Ezxchangeability

CCW extend risks to include exchangeability (a notion we owe to Haag
(1924) and De Finetti (1937)) within groups of ex-ante identical agents.
Generally, events Ay, ..., A, from a probability space (2, F, P) are ex-
changeable (interchangeable) if for all choices of 1 < i; < ... <i; < n
and all 1 < j <n, P(A; -...-A;;) = p; - Chow and Teicher (1988, p.33).

CCW considered a static context and a joint distribution of the agent’s
private risk and the economy’s aggregate endowment of the form:

m(y, x)
P(Yi=ylYe =2) = P(Y; =ylYe =2) = = L,
for all agents ¢, j of the same type. They use exchangeability on the in-
deces representing the endowment outcomes of agents of the same type.
Dynamicaly, we can interpret their assumption as allowing the prob-
ability of agent’s risks to depend on what happens to the aggregate
endowment!®.

Recall the definitions, Y., and the corresponding filtration, F.. Let
k(e) denote the index set of the process that make up Y, and refer to the

18Except for the period between an earthquake and the consumption date just following
it.

Note that by restricting ourselves to the arrival process we are not considering different
magnitudes so that this assumption alone is not a generalization of that made by CCW.
Their results will only be subsumed in this framework after Section 7.
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corresponding processes, ((IV;);ck(e)) as the factors generating aggregate
risk, Ny). Then, let agent i’s endowment satisfy:

Assumption 4.d. (Exchangeable Private Risks: ExPR). The endow-
ment is described by a fixed quantity, w;, at each consumption date ¢,
which is subject to potential losses:

(1) Of a fixed magnitude L,

(2) With arrival distribution described by £'(i) C {1,..., K}, such that
the processes (Nk/(i)) is the vector of processes that generate risk for e;
and are equivalent to a single point process, Y; = N;, which admits an
intensity, \;, measurable on the information generated by N;(t) and the
factors generating aggregate risk, Ny).

5.2.4. Markov and Semi-markov Processes

Another very general class of risks one could consider is that generated
by the introduction of a state space and allowing the hazards of the
process describing agents’ losses to depend on the state at date t. By
allowing a random process to describe transitions accross states we have
a Markov process if the transition rates depend only on the current state
and clock time, and a Semi-markov process if they also depend on the
time spent at the current state. Let us just consider a finite state space®®
S with m(e) states and transition rates ay;(t). For purposes of exposition
we will speak only of Markov processes but the results apply to Semi-
markov ones as well. The MPP describing the current state is denoted
M (t). Then, let agent i’s endowment satisfy:

Assumption 4.e. (Markovian Private Risks: MaPR). The endow-
ment is described by a fixed quantity, w;, at each consumption date t,
which is subject to potential losses:

(1) Of a fixed magnitude L,

(2) With arrival distribution described by &'(i) C {1,..., K}, such that
the processes (N (i), M(t)) is the vector of processes that generate risk
for e; and are equivalent to the process M (t) plus a single point pro-
cess, N;, which admits an intensity, );, measurable on the information
generated by N;(t) and M (t).

Moreover, if M(t) generates risk for agent i then it also generates risk
for the aggregate endowment, e.

20Naturally expand (2, F, (F;)) appropriately and P be the measure implied by A and a
on the new (9, F).
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The latter part of the assumption to avoid the technical possibility
that individual risks be Markovian but as you sum over all agents the
Markovian effects wash out (which would only add further cases to con-
sider).

In the same way we have allowed for an additional Markov process, we
could add more risks by allowing for regression variables (multiplicative
hazards, ...) and other factors. We have already considered the inde-
pendent case (allowing for correlation accross agents), the exchangeable
case (to compare with CCW) and the very general Markov case. Further
generalizations would take us too far from the aim of this paper: ana-
lyzing efficient insurance markets. Our results naturally extend to those
additional cases.

6. INSURABILITY AND TRADING BEHAVIOUR

We now look at what is the number and type of assets required to
optimally diversify risk. We have considered a very large number of
possible types of risks. Fortunately, all those possibilities were taken
into account in the definition of individual risk and risk equivalence. In
order to prove our results we apply the powerful machinery of martingale
theory.

We are primarily interested in establishing the number of insurance
contracts needed to deal with agent-specific risks. When defining risks
above we noted that the classification of aggregate and agent-specific
risks could be quite different and will have important effects on the num-
ber and type of assets traded. In fact, the number and type of assets
depends very strongly on whether the following condition on private risks
holds: Let N;;(t) be any process that generates risk for e;, V;; € Y;. Let
B,; denote the indeces of {1,2,..., K} that added together equal V;;.

Local-Global Risk Condition (LoGRC).  For all N;; € Y;, there exists
a process N, that generates risk for the aggregate endowment, e, such
that B;; is a subset of the indices of {1,2,..., K} that added together
equal Ng.

This definition seems a little complex but the intuition is relatively
simple: if this condition holds, then any process that describes risk for
agent 7 also describes (a single) risk for the aggregate process. In the
earthquake example we saw a case where there was a large number of
indeces that were equivalent to a single risk for that agent, losing 5,000
units of consumption, and generated a single (yet different) risk for the
aggregate economy: a loss of 100,000: all risks for agent ¢ of the same
type were also of the same type for the aggregate economy. On the
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other hand we could have a case where the LoGRC condition does not
hold. Consider the following example: an economy with three agents,
A, B, C living on the Great Plains. All three are subject to a loss of
5,000 consumption units from a tornado. The arrival of a tornado is
described by a Poisson process. As the tornado proceeds accross the
plains it can affect any subset of the three agents (each agent has a fixed
independent probability of being hit conditional on a tornado). This
is modelled by an 8-dimensional point process whose indeces represent
the possible combinations of agents the tornado affects. The indeces are
represented by the letters H, T such that HT H stands for agents A and
C are hit and B is spared. From agent A’s point of view, the indeces
(HTT,HHT,HTH,HHH) are equivalent but clearly they are not so from
the aggregate endowment point of view. The agent only cares whether
she got hit or not but the economy cares whether it was a small, medium
or large tornado (in terms of losses). We will now see what the effect of
this condition is. We start by assuming that the magnitude of an agent’s
loss (per announcement) is constant and equal to L; - i.e. we allow for
loss heterogeneity accross agents.

THEOREM 6.1. The economy &£ together with individual risks such that
for every agenti € I, e; satisfies one of assumptions 4b-e and the LoGRC
condition, requires at most n insurance contracts, k(e) mutual funds and
a riskless bond to decentralize the Pareto optimal allocation from any
Walrasian equilibrium. FEvery agent, © € I, needs at most to trade only

in her own private insurance contract, the k(e) mutual funds and the
bond.

If on the other hand, condition LoGRC does not hold we have:

THEOREM 6.2. The economy & together with individual risks such that
for every agent v € I, e; satisfies one of assumptions jc-e, requires at
most min{ K, 2nk(e)} mutual insurance contracts and a riskless bond to
decentralize the Pareto optimal allocation from any Walrasian equilib-
rium. Fvery agent, i € I, needs at most to trade in min{K,2k(e)}
mutual insurance contracts and the bond.

Note that assumption 4.b, independence accross agents, implies the
LoGRC condition. The intuition for the differences in the two theorems
is relatively straight-forward. If condition LoGRC is not fulfilled then,
paraphrasing Kreps(1982), the information flow is not nice enough. The
LoGRC condition implies that a single piece of information revealed on
an agent’s loss is coupled with a single piece of information on the ag-
gregate endowment. In the tornado example, an agent’s loss could be
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associated with multiple different aggregate losses and hence you need
extra assets to ensure that you can deal with whatever tornado happens
to occur.

We are defining risks as insurable if they can be optimally diversified,
i.e. dependent on the asset structure of the economy. Whether a certain
class of accidents is insurable or not depends on two things: one, the
number of risk management tools available to deal with incoming loss
information; and two, the suitability of those assets to deal with the
characteristics of the risk (in our case, mutual funds or mutual insurance
contracts).

If we look at the economy to try to deduce what kind of risks are being
insured, the lack of the widespread use of mutual insurance contracts
(as we have defined them) indicates that either risks are primarily of the
LoGRC type, or the incompleteness from not having mutual insurance is
not sufficiently important. On the other hand, if the LoGRC condition
does not hold, agents cannot separate the problem of dealing with the
aggregate risk and individual risk and they require a much larger set
of assets. If these are not available, it could show up in practice as
distorted optimal coverage at the individual level. Counting assets at the
industry level may be misleading because the number of assets needed
by insurance companies is much smaller than the is needed by the agent.
This would lead one to conclude that markets are complete when there
are enough assets to deal with aggregate risk but, at the individual agent
level, agents face incomplete markets.

As for the role of financial innovations in insurance markets, it seems
that the creation of new assets such as catastrophe bonds and actively
traded insurance derivatives are fulfilling a latent need for a more diver-
sified range of risk management tools than those provided by traditional
reinsurance. This should be improving the diversification of insurance
risks and expanding the range of insured risks (and hence effectively in-
surable risks). As these tools are used more efficiently one should observe
a call for lower and/or more flexible capital requirements by insurance
and reinsurance companies (and a greater flight towards more flexible le-
gal environments like Bermuda while those calls are not met by national
legislatures).

7. EXTENSIONS AND DISCUSSION

7.1. Spanning Aggregate Risk

Let us return to more technical issues: up until now we have paid little
attention to the value of k(e). One of the reasons is that by applying
Lemma 5.1 to e one can directly obtain how many mutual funds one
needs. Assumptions 4b-e allows us to say a little more.
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In the case of independent risks, InPR, k(e) depends on the number
of loss magnitudes and the number of different hazard functions (two
different loss magnitudes will imply different aggregate endowments). In
particular, one should note that when agents’ hazards are time varying
and arise from independent self-exciting processes it can be impossible
to add them, even if they are identical. This is because the hazard of the
sum can be different depending on the identity of the last jump (which
would automatically rule out e-equivalence).

If we allow agents to share risks, as in the LInPR, then it very much
depends on how risks combine. Recall that the tornado example used
above has LInPR risks. We can clearly see that such risks can quickly
turn into a spanning nightmare. Nevertheless, working on the model
used in the earthquake example, one could come up with a weaker version
of the LoGRC condition under which one can still have a maneagable
number and type of assets and keep markets effectively complete.

As for exchangeability, the ExPR condition adds dependence of private
risks on the aggregate risk. Apart from the additional assets required
for heterogeneous losses which applies to all conditions, this assumption
could be a way to reintroduce self-exciting processes as a more man-
ageable risk in as far as the exciting comes from the aggregate process.
Making hazard changes depend on aggregate information would reduce
the complexity of the aggregated process and allow for fewer aggregate
assets (a smaller k(e)).

The introduction of an additional source of uncertainty, the Markov
process, necessarily implies the need for more assets. Nevertheless, it is
important to have in mind that it is not the total number of states of the
Markov process that determines how many new assets are needed, but
the properties of the transition function. This is because the transition
function determines how ‘nicely’” information flows - the fewer the possi-
ble transitions out of each state the fewer the number of assets needed.
This is particularly obvious in the Brownian motion case, which has an
uncountably infinite state space but a uni-dimensional martingale space.

7.2. Persistent Losses

We propose two ways to extend the description of loss magnitudes. Let
us start by allowing losses to last for several (possibly an infinite number
of) periods. Also, allow for the losses generated by an announcement to
vary depending on the time interval they occurred.

Consider an announcement made at s that affects agent i, AN;(s) = 1,
s € (t,t + 1]. The first step was to consider that agent ¢ would lose
L units of consumption at date ¢ + 1. Now, define the loss function
L;(t,m) : T x N — R. This function tells us that after AN;(s) =1
agent ¢ will lose L(t,1) at ¢t + 1, L(¢,2) at t + 2, ...
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Allowing these changes does not alter the above results in the following
sense:

LEMMA 7.1. For any given risk affecting an agent, i, whether the
magnitude of the risk is given by a single loss at the next period, L,
or a loss function L(t,m) does not affect the number or type of assets
needed to decentralize the Pareto optimal Walrasian equilibrium. The
same 1is true for the pre-loss endowment e; which can be any function of
clock-time.

The intuition behind Lemma 7.1 is that if future losses are known to
occur with certainty at the time of the announcement, they are equivalent
to the loss of their discounted value at the next period, and hence to a
fixed loss. Then, any economic variable that changes deterministically
with clock-time is known with certainty at any point in time so again its
value can be discounted to the appropriate date.

7.2.1.  Different Magnitudes

Another way to generalize the loss magnitude is to allow for the realiza-
tion of the magnitude of the loss, L, to be random. This generalization
is very important for insurance practice yet it poses problems for the ex-
istence of complete markets. This has already arisen in the literature on
asset pricing where it is implicit in the problem of finding a unique mar-
tingale measure when one allows for asset prices to have discontinuous
jumps (also modelled as MPPs).

We will limit ourselves to a finite number of different loss magnitudes.
Let the set describing the possible loss outcomes be denoted by £ =
{l1,0a,...,4n} (wolg these could be m loss functions like the ones in the
previous section).

When allowing for random magnitudes of losses generally (in insurance
and actuarial circles) people assume loss magnitudes to be independent
of the process describing the arrival of the accident. In our context the
distribution of loss magnitudes could also depend on the same factors as
the risk process, so that one could consider combinations of Assumptions
4.b-e for the magnitude as well as the arrival of the loss. Before ana-
lyzing this case we introduce the possibility of there being multiple risks
(allowing, for example, auto and health insurance in the same model).

7.2.2.  Multiple Risks

We have considered that each agent was exposed to a ‘single’ risk and
that there were possible differences in risks between agents; both have
primarily affected the aggregate variable k(e). One could also introduce
more risks and have different subsets of agents exposed to them. The
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subset of agents exposed to different risks could be quite general, over-
lapping for some risks, non-overlapping for others, ... The catch is that
the more heterogeneity one introduces the greater will be the number of
assets needed to deal with such risks, but how many?

In general, introducing m new constant loss risks is equivalent (for
our purposes) to allowing m different loss magnitudes, as each new risk
requires a new process to describe it, both at the individual and the
aggregate level. By the definition of F;, the number of risks the agent
is exposed to is given by the number of processes (after applying equiv-
alence) that make up F;. This implies that if each agent is exposed to
m; different risks (on top of the k(e) or m(e) global ones in Assumptions
4d,e) and each of the different risks does not depend on the specific risk
of the others, and if the LoGRC condition holds for each of those risks,
then Theorem 6.1 can be extended to:

THEOREM 7.1. The economy & together with individual risks such that
for every agent i € I, e; is exposed to m; risks satisfying assumptions 4b-
e and the LoGRC condition, requires at most >, m; insurance contracts,
k(e) mutual funds and a riskless bond to decentralize the Pareto optimal
allocation from any Walrasian equilibrium. FEvery agent, © € I, needs at
most to trade only in m; private insurance contracts on herself, the k(e)
mutual funds and the bond.

Naturally, k(e) will be greater in general for an economy with agents
exposed to m; > 1 risks. Note also that we allow for agent i’s risks to
be correlated but only through aggregate risks, i.e. the k(e) aggregate
factors for Assumption 4.d and the m(e) processes defining the Markov
states for Assumption 4.e. Theorem 6.2 can be similarly extended:

THEOREM 7.2. The economy &£ together with individual risks such
that for every agent i € I, e; satisfies one of assumptions jc-e, re-
quires at most min{ K, 2k(e)(>; m;)} mutual insurance contracts and
a riskless bond to decentralize the Pareto optimal allocation from any
Walrasian equilibrium. FEvery agent, i € I, needs at most to trade in
min{ K, 2k(e)m;} mutual insurance contracts and the bond.

Allowing for correlations between individual’s risks could increase the
number of assets needed even further.

8. CONCLUSION

We have presented a very general framework in which to analyze insur-
ance problems in a context that allows for dynamic trading. This includes
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general definitions of individual and aggregate risks, private insurance
and mutual insurance contracts, and mutual funds. We have considered
the independence framework analyzed by Malinvaud and exchangeabil-
ity as analyzed by CCW. Both those models are clearly included as
special cases within our framework: let T = {0,1}, let N(s) = 0 for

all s € 7 =[0,1] and N(1) reflect the random vector describing all the
risk in the economy?'. We have extended the work by Ellickson and
Penalva(1997) with a deeper analysis of risk, and by looking at the num-
ber and types of assets needed to decentralize Pareto optimal Walrasian
allocations. We have concluded that the most important determinant
of the type and number of assets traded is whether the revelation of in-
formation about agent-specific risks is matched with a single aggregate
risk, i.e. whether information flows are sufficiently nice.

In terms of the existing literature, we have extended the generalization
of Malinvaud’s classic analysis of insurance market by CCW in a number
of ways: we have allowed for risks that have effects that persist over time,
we have allowed for a dynamic description of the arrival of information
about risks and have expanded the class of risks in the analysis, and we
have allowed for much greater heterogeneity accross agents.

In our more general framework we have analyzed the notion of risk
and looked at the type and number of assets needed to optimally deal
with those risks. We have concluded that the only type of heterogeneity
that matters is heterogeneity in the types of risks agents are exposed
to (both in terms of the description of the arrival of losses as well as
magnitudes); we have shown that allowing dynamic trading reduces the
number of assets needed to effectively complete markets (extending the
results in DH) and have made a detailed analysis of what the number
and types of assets are that will ensure markets are effectively complete.
In our analysis we have explained why in the context analyzed by CCW
it is not enough to consider standard insurance contracts but one needs
to introduce the concept of mutual insurance contracts, as they did.

Nevertheles, I would like to add some caveats that apply to this, as
well as CCW’s analysis. These results rely strongly on the properties
of Walrasian equilibrium. It has been shown elsewhere (Ostroy and
Zame(1994), for example) that the use of Walrasian equilibrium may not
be justified in a context where markets are not competitive. The spe-
cific issue of competitive markets under conditions of uncertainty have
not been studied in detail and provide an interesting further direction of
study. Possibly, the conditions for competition may revive the classical
need for “a large number of exposure units”. Also, we have assumed

21Strictly speaking this would not be within the above model because it imposes an infinite
hazard at ¢t = 1— which is ruled out by assumption, but the intuition still holds.
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common knowledge of the information available in the economy, leaving
aside problems of moral hazard and adverse selection which are naturally
very important in insurance markets. Nevertheless, we find our analysis
enriches existing views of insurance markets.

In terms of more practical contributions, this analysis suggests how
different types of insurance risks should fare in an economy with access
to stock market-type institutions (which allow for dynamic trading) in a
context of full information. Dynamic trading, which takes the form of ac-
tive capital management, is a potential substitute for having large static
capital reserves. This would imply that firms following dynamic risk
management strategies would be looking to reduce the large capital re-
serves and asset management restrictions imposed by old-fashioned laws,
either via lobying or via the use of off-shore subsidiaries. Also, as finan-
cial markets are liberalized, we should see an increasing use of dynamic
risk management. On an industry-wide scale, dynamic risk management
has lead to changes that range from more finance-like dynamic reserve
management to the creation of very active trading markets in insurance
derivatives such as the ones in Bermuda and Chicago. Financial inno-
vations such as insurance derivatives, catastrophe bonds, or securitized
insurance, add value in the economy in that they allow a more efficient
use of insurance capital and reserves.

Our analysis also suggests that insurance practice is fundamentally
sound in that it classifies risks according to actuarial parameters and
ignores issues of risk preferences and endowments. Insurability is not
a matter of agents’ preferences or endowments; they determines prices
but not whether risks can be efficiently distributed. We have shown that
insurable risks are no longer those that are “socially removed by the
operation of the law of large numbers” (Malinvaud, 1972).
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APPENDIX

A.1. PROOF OF LEMMA 5.1

Proof.

Define the process Nj; by altering IV as follows: delete the elements
N, and Nj. Substitute N; by the constant zero and N by N; = Ni, + Nj.

Let us proceed by contradiction. Suppose N, and N; are z-equivalent
but there exists s € 7,t € T, s < t, event A € F} and history w(s) such
that the lemma does not hold. That is, for the corresponding history
for the process Niij, w(s) D w(s), P(A|w(s)) > P(A|w(s)) (the di-
rection of the inequality is without loss of generality). By definition,
w(s) has the same non-k, j jumps as w(s) but {7} and {7;}ue
have been substituted by {7}.), so that w(s) C @(s). The condi-
tion P(A|w(s)) > P(A|w(s)) implies there is another element of w(s),
w'(s) such that P(A|w'(s)) > P(A|w(s)). But «'(s) differs from w(s) in
the realizations of Ny and N;. Yet this implies that w'(s) € wyge; - a
contradiction. .

A.2. PRELIMINARY LEMMAS

In order to simplify exposition of the proofs we first state a few Lemmas
which summarize relevant results in the literature which are directly
applicable in our context, which appropriate proofs or references.

LEMMA A.1. There exists a price-allocation pair (m,z) which is a
Walrasian equilibrium of economy &

Proof. See Bewley(1972). n

LEMMA A.2. Given any equilibrium pair (7, x), there exists functions
g:TxR—=Rand f; : T xR — R foralli € I such that:
(1) there exists a measure Q whose Radon-Nikodym derivative (pricing
kernel) at every t € T is given by

Q| ] _ 1 g(s, e(s))
EldP d ] N enteamiz (A1)

(2) Agent i’s optimal consumption process, x;, is of the form

zi(t) = filt, e(t)). (A-2)
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(3) There is an interest rate process, r(t), given by

B gt —1,e(t—1))
L0 = Bl e ]

such that for any y € L,

m(y) = > Eoly(®)], (A-4)

teT
where y*(t) denotes the discounted value of y(t)

1

yi(t) =y ()y(t); ~(t) = T 1+r(s)

Proof. Huang(1987) establishes that economies such as £ have a rep-
resentative agent representation, which implies the existence of a function
¢ : TxR — Rsuchthat foranyy € L, 7(y) = e Eplg'(t, e(t))y(t)].
Normalize by setting the value of consumption at date zero to be equal
to one and denote the renormalized function by g. Then define r» and
d@/dP as is done in equations (A.1) and (A.3). Equation (A.4) fol-
lows directly from these redefinitions. That d@/dP defines of measure
comes from the positiveness of 7 and from discounting, which ensures
Ep[dQ/dP] = 1 for every t € T. Part (2) is also demonstrated by
Huang(1987) and is generally known as the property of optimal risk shar-
mg. u

LEMMA A.3. For economy &, given an interest rate process r and
a martingale measure @ defined by the Radon-Nikodym derivative v(t)
defined on t € T, there is a P-a.s. extension of QQ onto T defined by the
Radon-Nikodym derivative £(s), s € T defined by £(0) = v(0), and

£(s) = Eplu(t +1)|F), se(tt+1),teT

Proof. By definition {(t) = v(¢t) for t € T. Hence, for s € (¢,t + 1],
t €T, &(s) = Eplé(t+1)|Fs]. Using this and the fact that v is a change
of measure defined on T, for ¢ € T, so that Ep[v(t+1)|F;] = v(t), implies
that £ is a P-martingale. As v is a change of measure it will always be

positive and, as conditional expectations preserve that property, so will
be €. Also, Ep[v(t)] =1 for t € T, hence for s € 7, s € (t,t + 1],

Ep[§(s)] = Ep[Ep[§(s)|Fi]] = Ep[£(t)] = Eplv(t)] = 1.
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Hence, £ defines a change of measure on 7 that coincides with @) at every
teT. n

For s € T, define the process

Xi(s) = Eq | Y. Acxi(t)

teT

Fs| — Eo

> Aexm]

tcT

where A xf(t) = 2} (t) — el (t), xi(t) = v(t)z:(t) and ef(t) = y(t)e;(t).

By construction, (Xi(s))se;— is a @Q-martingale.

LEMMA A.4. Given a martingale measure () and an interest rate r
derived from a Walrasian equilibrium price, w (as in Lemma A.2) and
an equilibrium allocation for agent @, x;, if there are sufficient assets
to represent the QQ-martingale X;, then there exists a trading strategy
using those assets and a riskless bond with will allow her to attain the
allocation, x;, and there does not exist an alternative allocation x* that
is strictly preferred to x; within the agents’ budget set.

Proof. This is proven by Duffie and Huang(1985) in the context of an
economy with T = {0,7'} and the same method can be used to extend
to the more general setting considered here (e.g. see Penalva(1997)). =

A.3. PROOF OF THEOREMS 4.1, 6.1, AND 6.2

Theorem 4.1 is essentially a corollary of the more general Theorem 6.1.
The order in the presentation required it to be stated as a Theorem. To
prove Theorem 6.2 we use a procedure very similar to that for Theorem

6.1. So we start by proving Theorem 6.1, which is not vacuous by Lemma
Al

Proof. (Theorem 6.1) By Lemma A.4 it suffices to show that for every
agent ¢ € I, X; is in the span of the discounted gains process of a private
insurance contract and k(e) mutual funds!.

e Step 1. Filtrations: Choose an arbitrary ¢ € I. Recall the filtrations
F;, F. and F;,. from Section 3.2 and their generic extensions in Section
5.1.

e Step 2. Martingale dimension: If agent ¢’s endowment satisfies As-
sumptions 4.b-c, then Y; = NV;, if it satisfies 4.d, Y; includes either the

It is well-established in the finance literature that the discounted gains process of an
asset is a (Q-martingale.
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k(e) processes that generate Y, or if it satisfies 4.e, the m/(e) process that
generate M(t).

If the LoGRC condition holds for e; then there exists N; € Y, which
can be decomposed into N; and N_; where N; corresponds to all the
indeces in {1,..., K} that generate risk for e; and N_; corresponds to
the rest of indeces that correspond to N; and do not generate risk for
e;. The LoGRC condition and Lemma 5.1 applied to e imply that N_;
admits the intensity A\; — \;.

The vector process N’ = (Y. \ N;, N;, N_;) generates the filtration F,y..
As the compensated version of N’ is (by the martingale representation
theorem) a basis for the space of (P, F;.)-martingales then the martin-
gale dimension, and hence the number of long-lived risky assets we need,
is at most k(e) + 1 (where k(e) includes m(e) assets that account for the
randomness generated by M (t) in case of Assumption 4.e).

Note that by construction, e;(t) € F; and e(t) € F..

e Step 3. Martingale representation: Let C' = Eg [Y;cr Aexi(t)]. As
C is a constant it can be safely ignored for the martingale analysis so we
will omit it to reduce the burden on notation.

|
r T

= B[S 251l — x| 7]

X;(t) = Eg ZAexZ‘(s)

- B, gv(S)ﬁ(S;e(S))’ft] B, [z A(s)ex(s) f] (A5)
= XA() - X(1). (A.6)

Let X be the aggregate component and X/ the agent-specific compo-
nent.
Both X/ and X/ are F-martingales. For any s > t:

EQ[X{(s)|F] = Eq [EQ [ZV ) fi(u 6(U))|f5]

7|
~ B |3 2 (wnelw)| 7| = X2

by the law of iterated conditional expectations. As all martingales are
predictable, and f;(t,e(t)) is measurable with respect to F. for all ¢,
XA(t) is also measurable on F, so that X/ is an F, martingale. As for
X1(t), the change of measure which is a function of e, implies that one
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need be concerned about both F; and F., hence the best one can say in
general is that X; is (Q, Fy.)-martingale.

e Step 4. Spanning with the assets: Select the k(e) mutual funds such
that the discounted price processes, S*(t), are not linearly dependent.
Applying the martingale representation theorem, there exists a k(e) x
k(e)-dimensional predictable process m(t) such that

S*(t) = 5%(0) —i—/tms dY,(s)
= 5°0)+ [ () AV N)(s) + [ () ANCfs) + [ (s dVi(s)

where m_; is the (k(e)) x (k(e) — 1)-dimensional vector obtained by
eliminating the [-th column, and m; corresponds to that [-th column.

If P(N;(t) > 0) > 0 and P(N;(t) = N,(t)) < 1 for some t € T then
F; # F., otherwise F; is trivial or equal to F.. The latter implies that
the agent only needs the k(e) mutual funds and the bond to attain her
optimal allocation.

Let d;(t) represent an insurance contract with different pay-offs for
every realization of V;(t). The corresponding discounted gains process,
Sy, is at worst a (@, Fje)-martingale (it will be a (Q, F;)-martingale
if Assumptions 4.b-c hold). By the martingale representation theorem
there exists a (k(e) + 1)-dimensional vector process (n,n_;,n;)(t) such
that

S¥(t) = S(0 +/ d(Y;\ N))(s +/ §) AN _y(s +/n, ) dN; (s)

where n; and n_; must be (generically) distinct: suppose N;(s—) = n,
then dN;(s) = 1 makes the probability {NV;(t) = n} equal to zero for
all future ¢t € T, while AN _;(s) = 1 does not, which generically implies
that S;(s) is different after AN;(s) = 1 than after AN _;(s) so that n_;
and n; have to be different.

This implies, that S is not a linear combination of S* so that (S*, S})
forms a martingale basis for (@, Fy.)-martingales.

In Step 3 we showed that X is (@, F;.)-martingale, so that by Lemma
A4, there is a trading strategy using the bond, the k(e) mutual fund and
the insurance contract that lets agent ¢ attain her optimal allocation. As
we have chosen ¢ arbitrarily, and the mutual funds and the bonds are
common to all agents, the theorem holds. "

Proof. ~(Theorem 4.1) Assumption 4.a is a special case of assumption
4b. As N = (N,)ier and for all 4, Y; = N; then the LoGRC condition is
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trivially satisfied. As all agent’s losses are the same and have the same
hazard, they are all e-equivalent. Hence k(e) = 1. n

Proof. (Theorem 6.2) The proof is exactly as that of Theorem 6.1
except that because the LoGRC condition does not hold then the best
we can say about the martingale dimension of F,y. is that it is at most
2k(e). This implies that each agent requires 2k(e) assets which in general
would need to be mutual insurance contracts (i.e. written on both what
happens to e; and to e. Because these assets can differ from one agent
to another (given possible heterogeneous losses) one potentially needs
a different set of 2k(e) assets per agent. Of course, this number can
never be greater than the martingale dimension generated by N, which
is K. Also, in aggregate, the economy cannot need more than K assets.m

A.4. PROOF OF LEMMA 7.1

Proof. (Lemma 7.1) Substituting a constant base endowment from the
constant w; at every t, to constant w;(t) does not add uncertainty.

For any ¢ € I, recall the definition of Y; in Section 5.1 and consider
changing the loss generated by AN;(s) = 1 of L; at the next consumption
date, t, to the loss L;(t,1) at ¢, L;(¢,2) at t + 1, .... Apply the same logic
as for making the endowment a function of consumption dates above but
now on the endowment after a loss. .

A.5. PROOF OF THEOREMS 7.1 AND 7.2

The proofs are exactly as those of Theorems 6.1 and 6.2. The difference
is that IN; in those theorems is now substituted by N; = (NV;;)’7;.

If the LoGRC condition holds (Theorem 6.1), for each N;; there is an
N;; in Y, such that the indeces that make up N;; include all the indeces
that make up N;; for all j = 1,...,m,. This is then naturally incorpo-
rated into the definition of N’ in Step 3. The martingale dimension of
F,,. will at most be m; + k(e), and the same arguments go through with
m,; insurance contracts for agent ¢ instead of one.

If the LoGRC condition does not hold and because different risks do
not depend on each other directly, then each risk requires in the worst
possible case 2k(e) assets per risk, in total the agent needs 2m;k(e) mu-
tual insurance contracts.



