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ABSTRACT
This paper estimates a translog stochastic frontier production function in the analysis of all 48
contiguous U.S. states in the period 1970-1983, to attempt to measure and explain changes in
technical efficiency. The model allows technical inefficiency to vary over time, and
inefficiency effects to be a function of a set of explanatory variables in which the level and
composition of public capital plays an important role. Results indicated that U.S. state
inefficiency levels were significantly and positively correlated with the ratio of public capital
to private capital. The proportion of public capital devoted to highways is negatively
correlated with technical inefficiency, suggesting that not only the level but also the
composition of public capital influenced state efficiency.
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1. INTRODUCTION

The role of public infrastructure investment in the decline of U.S. output and productivity

growth since the early 1970s has received renewed attention since the early nineties from an

increasing number of researchers. Some authors argued that the slowdown in public investment

after the early 1970’s partially explains the productivity slowdown observed around the same

time. However, conclusions from empirical research on the role of the public sector in the

provision of infrastructure fall far short of offering a useful guide for public decision making.

Conclusions range from considering that public infrastructure investment has a significant

positive effect on output and growth to considering that public sector capital has no role in

affecting private sector productivity. Conflicting evidence appears when one considers the

results of different empirical approaches to U.S.: production function, cost function and profit

function based studies.

The economics literature typically uses a production function including public capital stock as

an input to estimate the elasticity of public capital. Studies using U.S. national time series have

shown a larger contribution of public capital to private performance than state-wide panel data

results. The size of the contribution of public capital to private performance varies according

to the level of aggregation. Vijverberg et al (1997) compared the results of a production

function, a cost function, and a profit function on annual time series. They attribute to

multicollinearity the disagreement between the three approaches. A number of initial studies

using U.S. panel data sets (Aschauer, 1989; Munnell, 1990) observed that the impact of

aggregate public capital on private sector output and productivity was very significant, being

responsible for much of the decline in U.S. productivity that occurred in the 1970s. However,

since researchers have allowed for econometric problems such as serial correlation, state-

specific characteristics, endogeneity, and measurement errors in panel data estimations, results

and conclusions have changed dramatically: recent evidence based on U.S. state-level

production functions leads to the controversial conclusion that total public infrastructure has an

insignificant impact on private production (Holtz-Eakin, 1994; Evans and Karras, 1994;

Baltagi and Pinnoi, 1995; García-Milà, McGuire, and Porter, 1996).
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Results from the regional production function approach provided in the recent literature suffer

from a number of problems that remain only partially resolved: usually the approach does not

allow for lags in the impact of public capital on private output (García-Milà, McGuire, and

Porter, 1996); first differencing overrides any long-term relationship (Munnell, 1992); and

acute public capital endogeneity issues and out-of-state public capital spillover effects are not

well captured (Vijverberg et al, 1997). Notwithstanding, an even more serious limitation in the

empirical literature on public infrastructure productivity is that it has developed independently

of the production frontier approach. The effect has been to omit the influence of the level and

evolution of technical inefficiency on the production function and on the estimated elasticities.

Estimation of the parameters employing the usual econometric techniques is therefore unlikely

to produce estimates of production frontiers. Rather, estimates of the so called average

performance production functions are obtained. Interpreting the latter as frontier functions is

bound to underestimate production possibilities and input elasticities, and to preclude

measurement of technical inefficiencies by assuming them away (Greene, 1993).

The frontier approach to total factor productivity (TFP) measurement makes it possible to

distinguish between shifts in technology from movements towards the best-practice frontier.

By estimating the best-practice production function (an unobservable function) this approach

calculates technical efficiency as the distance between the frontier and the observed output.

Two different techniques have been used to measure technical efficiency under the frontier

approach, which differ in the assumptions imposed on the data: nonparametric linear

programming techniques (Data Envelopment Analysis, DEA), and the stochastic frontier

approach (SFA).

Recent research into the estimation of inefficiency in studies considering the whole regional

economy (country or state level) as the observation unit is summarized in Table 1. Those

studies regionally comparing a sector or a set of subsectors of the economy are not considered

in this paper. Some major shortcomings may be observed in the preceding literature: (i) a large

number of papers have only focused on the use of nonparametric approaches; (ii) in stochastic

frontier approaches no model has been formulated for the technical inefficiency effects in terms

of appropriate explanatory variables; (iii) most empirical studies have not included the
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services of public capital as an input in the production process, probably owing to the

unavailability of international data on public capital.

Research effort into measuring efficiency and productivity at country or state level has mainly

concentrated on the use of nonparametric frontiers following the initial paper of Färe et al

(1994), which decomposed a Malmquist input based productivity index into overall technical

efficiency change and technological change. This approach is mainly limited by the usual

assumption that there is no random error in the data. In this case, any measurement error in

constructing the frontier, inaccuracies in measuring input and output, or luck affecting

outcomes, may alter the measured efficiency of all the regions that are compared to this region

or linear combinations involving this region (Berger and Humphrey, 1997). Those studies using

a stochastic frontier approach have not attempted to explain inefficiency and productivity

variation across regions and through time, with the exception of Koop, Osiewalski, and Steel

(1995), which considered inflation and economic freedom as variables explaining efficiency

variation. Consequently, the potential role of the level and composition of public capital in

influencing variation and changes in inefficiency and productivity has not been analyzed.

An additional limitation of this literature stems from the shortage of international data on public

capital, with the notable exception of Domazlicky and Weber (1997), which introduced public

capital as a separate input into the production frontier function. All the international country

comparisons reported in Table 1 used data sets from the Penn World Tables (PWT), described

in Summers and Heston (1991), which do not provide information about public capital.

Domazlicky and Weber (1997) used the nonparametric linear programming approach to

measure a Mamlquist TFP index for the growth in gross state product (GSP) over the period

1977-86 for the 48 contiguous U.S. states using four inputs (private sector labor and capital,

and public sector labor and capital) and two outputs (private and public contribution to GSP).

These authors observe: (i) a slight overall productivity growth; (ii) considerable regional

variation in efficiency and productivity; (iii) that almost all productivity growth is due to

technical change; and (iv) that the initial levels of efficiency are negatively correlated with

productivity growth (a catching-up form of convergence in productivity).
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The principal aim of this paper is to estimate a translog stochastic frontier production function

in the analysis of the 48 contiguous U.S. states in the period 1970-1983, in order to attempt to

measure and explain changes in technical efficiency. The model uses real GSP as the output

and total employment, private capital, and public capital as inputs. The model allows technical

inefficiency to vary over time, and inefficiency effects to be a function of a set of explanatory

variables in which the level and composition of public capital plays an important role.

This study differs from previous work on efficiency and productivity measurement in U.S.

states in that it estimates a stochastic production frontier function for the whole economy

explicitly introducing public capital as an input, which allows the estimation of technical

efficiency. It further differs by using the approach developed by Battese and Coelli (1995) in

which the inefficiency effects are modeled as an explicit function of a number of public capital

variables (i.e., the level and composition of public capital) which are thought to influence the

level of technical inefficiency. The slowdown in public investment and productivity in the U.S.

states after the early 1970’s has been the subject of many studies. However, to our knowledge,

this paper is the first U.S. state level study to estimate efficiency using the Battese and Coelli

(1995) model and also the first to explore the influence of the intensity and composition of

public capital on technical inefficiency.

Technical inefficiency scores obtained by estimating the stochastic function are also compared

with those obtained using a nonparametric and nonstochastic approach, the Data Envelopment

Analysis (DEA). Other studies have compared the efficiency scores and rank correlations

between these methods or measured the consistency of the methods in identifying the units in

the most and least efficient quartiles. This is the first comparison in the literature between the

two methods which does not only rely on simple correlations between efficiency scores.

Efficiency scores obtained from parametric and nonparametric approaches are tested using

factors explaining inefficiency variation between states.

The paper continues with the following structure. Section 2 outlines the stochastic frontier

approach with the inefficiency effects models. Empirical results derived from these models and

discussion are presented in Section 3. The empirical results allow us to present efficiency
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scores, and factors explaining efficiency. The final section summarizes the findings of this

research.

2. METHODOLOGY

Our method constructs a best-practice frontier from the data in the sample (i.e., we construct a

national frontier and compare individual states to that frontier). Frontier approaches do not

necessarily observe the true (unobserved) technological frontier, only the best-practice

reference technology. An observation is technically inefficient if it does not minimize its input

given its output. Efficiency scores of unity imply that the state (the unit of observation) is on the

national frontier in the associated year. Efficiency scores lower than unity imply that the state is

below the frontier: in this case, a further proportional increase in output is feasible, given

productive factor quantities and technology. We assume that each country attempts to maximize

output from a given set of inputs. Note that regional or country studies consider the sum of all

micro-units as a single production unit and assume away differences between firms within each

national industry.

The panel data set used in this research covers the 48 contiguous U.S. states for the period

1970 through 1983. The data consist of 14 annual observations. As a measure of output the

gross state product (Y) is used. Total employment (L), total private capital (K), and total

public capital (G) represent the inputs in the production function, as in previous studies

measuring public capital productivity (Aschauer, 1989; Munell, 1990; García-Milà et al.,

1996). Public capital is broken into three categories: highways, water and sewers, and other.

The source for the gross state product data is the Bureau of Economic Analysis (BEA) Total

employment is the number of employees by state as measured by the Bureau of Labor Statistics

(BLS), U.S. Department of Labor. Monetary values are evaluated at 1972 prices. A total of 672

observations are involved for a fourteen-year period. Detailed sources and a more accurate

description of data construction may be found in García-Milà and McGuire (1992) and García-

Milà et al (1996).
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The private capital stock variable was calculated using a state-level investment series in

private structures and equipment, which BEA maintained until the early 1980s. It is the loss of

these investment series data that limits our analysis to no later than 1983. García-Milà and

McGuire (1992) describe these data and the process used to convert investment flows to

stocks.

Table 2 presents the summary statistics for the variables included in the analysis. They involve

the mean value and the standard deviation, together with the minimum and maximum values.

We consider a panel data model for inefficiency effects in stochastic production frontiers

based on the Battese and Coelli (1995) model. Our stochastic production frontier model

allows: (i) technical inefficiency and input elasticities to vary over time in order to detect

changes in the production structure; and (ii) inefficiency effects to be a function of a set of

explanatory variables the parameters of which are estimated simultaneously with the stochastic

frontier. Time-invariant efficiency would be an unrealistic assumption given that elimination of

slack compresses the efficiency distribution, while generation of slack works the opposite way

(Kumbhakar et al, 1997). The approach is stochastic, and states can be off the frontier because

they are inefficient or because of random shocks or measurement errors. Efficiency is measured

by separating the efficiency component from the overall error term.

The stochastic frontier production function model with panel data is written as:

where Yit is the gross state product at the t-th observation (t=1,2,...,14) for the i-th state

(i=1,2,...,48);

f(·) represents the production technology;

Xit is a vector of input quantities of the i-th state in the t-th time period;

βt is a vector of unknown parameters in the t-th time period;

Vit are assumed to be independent and identically distributed random errors,

which have normal distribution with mean zero and unknown variance σ2
V);

)(          e;Xf( = Y
)U - V(

titit
iti 1)·β
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Uit are nonnegative unobservable random variables associated with the

technical inefficiency in production, such that, for the given technology and

level of input, the observed output falls short of its potential output.

In the technical inefficiency effects model the error term is composed of the following two

components: technical inefficiency effect and statistical noise. A state specific effect is not

explicitly considered in the estimated production function model because it would be

considered as persistent technical inefficiency, which implies that we do not consider the

existence of unobserved systematic effects which vary across states in the production function

(Heshmati et al, 1995).

The technical inefficiency effect, Uit, could be specified as:

where Uit are nonnegative random variables which are assumed to be independently

distributed as truncations at zero of the N(mit, σ2
U) distribution;

mit is a vector of state-specific effects, with mit= zitδ;

zit is a vector of variables which may influence the efficiency of the state;

δ is a vector of parameters to be estimated;

Wit, the random variable, is defined by the truncation of the normal distribution with

mean zero and variance σ2, such that the point of truncation is -zitδ.

Two-step procedures to estimate the determinants of technical inefficiency, previously used in

the parametric literature, suffer from a fundamental contradiction. The second stage involves

the specification of a regression model for the predicted technical inefficiency effects which

contradicts the identical distribution assumption of the first stage. The Battese and Coelli

(1995) model overcomes this contradiction and allows the simultaneous estimation of the

parameters of the stochastic frontier and the inefficiency model.

)(        W + z = U ititit 2δ
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Given the aim of this study, the investigated sources of regional differences in technical

efficiency are limited to the influence of the public capital as a potential determinant of

differences across states. Four explanatory variables associated with technical inefficiency are

defined in order to test the influence of the level and composition of public capital on

inefficiency variation: the ratio of public capital to private capital (G/K), the proportion of

public capital invested in highways (GH), the proportion of public capital invested in waters

and sewers (GS), and the year (t). The variable t in the inefficiency effects model (2) specifies

that inefficiency effects may change linearly with respect to time.

The interest of this study in the inefficiency effects model is to focus on the role of the public

capital variables. However, the set of explanatory variables chosen in this paper is quite

limited. Only for manufacturing and not including public capital in the production function,

Beeson and Husted (1989) find that industrial mix, labor-force characteristics and urbanization

levels explain an important part of the variation in efficiency across states. In this case, it is

necessary to control for unobserved differences across states because state specific

characteristics not captured by the public capital may influence the efficiency of a state. State

specific effects are included in the set of explanatory variables in the inefficiency effects

models using 47 dummy variables.

To limit the restrictive properties imposed on the production process, the following translog

production function is chosen and tested against the restricted Cobb-Douglas functional form:

)(   ,U + V + tx +

+ t + xx + t + x +  = y

ititjitjt
1=j

2
tthitjitjh

1=h1=j
tjitj

1=j
0it

3
3

333

β

βββββ

∑
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where y is the log of gross state product, and x is a vector of the logarithms of the 3 inputs

considered (j,h = L, K, G); and where the technological change can be specified as an

additional input (time trend, t) representing the rate of technical change or the shift in the

production function over time. This specification makes it possible to consider time varying

coefficients, and nonneutral technical change.

The output-based Farrell measure of technical efficiency of each i-state in year t may be

estimated as:

Inefficiency scores obtained from the stochastic translog production frontier are compared with

those obtained using a linear programming approach. In this study we also use a nonparametric

method based on Data Envelopment Analysis (DEA) to compute efficiency scores in the

described panel data set. DEA is a linear programming methodology which uses data on the

input and output quantities of a group of states to construct a piece-wise linear surface over the

data points. A detailed description of the DEA approach to efficiency measurement may be

found in Färe, Grosskopf, and Lovell (1994). This frontier surface is constructed by solving a

sequence of linear programming problems, one for each state in the sample. In the output

oriented case, the DEA method seeks the maximum proportional increase in output production,

with fixed input levels.

Having data for i states in the time period analyzed, the linear programming problem that is

solved for the i-th state in the t-year, having input and output data (xit,yit), in an output

orientated DEA model with variable returns (VRS) to scale is computed as follows (Färe,

Grosskopf, and Lovell, 1994):

maxλ,φ  φit

subject to -φityit + Yλ ≥ 0 (5)

xit - Xλ ≥ 0

eTλ = 1

)4(),exp()exp(
}exp{);(

ititit
it

ittit
it WzU

y
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λ ≥ 0

where X is a 48×3 matrix of input quantities for all 48 states in year t,

Y is a 48×1 matrix of output quantities for all 48 states in year t,

xit is a 3×1 vector of input quantities for the i-th country and year t,

yit is a 1×1 vector of output quantities for the i-th country and year t,

λ is a 48×1 vector of weights,

eT is a 48×1 row vector of ones, and

φit is a scalar.

φ-1 is a technical efficiency score which varies between zero and one. To solve the above

linear program we use one output (gross state product) and three inputs (total employment,

and private and public capital). In the nonparametric programming approach, any

departure from the frontier is considered as inefficiency.

3. EMPIRICAL RESULTS

Average efficiencies

Following Battese and Coelli (1995) maximum likelihood estimation (performed using

FRONTIER 4.1; Coelli, 1996) was employed to simultaneously estimate the parameters of the

stochastic production frontier and the technical inefficiency effects model. The results of this

procedure are presented in Table 3. The variance parameters are expressed in terms of γ =

σ2
U/ (σ2

U+ σ2
V). The estimates of the first-order coefficients of the variables in the translog

function cannot be directly interpreted as elasticities.

[ Table 3 ]



12

A number of statistical tests were carried out to identify the appropriate functional forms and

the presence of inefficiency and its trend. As a misspecification analysis we used the log-

likelihood ratio tests (LR). LR tests were performed to test various null hypotheses as listed in

Table 4. The first test shows that, given the specification of the technical inefficiency effects

model, the null hypothesis that the Cobb-Douglas functional form is preferred to the translog is

rejected. The null hypothesis is rejected by the test at the 5 per cent level and hence all results

presented here refer solely to the translog.  Also, in test 2, the null hypothesis that there is no

technological change in the U.S. states production is rejected. Hence, technical change is

present in the model.

The null hypothesis explored in test 3 is that each state is operating on the technically efficient

frontier and that the systematic and random technical inefficiency effects are zero. The null

hypothesis that γ is zero is rejected, suggesting that inefficiency was present in production and

that the average production function is not an appropriate representation of the data. Tests 4

and 5 consider the null hypothesis that the inefficiency effects are not a function of the

explanatory variables. Again, the null hypothesis is rejected, confirming that the joint effect of

these variables on technical inefficiency is statistically significant. 

In test 6, presented in Table 4, the null hypothesis that state specific effects are not significantly

different from zero is considered. Again, the null hypothesis is rejected, confirming that state

specific effects should be included in the inefficiency effects model.

[ Table 4 ]

The estimate of γ indicates that the proportion of the one-sided error component in the total

variance of the composed error term is as high as 37.2%. Thus, technical inefficiency is not the

dominant source of random errors.

A high degree of multicollinearity was observed in the translog stochastic frontier using the

condition index. When the objective is to estimate output elasticities, the parameter estimates
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of the translog form are too unreliable because of the use of a flexible functional form and the

attendant multicollinearity. Notwithstanding, multicollinearity is not necessarily a severe

problem given that the aim of this paper is to focus on efficiency estimation.

Given the specifications of the general translog stochastic frontier model, the average technical

efficiencies of farms in the 48 contiguous U.S. states are presented in Table 5. The mean

technical efficiency of the U.S. states in the period 1970-1983 is estimated to be 87.4 per cent.

That is, over the period analyzed, the average state produced 87.4 per cent of maximum

attainable output (i.e., their GSP could be increased by 14.4 per cent without increasing the

input). Mean efficiency values per year range from 91.0 per cent in 1979 to 83.5 per cent in

1971. The minimum estimated efficiency is 40.7 per cent and the maximum is 99.4 per cent.

There is a relatively small spread of efficiencies, with nearly 73.4 per cent of states being

more than 80 per cent efficient.

[ Table 5 ]

Mean efficiency by year presents an overall increasing trend over the observed period.

Average efficiency by year increased from the lowest level in 1971 (0.835) to the highest level

in 1979 (0.910), which experienced a relative decline at the end of the period (0.894 in 1983).

This means that the contribution of the efficiency change to total factor productivity was an

increase in productivity growth.

Similar to Beeson and Husted (1989) and to Domazlicky and Weber (1997), it is possible to

compute a state's level of efficiency in each year. In Table 6, we present the ranking of states

generated by ordering the states according to the efficiency level in 1970 and 1983, and also

according to the average of the period 1970-1983. These rankings suggest a wide divergence in

efficiency  but 27 of the 48 states present an average efficiency score higher than 90.0 percent.

In fact, there is a significant correlation between the efficiency scores in 1970 and in 1983.

[ Table 6 ]
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Comparison of efficiency estimates

To test the robustness of the efficiency scores obtained from the stochastic frontier, efficiency

measures for each state in each period were computed using the DEA linear programming

approach. We compare the efficiency scores and rank correlations between the two methods.

The average technical efficiency scores using the linear programming method is 0.836.

Average DEA efficiency scores for each year between 1970 and 1983 are lower than those

obtained from the stochastic frontier (Table 5). The results in Table 5 show that the choice of

methodology may influence the average efficiency scores. DEA efficiency scores are much

lower than those obtained from the stochastic frontier. DEA estimates are lower because the

stochastic frontier approach allows states to depart from the frontier due to both random error

and inefficiency, whereas DEA measures random error as part of inefficiency.

Comparison of scores obtained from both methods indicates that the choice of methodology has

a non negligible impact on the estimated average efficiency scores. More important than the

absolute values of the scores is the ranking of states in terms of efficiency. Kendall’s tau

statistic and Spearman’s rho statistic are presented along with the mean efficiency scores for

the stochastic and linear programming efficiency measures in Table 5. Both the rank correlation

coefficient and Kendall’s tau statistic indicated that the null hypothesis of no significant

correlation between the two efficiency measures is rejected at the 5 per cent significance level

considering the mean of all years. Thus, even though the nonparametric method produces lower

efficiency scores than the econometric model, they produce comparable efficiency rankings for

the average scores.

Convergence

The simple correlation coefficient between a state’s technical efficiency level in 1970 and the

change in technical efficiency over the period is significant at the 0.01 per cent level (-0.810

for the stochastic scores, and -0.757 for the deterministic scores). This observation is in
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coherence with the results of Domazlicky and Weber (1997) for the period 1977-1986. This

high correlation indicates that there has been a catching-up process, with those states with

lower technical efficiency in 1970 experiencing a greater increase over the period.

The catching-up hypothesis is further tested using the concept of absolute β-convergence

proposed by Barro and Sala-i-Martín (1992). β-convergence in efficiency scores implies a

tendency towards the equalization of efficiency levels. There is absolute convergence in

efficiency scores if less efficient states tend to improve efficiency faster until they catch up

with the efficient ones. Let γi,t,t+T≡log (TEi,t+T / TEi,t )/T be state i’s annualized growth rate of

technical efficiency between t and t+T, and let log(TEi,t ) be the logarithm of state i’s technical

efficiency score at time t. In order to estimate the speed of convergence in technical efficiency

between states (catching-up hypothesis), the following Equation has been estimated using

nonlinear least squares (Sala-i-Martín, 1996):

(1/T) log (TEi,t/ TEi,t-T ) = a – [log(TEi,t-T)] · (1 – e -βT) · (1/T) + εi,t, t+T (6)

where T=14, given that the growth rate of technical efficiency corresponds to the period 1970-

1983. Table 7 reports the estimated speed of convergence in technical efficiency across the 48

states, using the stochastic and deterministic data sets. The results in Table 7 refer to the

estimate of β when a single equation is estimated for the whole period and no other explanatory

variable is included. This corresponds to the case of absolute convergence in the classical

approach to convergence analysis. Regional dummies have been introduced into the model,

although they appear not to be significant. 

The results in Table 7 indicate that there is evidence of β-convergence in the technical

efficiency scores of the 48 U.S. states over the period 1970-1983. Stochastic and DEA

efficiency scores present significant evidence showing that the catching-up hypothesis cannot

be rejected. Scores from the two methods do not present important differences in relation to the

estimated speed of convergence between states. Note that convergence in efficiency does not

imply convergence in total factor productivity because the production frontier is displaced

upwards in each period by those states which first introduce technical innovations.
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[ Table 7 ]

The existence of β-convergence in technical efficiency is directly related to the explanation of

convergence in income per capita, which relies on the role of technological diffusion (Sala-i-

Martín, 1996). One way to generate convergence in income is to allow for the level of

technology of the poor economies to catch up with that of the rich. The rate of change in total

factor productivity can be decomposed into change in efficiency and technical change. Thus,

the rate of change in efficiency for a state can be a function of the distance between its level of

use of the best-practice technology and the level of use of the leader. That is, the catching-up

hypothesis in terms of efficiency convergence implies that the lagging states are able to imitate

the use of the technology in the leading states.

Regional results of the average (weighted) annual growth rate of technical efficiency using the

parametric approach are compared with those obtained using the nonparametric approach in

Table 8. On a regional basis, only the Mideast and the Great Lakes regions experienced a

decline in technical efficiency over the period 1970-1983. Domazlicky and Weber (1997)

estimated the average annual growth rate of efficiency change for the eight regions in the period

1977-1986 using a DEA approach. They also reported the more important decline in efficiency

in these two regions. According to the stochastic efficiency scores estimated in our paper,

technical efficiency increased at an average annual rate of 2.6 in Far West and 1.2 in Rocky

Mountain, the fastest rates among the eight regions. In both regions, the efficiency level in 1970

was the lowest among the eight regions.

[ Table 8 ]

Inefficiency variation between states

Given the differences in technical efficiency levels between states and years, it is appropriate

to ask why some states can achieve relatively high efficiency whilst others are technically less
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efficient. The parameter estimates for the inefficiency effects model presented in Table 3

suggest a number of public capital related factors which may explain part of the variation in

observed efficiency levels. Specifically, we restrict our attention to the role of the intensity and

composition of public capital as a determinant of the inefficiency level, after controlling for

unobserved differences across states using state specific effects. We test the influence of the

level of public capital in relation to private capital (G/K), the composition of public capital

(HI/G, WS/G), and the time trend (t) on the inefficiency levels of each state and year. This

procedure can be used to help guide public policy.

The robust results of the inefficiency effects model were also compared with those derived

from DEA efficiency scores. In order to determine the influence of exogenous variables on

efficiency measures obtained using the linear programming approach, we adopted a two stage

approach. These explanatory variables and input variables should be uncorrelated. In the first

stage inefficiencies were calculated using a DEA model in which the explanatory factors were

ignored. In the second stage, variation in calculated efficiencies was attributed to variation in

operating environment by means of a regression model. It is hypothesized that the DEA

efficiency measures are some function of the vector zit and a random disturbance εit.

DEA efficiency scores could be conceptualized as presenting a censored normal distribution,

i.e., the values of the dependent variable in the regression model above a threshold are

measured by a concentration of observations at a single value. Therefore, ordinary least

squares was not an appropriate method. In view of this, some authors (Kooreman, 1994)

conclude that a censored Tobit model is appropriate in order to avoid biased estimates from

ordinary least squares. The Tobit model is based on normally distributed latent variables.

However, DEA scores do not fit the theory of sampling censoring that gives rise to Tobit

models: the accumulation of sample observations at the highest level of efficiency is intrinsic

to the model. Tobit, and also Probit, estimates are inconsistent in the case of nonnormality of

the error terms and/or error term heterogeneity.

Banker and Johnson (1994) propose a nonmaximum likelihood estimator in an empirical

estimation, but one which was based on the theoretical conditions established by Banker



18

(1993) and was a consistent estimator. Given implausibility of the normally distributed latent

efficiency required by Tobit models, and according to Banker and Johnson (1994), we make

the assumption that the inefficiencies are log-normally distributed, and define the following

transformation: θit = 1/Eit - 1 + ω, where ω is some very small amount. Thus, inefficiency can

be posited to be a multiplicative function of the explanatory variables and the random error

term:

θ δ δ νit 0 j j
j itz e= Π     (7)

where δj are the parameters capturing the relationship between the explanatory variables and

inefficiency; and exp{υit} is a random error term that is assumed to be independently and

identically distributed and log-normally distributed with mean 1. Explanatory factors, as in the

inefficiency effects model, are G/K, HI/G, WS/G, and t. As in the inefficiency effects model,

state specific effects are also included in the set of explanatory variables in order to control for

unobserved differences across states. The key evidence from the regression model in Table 9,

relative to the DEA scores, confirms the results of the inefficiency effects model in Table 3.

[ Table 9 ]

The results from the parametric and nonparametric efficiency scores are presented in Tables 3

and 9. According to these results, three main conclusions can be drawn. First, factors

explaining inefficiency scores from parametric and nonparametric models suggest a high level

of coincidence in the sign and the statistical significance of the explanatory variables. In both

cases results indicate that the level of public capital in relation to private capital and the

proportion of public capital devoted to highways have the most important effects in

determining the levels of technical inefficiency.

Secondly, those observations with higher levels of public capital in relation to private capital

show lower levels of efficiency. The stochastic and linear programming model results indicate

that the amount of public capital to private capital is positively correlated with technical

inefficiency, implying that increases in public capital intensity are associated with greater
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technical inefficiency.  Consequently, increases in the ratio public/private capital would result

in reduced technical efficiency levels. Note that this result refers to productive efficiency in

transforming input into output, but not to the overall contribution of public capital to GSP. That

is, the positive significance of the ratio of public capital to private capital implies that public

capital intensity may have been wasted in inefficient capital management.

And, thirdly, the composition of public capital is also an important factor influencing

inefficiency levels. State decision-makers not only decide about the amount of public

investment; they also make decisions about the composition of public investments. The

parameter estimate associated with the percentage of public capital devoted to highways

(HI/G) is negative and significant in the inefficiency effects models and also negative and

significant in the DEA two stage approach. The significant negative coefficient concerning the

proportion of public capital devoted to highways suggests that increasing this percentage,

while keeping other factors constant, tends to reduce technical inefficiency. Thus, some types

of infrastructures appear to be more productive than others.

According to the parametric and nonparametric approaches, for a given level of public and

private capital, a higher proportion of highway infrastructure in the composition of public

capital of a state contributes to significantly lower technical inefficiency. The coefficient

associated with highways is higher (absolute value) and more significant than the rest of public

capital, indicating that this component in the public capital mix contributed most to a positive

influence on efficiency. These results may indicate that states used highway improvement to

increase efficiency. This is in concordance with studies showing that total highway capital

contributes significantly to economic growth and productivity (Nadiri and Mamuneas, 1996;

Fernald, 1999). On average, the total amount of real public capital remained nearly constant

over the period analyzed (from a level of 100.0 in 1970 to a level of 101.0 in 1983), and the

ratio public/private capital decreased from 1.000 in 1973 to 0.841 in 1986. However, the

proportion of public capital in highways decreased from 48.46 per cent in 1970 to 43.64 per

cent in 1983.
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The parameter associated with the percentage of public capital devoted to water and sewers is

also negative but not significant in the inefficiency effects model, and also the sign and

significance level are confirmed in the DEA two stage approach. Consequently, results indicate

that the composition of public capital is a significant factor in determining the level of technical

efficiency in each state. Finally, the parameter estimate associated with the time trend suggests

that this variable has a significant influence on the level of inefficiency: the efficiency level in

each country, after controlling for the rest of the variables, including state specific effects, has

been increasing during the period.

In Table 9 it can be observed that the contribution of public capital and state specific effects

explain 89.9% of the observed differences obtained in the linear programming model.

Notwithstanding, only a relatively small proportion of the variation in efficiency can be

accounted for by the public capital variables. When Equation 7 is estimated omitting the state

specific effects variables, a very low adjusted R square is obtained (0.021) with a significant

F test. These results indicate that the unobserved effects represented by the state specific

variables account for an important part of the variation in efficiency.

4. SUMMARY AND CONCLUSION

This paper set out to provide estimates of technical inefficiency in the U.S. states and to

explain variation in technical inefficiency between states through decisions concerning the

level and composition of public capital. A translog stochastic frontier production function with

inefficiency effects is applied. The results indicate that inefficiency was present in production,

and that the traditional average response function and the Cobb-Douglas functional form are

not an appropriate representation of the data. Both estimation methods have been evaluated

using three criteria: average efficiency scores, rank correlation of efficiency scores, and the

consistency of the method in identifying factors explaining efficiency variation between states.

Efficiency scores and conclusions as to the determinants of efficiency obtained using a two
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stage DEA linear programming approach do not differ significantly from those obtained from

the inefficiency effects model.

The findings indicate that the choice of efficiency estimation method can make a significant

difference in relation to average efficiencies. DEA estimates are expected to be lower in

general than econometric estimates. However, the rankings are well preserved between the

econometric and mathematical programming method. And, both methods provide similar results

regarding explanatory factors of variations in efficiency scores.

The results obtained indicate that there is evidence of β-convergence in the technical efficiency

scores of the 48 U.S. states over the period 1970-1983. This means that there has been a

catching-up process, with those states with lower technical efficiency in 1970 experiencing a

greater increase over the period. This result favors the technological diffusion explanation of

income convergence between countries.

The majority of U.S. states operate close to maximum technically feasible production levels,

given that 59.8 per cent of states present efficiency scores higher than 90 per cent. The mean

technical efficiency is estimated to be 87.4 per cent. The analysis of the role of public capital

as a determinant of inefficiency showed that the level of public capital in relation to private

capital and the proportion of public capital devoted to highways have the most important

effects in determining the levels of technical inefficiency.

The results of the inefficiency effects models suggest that the ratio of public capital to private

capital is positively correlated with technical inefficiency. The composition of public capital

also appears as an important factor influencing inefficiency levels given that our analysis has

shown that the proportion of public capital devoted to highways is negatively correlated with

technical inefficiency. Thus, the obvious policy implication of our analysis is that, in the

context of a state-level production frontier, there is evidence that an increase in the

public/private capital ratio may negatively influence overall technical efficiency. However,

this effect could be compensated or even reversed if the capital is properly spent on

infrastructures which positively affect efficiency, as highways appear to be.
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The findings indicate that the choice of efficiency estimation method can make a significant

difference only in some aspects. First, DEA efficiency scores are expected to be lower than

parametric estimates because DEA identifies random noise as inefficiency. Second, the

efficiency ranking of the 48 U.S. states obtained using the parametric and nonparametric

approaches present a high correlation for all years. . This study also found evidence that the

choice of method is irrelevant if one is interested in comparing the quantitative influence and

statistical significance of some determinants of inefficiency.
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TABLE 1. Estimates of Technical Efficiency and Productivity at the Regional Level for the Whole Economy Using a Production Frontier Approach

Author (date) Unit of observation (period) Outputs Inputs Method
Färe, Grosskopf, Norris, and
Zhang (1994)

17 OECD countries (1979-
1988)

Real GDP Total employment
Nonresidential capital stock

DEA, Malmquist index

Koop, Osiewalski, and Steel
(1995)

44 countries (1965-1990) Real GDP Total employment
Nonresidential capital stock (a)

Bayesian SF

Chambers, Färe, and Grosskopf
(1996)

17 APEC countries (1975-
1990)

Real GDP Total Employment
Nonresidential capital stock

DEA, Luenberger indicator

Färe and Grosskpf (1997) 17 APEC countries (1975-
1990)

Real GDP Total employment
Nonresidential capital stock

DEA, Malmquist index

Taskim and Zaim (1996) 23 countries (1975-1990) Real GDP Total employment
Nonresidential capital stock

DEA, Malmquist index

Domazlicky and Weber (1997) 48 contiguous U.S. states
(1977-1986)

Private contribution to GSP
Public contribution to GSP

Private sector labor
Private sector capital
Public sector labor
Public capital

DEA, Malmquist index (scores
compared with an output
distance SF)

Osiewalski, Koop, and Steel
(1997)

22 countries (1980-1990) Real GDP Total employment
Nonresidential capital stock

Bayesian SF

Ray and Desli (1997) 17 OECD countries (1979-
1990)

Real GDP Total employment
Nonresidential capital stock

DEA, Malmquist index

Maudos, Pastor, and Serrano
(1997, 1998b)

17 Spanish regions (1964-1991) Gross added value Total employment
Nonresidential capital stock

DEA, Malmquist index

Maudos, Pastor, and Serrano
(1998ª, 1999)

23 OECD countries (1965-
1990)

Real GDP Total employment
Nonresidential capital stock
Human capital stock

SF approach
DEA, Malmquist index

Rao and Coelli (1998) 48 countries (1965-1990) Real GDP Total employment
Nonresidential capital stock

DEA, Malmquist index

Koop, Osiewalski, and Steel
(1999)

17 OECD countries (1979-
1988)

Real GDP Total Employment
Nonresidential capital stock

Bayesian SF

Notes: APEC: Asian-Pacific Economic Community. GDP: gross domestic product. GSP: gross state product. DEA: Data Envelopment Analysis. SF: stochastic frontier.
(a) Effective factor corrections: years of schooling in the labor force in 1985; quality of country data; % of labor force in agriculture in 1981; producer durable capital stock as % of total capital stock.
Variables to explain efficiency variations: average inflation, and economic freedom index.
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TABLE 2. Summary of Statistics for Variables in the Stochastic Frontier Models

Variable Sample
mean

Standard
deviation

Minimum Maximum

Gross state product (Y)
Total employment (L)
Private capital (K)
Public capital (G)
Public capital / Private capital (G/K)
% highways / public capital (H/K)
% water and sewers / public capital (WS/K)

27227.69
2115.40
38832.96
10631.46

0.31
46.07
12.40

30989.69
2182.68
44587.96
11932.12

0.08
10.02
3.52

2028.09
157.04
2602.31
1136.23

0.15
25.87
4.97

181907.90
13035.77
287842.90
60643.98

 0.61
72.98
21.77

Number of observations: 672.

Source: García-Milà, McGuire, and Porter (1996).
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TABLE 3.
Maximum-Likelihood Estimates of Parameters of the Translog Stochastic Frontier

Production Function

Variable Parameter Coefficient Standard error

Stochastic Frontier Model:
Constant
Private capital (K)
Public capital (G)
Employment (L)
Year (t)
K squared
G squared
L squared
t squared
K·G
K·L
K·t
G·L
G·t
L·t

Inefficiency effects model with
state specific effects:
Constant
Public capital / private capital
% highways / public capital
% water and sewers / public
capital
Year

Variance parameters:

Log-likelihood function

β0

βK

βG

βL

βt

βKK

βGG

βLL

βtt

βKG

βKL

βKt

βGL

βGt

βLt

δ0

δ1

δ2

δ3

δ4

σ2
S

γ

15.160
-7.910
2.816
4.409
0.177
0.006
-1.443
0.628
-0.000
2.249
-1.502
0.099
-0.019
-0.019
0.023

-1.381
0.089
-0.016
-0.007
-2.989

0.002
0.372
1064.6

1.083***

0.713***

0.574***

0.730***

0.022***

0.181**

0.124***

0.179***

0.000
0.286***

0.280***

0.212
0.009*

0.006***

0.008***

0.262***

0.001***

0.002***

0.004
0.003***

0.000***

0.004***

Notes: The t-ratios are asymptotic t-ratios.
*** p<0.001; ** p<0.05; * p<0.1.
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TABLE 4.
Generalized Likelihood-Ratio Tests of Hypotheses for Parameters of the Stochastic

Frontier Production Function

Test Null hypothesis (H0) Log-
likelihood

Value of λλ Critical value Decision (at
5% level)

1

2

3

4

5

6

H0 : βjh= 0

H0 : βt= βtt= βjt= 0

H0 : γ = δ0 = .....= δ51=0

H0 : δ1 = .....= δ4= 0

H0 : δ0 = 0

H0 : δ5 = .....= δ51=0

567.2

573.5

500.8

820.5

1062.6

582.2

994.8

982.2

1127.6

488.2

4.0

964.8

17.67

10.37

55.19

8.76

2.71

55.19

Reject H0

Reject H0

Reject H0

Reject H0

Reject H0

Reject H0

Notes: λ: likelihood-ratio test statistic, λ=-2{log[Likelihood(H0)] - log[Likelihood(H1)] }. It has an
approximate chi-square distribution with degrees of freedom equal to the number of independent constraints.
The asymptotic distribution of hypothesis tests involving a zero restriction on the parameter γ has a mixed chi-
squared distribution, therefore, the critical value for this test is taken from Kodde and Palm (1986), Table 1,
page 1246.
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TABLE 5.
Mean Efficiency Values by Year

Year Mean SF scores
(std. dev.)

Mean DEA score
(std. dev.)

Kendall’s tau
(significance)

Spearman’s rho
(significance)

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

0.841
(0.166)
0.835

(0.164)
0.847

(0.157)
0.865

(0.143)
0.862

(0.142)
0.847

(0.145)
0.861

(0.139)
0.876

(0.131)
0.901

(0.118)
0.910

(0.112)
0.904

(0.115)
0.902

(0.119)
0.890

(0.125)
0.894

(0.121)

0.809
(0.137)
0.816

(0.130)
0.830

(0.124)
0.858

(0.110)
0.850

(0.110)
0.842

(0.103)
0.852

(0.106)
0.854

(0.104)
0.846

(0.103)
0.840

(0.103)
0.813

(0.109)
0.813

(0.109)
0.820

(0.109)
0.860

(0.097)

0.2886
(0.004)
0.2398
(0.015)
0.2444
(0.015)
0.2252
(0.036)
0.2904
(0.000)
0.2383
(0.020)
0.2606
(0.009)
0.2374
(0.040)
0.2393
(0.030)
0.2539
(0.013)
0.2842
(0.005)
0.3258
(0.000)
0.3344
(0.000)
0.3217

(0.0000)

0.3819
(0.007)
0.3107
(0.032)
0.3303
(0.022)
0.3030
(0.036)
0.3826
(0.007)
0.3361
(0.020)
0.3489
(0.015)
0.3118
(0.031)
0.3252

(0.0024)
0.3447

(0.0016)
0.4053
(0.004)
0.4828
(0.000)
0.4704
(0.000)
0.4752
(0.000)

Mean of all
years

0.874
(0.138)

0.836
(0.112)

0.2900
(0.000)

0.3654
(0.010)
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TABLE 6
Ranking of States by Stochastic Efficiency Levels

State Efficiency Level in 1970 Efficiency Level in 1983 Average Efficiency Level,
1970-1983

 1. Alabama
 2. Arizona
 3. Arkansas
 4. California
 5. Colorado
 6. Connecticut
 7. Delaware
 8. Florida
 9. Georgia
10. Idaho
11. Illinois
12. Indiana
13. Iowa
14. Kansas
15. Kentucky
16. Louisiana
17. Maine
18. Maryland
19. Massachusetts
20. Michigan
21. Minnesota
22. Mississippi
23. Missouri
24. Montana
25. Nebraska
26. Nevada
27. New Hampshire
28. New Jersey
29. New Mexico
30. New York
31. North Carolina
32. North Dakota
33. Ohio
34. Oklahoma
35. Oregon
36. Pennsylvania
37. Rhode Island
38. South Carolina
39. South Dakota
40. Tennessee
41. Texas
42. Utah
43. Vermont
44. Virginia
45. Washington
46. West Virginia
47. Wisconsin
48. Wyoming

0.860(27)
0.605(42)
0.989(8)
0.652(40)
0.834(29)
0.920(25)
0.525(46)
0.989(9)
0.991(5)
0.832(30)
0.964(18)
0.980(14)
0.872(26)
0.938(23)
0.950(22)
0.960(19)
0.987(11)
0.802(32)
0.990(6)
0.804(31)
0.715(37)
0.990(8)
0.978(15)
0.766(35)
0.836(28)
0.581(44)
0.954(20)
0.987(12)
0.653(39)
0.982(13)
0.992(4)
0.604(43)
0.926(24)
0.977(16)
0.725(36)
0.993(2)
0.968(17)
0.993(1)
0.697(38)
0.801(33)
0.953(21)
0.541(45)
0.618(41)
0.988(10)
0.453(48)
0.993(3)
0.769(34)
0.478(45)

0.935(26)
0.712(44)
0.993(1)
0.944(23)
0.965(20)
0.979(19)
0.596(47)
0.992(2)
0.992(6)
0.905(31)
0.934(27)
0.980(17)
0.860(35)
0.942(24)
0.956(22)
0.983(16)
0.989(10)
0.744(41)
0.990(9)
0.809(37)
0.788(38)
0.992(5)
0.983(15)
0.888(34)
0.684(45)
0.897(33)
0.986(14)
0.986(13)
0.936(25)
0.965(21)
0.993(3)
0.731(43)
0.931(28)
0.988(11)
0.762(40)
0.992(7)
0.981(18)
0.992(4)
0.679(46)
0.918(30)
0.986(12)
0.738(42)
0.814(36)
0.992(8)
0.511(48)
0.920(29)
0.903(32)
0.776(39)

0.895(28)
0.685(44)
0.992(3)
0.791(35)
0.934(24)
0.902(26)
0.526(47)
0.992(4)
0.991(7)
0.901(27)
0.954(20)
0.981(12)
0.893(29)
0.943(22)
0.959(19)
0.971(17)
0.986(10)
0.742(41)
0.986(9)
0.825(34)
0.749(40)
0.992(6)
0.978(14)
0.835(33)
0.757(38)
0.783(37)
0.946(21)
0.980(13)
0.847(31)
0.926(25)
0.992(1)
0.700(43)
0.934(23)
0.984(11)
0.789(36)
0.992(5)
0.966(18)
0.992(2)
0.704(42)
0.872(30)
0.975(16)
0.682(45)
0.665(46)
0.990(8)
0.495(48)
0.976(15)
0.846(32)
0.752(39)

Note: The number in parenthesis represents the ranking of the state in descending order for each variable.
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TABLE 7.
Estimates of ββ -convergence in technical efficiency using nonlinear least squares

Stochastic scores DEA scores

Estimate of β
Standard error of β
Adjusted R square

0.0382
(0.0052)

0.685

0.0388
(0.0065)

0.578
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TABLE 8
Regional Efficiency Change

Region SFA Scores DEA Scores
New England (NE)
Mideast (ME)
Great Lakes (GL)
Plains (PL)
Southeast (SE)
Southwest (SW)
Rocky Mtn (RM)
Far West (FW)

1.002
0.999
0.999
1.000
1.001
1.004
1.012
1.026

1.004
0.996
0.998
1.002
1.007
1.001
1.008
1.002

SFA Scores – 1 = average annual rate of technical efficiency according to the stochastic
parametric scores.
DEA Scores – 1 = average annual rate of technical efficiency according to the nonparametric
scores.
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TABLE 9.
Factors Explaining DEA Inefficiency Scores (with state specific effects)

Factor Coefficient Standard
deviation

t-statistic

Constant
Log (public capital /private capital)
Log (% highways / public capital)
Log (% water and sewers / public
capital)
Year

R square adjusted
F
N

 -1.1981
1.3571
-0.9772
0.0122
-0.0129

0.8986
117.5
672

0.4820
0.1927
0.2442
0.0658
0.0017

 -2.49
7.04
-4.00
0.19
-7.60


