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Abstract:

This paper presents a two-factor (Vasicek-CIR) model of the term struc-
ture of interest rates and develops its pricing and empirical properties. We
assume that default free discount bond prices are determined by the time to
maturity and two factors, the long-term interest rate and the spread. As-
suming a certain process for both factors, a general bond pricing equation

is derived and a closed-form expression for bond prices is obtained. Em-
pirical evidence of the model's performance in comparisson with a double
Vasicek model is presented. The main conclusion is that the modeling of the
volatility in the long-term rate process can help (in a large amount) to �t the
observed data can improve - in a reasonable quantity - the prediction of the
future movements in the medium- and long-term interest rates. However, for

shorter maturities, it is shown that the pricing errors are, basically, negligible
and it is not so clear which is the best model to be used.
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The evolution over time of interest rates for default-free zero-coupon bonds is
a topic that has been extensively analyzed in the �nancial literature. Initially,
the analysis of this evolution was performed by means of one-factor models
which assume that movements in interest rates are driven by changes in the
short-term (instantaneous) riskless interest rate (see, among others, Vasicek
(1977), Cox et al (1985) or Chan et al (1992)). However, it is now widely ac-
cepted that interest rates are a�ected by more than one state variable. In this
direction, several papers as Richard (1978), Brennan and Schwartz (1979),
Schaefer and Schwartz (1984), Cox et al (1985), Longsta� and Schwartz
(1992), Du�e and Kan (1996), Chen (1996), Dai and Singleton (1997) and
Boudoukh et al (1999) use multiple factors to explain the future movements
that interest rates may show.

There is substantial empirical evidence1 that shows that movements in
interest rates can be decomposed in three types of \basic" changes related to
the level of interest rates, the slope, and the curvature of the yield curve. As
the curvature is usually the less important explanatory variable when dealing
with spot interest rates, we can think that movements in spot interest rates
may be reasonably well explained by the two �rst factors.

In fact, this is the motivation for the model previously presented and
developed in Moreno (1996) which uses the long-term interest rate and the
spread of interest rates as state variables (that is, the di�erence between the
long-term interest rate and the short-term interest rate is used as a rough
measure of the slope of the yield curve). In that paper, both factors are
assumed to follow a Vasicek process and, therefore, both variables (1) show
mean reversion to a certain long term value and (2) their di�usions re
ect
a constant variance term. Under these assumptions, a general bond pricing
equation was derived and a closed-form expression for zero-coupon bond and
for interest rate derivatives prices was computed, This paper also presented
the empirical performance of this model in relation to an alternative one-
factor model.

It can be argued that one of the assumptions made in Moreno (1996),
namely, the constant variance in the di�usion of the processes followed by
a

1See, for instance, Jones (1991), Litterman and Scheinkman (1991), Zhang (1993) and

Knez, Litterman, and Scheinkman (1994).
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both factors is too restrictive from an empirical point of view.2 This restric-
tive feature leads to the present paper whose main objective is to analyze
if modeling the volatility improves the empirical performance of the Moreno
(1996) model. Thus, the same state variables will be used although we will
assume that the long-term interest rate does not follow a Vasicek process
but a root-square (CIR-type) process. This alternative model will be de-
noted hereafter as the Vasicek-CIR model and it can be considered, from a
theoretical point of view, as an special case of the Schaefer and Schwartz
(1984) model.

The schedule of this paper is as follows. Section 2 presents the main as-
sumptions of the Vasicek-CIR model and provides the basic pricing equation
that any derivative asset must satisfy. This equation, with the appropriate
terminal condition, allows us to obtain the price of any asset that, at ma-
turity, pays a certain payo� as indicated in such terminal condition. In this
section we (a) compute the analytical expression that indicate the price of
any discount bond under the assumptions given by this two-factor model
and (b) recall the analogous formula that was obtained in Moreno (1996)
(Vasicek-Vasicek model hereafter). Section 3 analyzes the empirical behav-
ior of both models by comparing the usefulness of these alternative formulas
to �t and forecast bond prices, that is, the in- and out-of-sample performance
of such expressions. The data analyzed correspond to Spanish interest rates
and bond prices for di�erent maturities during the period 1991-1995. Finally,
Section 4 summarizes and concludes.

In this section we present the two-factor (Vasicek-CIR) model that we will
use to price default-free discount bonds by deriving (and solving) the pricing
equation which must be veri�ed by the prices of these bonds.

The main assumption of this model is that the price, at time t, of a
default-free discount bond that pays $1 at maturity T depends only on the
current values of two state variables and time to maturity, � = T � t. The
a

2Interest rate volatility is usually increasing in interest rate level although there is no

consensus about the exact relationship between volatility and level. See Chan et al (1992),

A��t-Sahalia (1996), Conley et al (1997) and Stanton (1997) for this issue.
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main motivation for the factors to be used is the empirical evidence (see
footnote 1) that changes in interest rates are a combination of movements in
(a) the level of interest rates, (b) the slope and (c) the curvature of the yield
curve, which e�ect is usually negligible. Therefore, we can use the long-term
rate and the spread as the variables that help us to explain the movements
in the general level of interest rates and changes in the relationship between
the short and the long end of the yield curve. With both variables, we can
also try to explain the intermediate movements of the yield curve.3

Although most previous studies use the short-term interest rate as one of
the state variable, we rede�ne these variables and, analogously to Schaefer
and Schwartz (1984), the factors to be used are the long-term rate, denoted
by L, and the spread, denoted by s, the di�erence between the long- and the
short-term rate, denoted by r. This selection of state variables allows us to
use the assumption of orthogonality between them.4

Once chosen these variables, we assume that their evolution over time is
given by the following stochastic di�erential equations5:

(
ds = �1(s; L)dt+ �1(s; L)dw1

dL = �2(s; L)dt+ �2(s; L)dw2
(1)

where t denotes calendar time, and dw1 and dw2 are standard Brownian
processes where E[dw1] = E[dw2] = 0, dw2

1 = dw2
2 = dt, and (by the orthog-

onality assumption) it is veri�ed that E[dw1dw2] = 0. �1(:) and �2(:) are the
expected instantaneous rates of change in the state variables and �2

1(:) and
�2
2(:) are the instantaneous variances of changes in these factors.
Let P (s; L; t; T ) � P (s; L; � ) be the price, at time t, of a default-free

discount bond that pays $1 at maturity T = t + � . We can express the
instantaneous percentage change in the price of this bond as the sum of its
expected rate of return and the unexpected variations in return due to the
a

3Two alternative couples of factors to be used may be: (a) the long-term interest

rate and the short-term interest rate and (b) the short-term interest rate and the spread.

However, the above two variables are chosen because of a better analytical tractability.
4This assumption simpli�es the analytical tractability of the model. Empirical evidence

that supports this assumption can been seen in Ayres and Barry (1980), Schaefer (1980),

Nelson and Schaefer (1983) and, for the Spanish case, in Moreno (1996).
5After presenting this generic model and deriving the general pricing equation, we will

particularize it to obtain the Vasicek-CIR model
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random changes in the factors

dP (s; L; t; T )
a

P (s; L; t; T )
= �(s; L; t; T )dt+ s1(s; L; t; T )dw1 + s2(s; L; t; T )dw2 (2)

The steps to be given to obtain the bond pricing equation are very
standard6 and can be summarized as follows:

1. Application of Itô's Lemma

2. Setting up of a (hedging) portfolio, composed of three bonds with dif-
ferent maturities, that is instantaneously riskless

3. Under no-arbitrage conditions, the expected rate of return of this port-
folio must equate the instantaneous riskless rate of interest

These three steps jointly with a little algebra lead us to the following
partial di�erential equation

1
a

2
[�2

1(:)Pss + �2
2(:)PLL] + [�1(:)� �1(:)�1(:)]Ps

+[�2(:)� �2(:)�2(:)]PL + Pt � rP = 0 (3)

where subscripts denote partial derivatives. The coe�cients �1(:) and �2(:)
can be interpreted as the market prices of the spread and long-term rate risk,
respectively.

Therefore, given the stochastic process (1) we have assumed for both vari-
ables, (3) is the fundamental equation for the pricing of default-free discount
bonds of di�erent maturities which depend solely on the spread, the long-
term interest rate, and its time to maturity. In this equation we deal with
the market prices of risk, �i(:), because the only way to tie down the bond
prices in our (partial equilibrium) model is by means of these (exogenous)
parameters.

The solution of the equation (3), subject to the terminal condition given
by the �nal payment of the bond, P (s; L; 0) = 1; 8 s; L, is the price of the
discount bond we are looking for.
a

6For more details, see Moreno (1996).
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The coe�cients of the bond pricing equation (3) are the parameters of
the stochastic process (1) which was assumed for the two factors and the
market prices of the risk related to both state variables. As this equation is
too general to be solved analytically, we will make the following assumptions
about these coe�cients:

Assumption 1 The market price of the spread risk is linear in this variable,

that is

�1(:) = a+ bs

Assumption 2 The market price of the long-term rate risk is proportional

to the square root of this variable, that is

�2(:) = d
pa
L

Assumption 3 Each of the state variables follow a di�usion process

(
ds = k1(�1 � s)dt+ �1dw1

dL = k2(�2 � L)dt+ �2
pa
Ldw2

(4)

The motivation for the �rst two assumptions is that a constant market
price of risk is too restrictive and quite unrealistic. The �rst assumption is
the generalization of the one presented in Vasicek (1977) while the second
one is similar to the one obtained in Cox et al (1985). Regarding the third
assumption, the �rst process, known as Ornstein-Uhlenbeck process, has been
used previously by Vasicek (1977) while the second one was proposed in Cox
et al (1985). Both processes show mean reversion, an important stylized fact
that interest rates usually show. In the process assumed for the spread, we
�nd a constant variance in the di�usion term while the variance of the long-
term rate is proportional to its level. For each state variable, ki > 0 is the
coe�cient of mean reversion which re
ects the speed of adjustment of the
variable towards its long-run mean value, �i, and dwi are standard Brownian
motions.

Under these three assumptions, we can rewrite the equation (3) as

1
a

2
�2
1Pss + q1(�̂1 � s)Ps +

1
a

2
�2
2LPLL + q2(�̂2 � L)PL + Pt � (L+ s)P = 0 (5)
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subject to the terminal condition

P (s; L; 0) = 1; 8 s; L (6)

where

q1 = k1 + b�1; �̂1 = (k1�1 � a�1)=q1

q2 = k2 + d�2; �̂2 = k2�2=q2

Solving the partial di�erential equation (5) we obtain the following propo-
sition:

Proposition 1 The value at time t of a discount bond that pays $1 at time

T , P (s; L; t; T ) � P (s; L; � ), is given by

P (s; L; t; T ) = A(� )e�B(�)s�C(�)L (7)

where � = T � t and

A(� ) = A1(� )A2(� )

A1(� ) = exp

(
�
�2
1
a

4q1
B2(� ) + s�(B(� )� � )

)

A2(� ) =

2
4 2
 exp

n
(q2 + 
) �a

2

o
a

(q2 + 
) expf
�g+ (
 � q2)

3
5
2k2�2=�

2

2

(8)

B(� ) =
1 � e�q1�
a

q1

C(� ) =
2(expf
�g � 1)
a

(q2 + 
) expf
�g+ (
 � q2)

with

q1 = k1 + b�1; �̂1 = (k1�1 � a�1)=q1; s� = �̂1 � �2
1=(2q

2
1)

q2 = k2 + d�2; �̂2 = k2�2=q2; 
 =
qa
q22 + 2�2

2

(9)

Proof: See Appendix.
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The terms in equation (8) verify

0 < Ai(� ) < 1; 8 � > 0; Ai(0) = 1; Ai(1) = 0; i = 1; 2

0 < B(� ) < �; 8 � > 0; B(0) = 0; B(1) = 1=q1 (10)

0 < C(� ) < �; 8 � > 0; C(0) = 0; C(1) = 2=(q2 + 
)

Substituting t = T into (7), it is shown that the terminal condition for
the price bond, P (s; L; 0) = 1; 8 s; L, is satis�ed. Moreover, it is also derived
that

P (0; 0; � ) = A(� ) = A1(� )A2(� ) < 1; 8 � > 0

It can be checked that the following realistic features are veri�ed

lim
s!1

P (s; L; � ) = lim
L!1

P (s; L; � ) = lim
�!1

P (s; L; � ) = 0

that is, when any of the arguments included in the bond price formula tends
to in�nity, the price converges to zero. It is also easily shown that the bond
price function is decreasing and convex in both factors and decreasing with
the time to maturity.

Once we have obtained the expression (and properties) for the bond price
formula under the Vasicek-CIR model, we will recall the assumptions made
in Moreno (1996) and the corresponding pricing formula that was derived in
that paper:

Assumption 1' (equal to Assumption 1) The market price of the spread

risk is linear in this variable, that is

�1(:) = a+ bs

Assumption 2' The market price of the long-term rate risk is linear in this

variable, that is

�2(:) = c+ dL

Assumption 3' Each of the state variables follow a di�usion process of

Vasicek type (
ds = k1(�1 � s)dt+ �1dw1

dL = k3(�3 � L)dt+ �3dw3
(11)

Under these assumptions, we can rewrite the equation (3) as

1
a

2
�2
1Pss + q1(�̂1 � s)Ps +

1
a

2
�2
3PLL + q3(�̂3 � L)PL + Pt � (L+ s)P = 0 (12)
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where

q1 = k1 + b�1; �̂1 = (k1�1 � a�1)=q1

q3 = k3 + d�3; �̂3 = (k3�3 � c�3)=q3

The solution of the di�erential equation (12), subject to the terminal
condition given by the payo� of the bond at maturity (see equation (6)), was
established in the following proposition:

Proposition 2 (Proposition 1 in Moreno (1996)) The value at time t

of a discount bond that pays $1 at time T , P (s; L; t; T ) � P (s; L; � ), is given

by

P (s; L; � ) = D(� )e�E(�)s�F (�)L (13)

where � = T � t and

D(� ) = D1(� )D3(� )

D1(� ) = exp

(
�
�2
1
a

4q1
B2(� ) + s�(B(� )� � )

)

D3(� ) = exp

(
�
�2
3
a

4q3
C2(� ) + L�(C(� )� � )

)
(14)

E(� ) =
1 � e�q1�
a

q1

F (� ) =
1 � e�q3�
a

q3

with

q1 = k1 + b�1; �̂1 = (k1�1 � a�1)=q1; s� = �̂1 � �2
1=(2q

2
1)

q3 = k3 + d�3; �̂3 = (k3�3 � c�3)=q3; L� = �̂3 � �2
3=(2q

2
3)

(15)

Proof: It is similar to the proof of Proposition 1 and it is omitted for
the sake of brevity.
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In this section, we describe the empirical application in which we compare the
�tting and forecasting behavior of the Vasicek-CIR and the Vasicek-Vasicek
models. This comparison is performed analyzing the in- and out-of-sample
properties of both models. The dataset consists of daily Spanish interest
rates and zero-coupon bond prices and cover the period 1991-1995.7

For each day of this period, we have interest rates (in annualized form)
and bond prices for ten di�erent maturities: 1, 7, and 15 days, 1, 3, and 6
months, and 1, 3, 5, and 10 years. The interest rates corresponding to the
shortest and longest maturity (1 day / 10 years) are used as proxies of the
short- and long-term interest rate, respectively.

The main descriptive characteristics of the state variables used in both
two-factor models are:

1. For both interest rate series, the unconditional average is larger than
10%. Short-term interest rates are larger than this mean value until
October 1993 while the long-term interest rates exceed this level in
the whole period except from June 1993 through June 1994. On the
other hand, the spread has a mean value very close to zero and ranges
between �4% and 8%.

2. The short-term rate is more volatile and moves into a wider interval
than long-term rates do.

3. Both state variables show an uniformly high degree of serial correlation.

4. Most of the changes in the short-term interest rates are smaller than
100 basis points while changes in long-term rates are much smoother.
As a consequence, changes in the spread are quite similar to changes
in short-term interest rates.

5. It is seen a small decrease - in mean - in interest rates through the
sample period.

6. Evidence of mean reversion in spread and interest rates is derived.
a

7For more details on these data, see Nu~nez (1995) for technical details on the procedure

used by the Bank of Spain to estimate them and Moreno (1996) for a descriptive and

graphical analysis.
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7. The theoretical assumption about the orthogonality between the state
variables is empirically corroborated.

Next we present the empirical performance of both models. We recall
that both models use the same factors and the main di�erence between them
derives from the alternative processes assumed for the long-term rate, L.

Each state variable of the two competing models, s and L, follows a di�u-
sion process (see equations (4) and (11)). The di�usion parameters of these
processes (ki; �i; �i; i = 1; 2; 3) are estimated by the Generalized Method
of Moments presented in Hansen (1982)8. The econometric speci�cation in
discrete time is

st � st�1 = a1 + b1st�1 + "st ; "st � IID (0; �2
1)

Lt � Lt�1 = a2 + b2Lt�1 + "Lt ; "Lt � IID (0; �2
2 rt�1)

Lt � Lt�1 = a3 + b3Lt�1 + "Lt ; "Lt � IID (0; �2
3)

so that
ki = �bi; �i = �

ai
a

bi
; i = 1; 2; 3

Table I includes the estimation results obtained for the sample period
1991-1995 and shows that the parameters bi of the discrete time speci�cation
(and hence, the di�usion parameters ki) are signi�cantly di�erent from zero.

So, there is evidence of mean reversion in all the state variables.

In both models, the long-term interest rate tends to a mean value close to

10% while the spread tends to a mean value close to zero. Comparing the two

processes assumed for the long-term rate, it may be interesting to recognize

that, under the CIR model, the long rate reverts faster to its long-term value

than when considering the Vasicek assumption.

After estimating the parameters of the di�usion processes followed by

the factors in both models, these values are used to obtain the remaining

parameters of equations (7) and (13). Thus, similarly to Moreno (1996), we

use the speci�cations

P = P (q1; q2; s
�jk1; k2; �1; �2; �1; �2; s; L; � ) + "

P = P (q1; q3; s
�; L�jk1; k3; �1; �3; �1; �3; s; L; � ) + "

(16)

a

8For details on this technique and its applications in the estimation of continuous-time

models, see Moreno and Pe~na (1996).
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where P is the observed price of the discount bonds available at time t, P (:)

is the closed-form pricing equation for each model (see equations (7) and

(13)) and " is an error term.

The parameters of the equations (16) (qi; i = 1; 2; 3; s�; L�) are estimated

on a daily basis for the period 1991-1995 by means of a panel of data where

we have daily yield curves containing a cross-section of discount bond prices.

Therefore, we have a matrix with 1230 rows and 10 columns where each row

includes the (ten) zero-coupon bond prices available at each day and each

column contains the bond prices for a certain maturity.

We estimate the non-linear equations (16) for each day of the period

1991-1995. The estimation of the �rst equation provides the parameters of

the Vasicek-CIR model (that is, q1; q2; s
�) while the estimation procedure,

when applied to the second equation, provides the parameters of the Vasicek-

Vasicek model, that is, q1; q3; s
�; L�.

Estimation results for the daily parameters of the Vasicek-CIR model

are included in Table II.9 This table shows the average of the estimated

parameters obtained for (a) the full sample period and (b) the sample period

divided year by year and re
ects that all the parameters are positive and

highly signi�cant.

The evolution over time of these parameters can be seen graphically in

Figure 1. This �gure shows that the highest values are attained in 1991 while

the lowest (and more stable) parameters correspond to the period 1994-1995.

In the next step, we can compute the values, day by day, of the market

prices of risk related to each state variable using the estimated parameters

obtained from equation (16) jointly with the expressions (9) and (15) and

the Assumptions 1 and 2. A graphical representation of these values, for the

Vasicek-CIR model, can be seen in Figure 2. The average values of these

prices - under both models - for the whole period and for every year, are

included in Table III.

Analyzing the two factors of the Vasicek-CIR model, both market prices

of risk are highly signi�cant and have a similar behavior across the period

1991-1995: each price has always the same sign during all the period 1991-

1995 (for the long-term rate, the market price of risk is always positive and
a

9We do not show the results for the Vasicek-Vasicek model that can be seen in Table

VIII in Moreno (1996). That paper provided all the results for the Vasicek-Vasicek model

that are included in the following tables in this paper.
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the risk related to the spread has always a negative price) and both series of

market prices are specially low in 1992 and the second half of the period 1991-

1995. In absolute terms, the price of the spread risk is, at every moment,

much higher than the price of risk of the long-term rate.

On the other hand, for the Vasicek-Vasicek model, we can observe a very

di�erent behavior between both factors and with respect to the alternative

model. Thus, the two basic features for the prices of risk in this model are:

1. For the full period, the market prices of risk for both state variables

are positive and signi�cantly di�erent from zero.

2. Analyzing this period year by year, the parameters are also signi�cantly

di�erent from zero but they show a changing sign. Thus, the mean

market price of risk of the spread is negative in the last two years of

the sample period while the average of the market price of risk related

to the long-term rate is negative in 1991-1992 and 1994.

Finally, we will use the values of the di�usion parameters jointly with the

parameters estimated by means of the equation (16) to analyze the �tting and

forecasting power of both two-factor models. The within- and out-of-sample

periods are 1991-1994 and 1995, respectively.

First, the in-sample estimated data, for each day of the period 1991-1994

and for both models, are provided by the inclusion of the (daily) estimated

parameters and the estimated parameters of the di�usion processes in the

non-linear equation (16).

Next, we will compare the out-of-sample properties of both models by

using the k-step-ahead forecasts that are generated for the bond prices. These

t+ k-time forecast values are built using the coe�cient estimated from time

t. This procedure is repeated for each day of 1995.

Once obtained the in- and out-of-sample forecasts, the (within and out-

of-sample) pricing errors of both models are computed to compare one each

other. Thus, we de�ne, for time t, the error, et, and the percentage error,

PEt, as

et = Pt � P̂t; PEt =
Pt � P̂t
a

Pt
� 100

where Pt and P̂t are, respectively, the observed and the estimated (�tted or

forecasted) price, for time t, of the zero-coupon bond with a certain maturity.
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For both models, the within-sample (absolute and percentage) pricing

errors are shown in Figures 3 and 4. For all the maturities, it can be seen

that the Vasicek-Vasicek model provides a very large pricing error in May,

1993. This error coincides with a sharp change in the short-term rate and in

the spread. For both models, neither �gure suggests a systematic pattern in

these pricing errors.

Denoting by N the number of days of the period to be analyzed, we

use the pricing errors to compute several accuracy measures that help us to

compare the empirical performance of both models:

1. Mean Error (ME). This measure weights equally the daily errors.

Therefore, positive values can be o�set with negative values and, thus,

this measure may be small even with large errors. Its expression is

ME =
1
a

N

NX
t=1

et =
1
a

N

NX
t=1

(Pt � P̂t)

2. Mean Absolute Error (MAE). As the mean error, this measure

gives an equal weight to the daily errors but positive and negative

errors do not cancel out. It is de�ned as

MAE =
1
a

N

NX
t=1

jetj =
1
a

N

NX
t=1

jPt � P̂tj

3. Root Mean Squared Error (RMSE). It is usually the most common

measure of accuracy and its de�nition is

RMSE =

vuut
a

1
a

N

NX
t=1

(et)2 =

vuut
a

1
a

N

NX
t=1

(Pt � P̂t)2

4. Mean Percentage Absolute Error (MAPE) Similarly to the mean

absolute error, the absolute value of the error is used but each error is

weighted by the current value of the bond price. Its expression is

MAPE =
1
a

N

NX
t=1

jPEtj
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5. Root Mean Squared Percentage Error (RMSPE). This measure

is similar to the root mean squared error but, similarly to the MAPE,

the daily errors are weighted by the actual bond prices. It is given by

RMSPE =

vuut
a

1
a

N

NX
t=1

(PEt)2

These �ve descriptive measures, for both models, are computed for 1991-

1994 (within sample period), for 1995 (out-of-sample period) and for di�erent

subperiods. The within and out-of-sample results are reported in Tables IV-

VI and Tables VII-X, respectively.

The performance of both models, for the within-sample period, is included

in Table IV. For this period, the Vasicek-Vasicekmodel underprices the short-

and medium-term bonds and overprices the bonds whose maturity is beyond

one year. On the other hand, the Vasicek-CIR model overprices the bonds

with maturities up to three months as well as the 5-year bonds.

All the statistics included in Table IV re
ect that both models provide a

very big accuracy to the observed bond prices for all the maturities. It can be

seen that the pricing errors are increasing with the maturities (the longer the

maturity, the larger the error price) but the MAPE for the Vasicek-Vasicek

and the Vasicek-CIR models is smaller than 0:26% and 0:02%, respectively.

Moreover, in the Vasicek-CIR (Vasicek-Vasicek)model, this statistic is always

smaller than 0:01% (0:08%) except for the 5-year bond price.

Comparing both models, the Vasicek-CIRmodel outperforms the Vasicek-

Vasicek model for all maturities and for all the statistics. In short-term

bonds, with maturities smaller than one month, both models provide negli-

gible errors and the improvement obtained with the Vasicek-CIR model over

the other one is not very large.

On the other hand, focusing on the maturities beyond one month, the

Vasicek-CIRmodel provides a huge improvement: the errors from the Vasicek-

Vasicek model are decreased in more than 88% for all these maturities. The

biggest improvement in accuracy is achieved in the medium-term maturities

(six month and one year) and in 5-year bonds, maturity in which the error

measures from the Vasicek-CIR model are about 6% of the error measures

provided by the Vasicek-Vasicek model. This conclusion is obtained for all

the statistics.
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Table V includes the results obtained for the year 1992. Similarly to

the period 1991-1994, the Vasicek-Vasicek model underprices the shortest

maturities (up to six months). In contrast to what happened in the whole

within-sample period, this underpricing can also be seen in the Vasicek-CIR

model which, on the other hand, overprices the bonds that mature beyond

one year.

In this year, both models �t the observed data specially well. Thus, the

error measures for both models are decreased in more than half for most of

the maturities with respect to the whole period. Comparing both models,

the error measures of the Vasicek-CIR model, as in the whitin-sample period,

are about 10% of the statistics provided by the Vasicek-Vasicek model for all

the maturities longer than 15 days.

Therefore, the main conclusion for this year is the same than the obtained

for the period 1991-1994: for the shortest maturities, both models �t specially

well to the data but, for most of the remaining maturities, the Vasicek-CIR

model provides a remarkable large improvement in accuracy.

Several subperiods have been analyzed and, basically, the same conclu-

sions are reached. For illustrative purposes, Table VI includes the whitin-

sample results obtained for 1-year bonds for each semester of the period

1991-1994.

Looking at every statistic, it is shown that the Vasicek-CIR model �ts

better than its competing model in all the semesters and it works specially

well in 1991 and 1994 while the Vasicek-Vasicek model obtains its best per-

formance in the �rst semester of 1992 and in the second one of 1994.

Based on a mean absolute error (MAE or MAPE) criterion, the superi-

ority of the Vasicek-CIR model implies an improvement of about 90% in all

the semesters but the last one in which the errors from the Vasicek-Vasicek

model are decreased in 'just' 77%.

For all the semesters, the mean absolute percentage error of the Vasicek-

CIR model is around 0:003% that is about �fteen times smaller than the

obtained for the Vasicek-Vasicek model. This superiority is specially re-

markable in the second semester of 1991 and in the �rst one of 1994 when

the absolute value of the errors are decreased in more than 96%.

The forecasting power of both models is analyzed by computation of one-

and �ve-step ahead forecasts10 of bond prices for every maturity and for every
a

10Ten-step-ahead forecasts were also computed. Results are available upon request.
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day of the year 1995. Measures of the forecasting pricing errors are included

in Tables VII-X.

Tables VII-VIII include the measures for one-step-ahead forecasts. Thus,

Table VII provides the one-step-ahead measures for the whole out-of-sample

period. It can be seen that (1) both models forecast quite well, (2) the fore-

casting power decreases with the time to maturity, and (3) for both models,

the MAPE (RMSPE) is always smaller than 0:36% (0:48%). It can also be

seen that both models perform similarly for the shortest maturities and, in

fact, the Vasicek-Vasicek model performs slightly better than the Vasicek-

CIR model.

For maturities beyond one month, the Vasicek-CIRmodel forecasts better

than the Vasicek-Vasicek model showing that the modeling of the volatility

in the long-term rate process helps to predict the movements in the medium-

and long-term interest rates.

This superior forecasting performance is not monotonic in the time to

maturity. Thus, the largest improvement is obtained in the 1-year bond

prices when the error measures from the Vasicek-Vasicek model are decreased

in more than 21% (15%) when working on a (root) mean absolute criterion.

In the remaining bonds, the improvement in the relative forecasting power is

much smaller (2� 7%) and never exceeds 12%, value that is obtained when

forecasting the 5-year bonds.

Table VIII provides the error measures obtained, for every month of 1995,

from 1-year bonds in which the Vasicek-CIR model achieves its best relative

performance. Both models perform better in the second semester (with a

MAPE (RMSPE) smaller than 0:06% (0:08%)) than in the �rst one, when

the MAPE (RMSPE) reaches 0:1% (0:12%). It can also be seen a similar

behavior in both models from January to April (with a small superiority of

the Vasicek-Vasicek model in this period) and in the two last months of 1995.

In the period May-October, the Vasicek-CIR model achieves an improvement

of the out-of-sample performance that ranges between 20% (in May) and 65%

(in July).

Finally, Tables IX-X show the results obtained when the forecasting hori-

zon is �ve days. Thus, Table IX includes the measures obtained with the

out-of-sample errors for all the maturities in 1995. Although these measures

are bigger than in the shorter forecasts, they are reasonably small as re
ected

in the MAPE or the RMSPE that are, for both models, smaller than 0:8%

and 1%, respectively.
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The results are analogous to the obtained with the previous predictions:

(1) the forecasting power decreases with time to maturity, (2) the Vasicek-

Vasicek model outperforms its rival model in the maturities smaller than six

months, and (3) the Vasicek-CIR forecasts better than the Vasicek-Vasicek

model in the maturities beyond six months. However, this improvement is

usually quite small (between 1% and 3%) and only increases until 5% when

forecasting 1-year bond prices.

The last table provides the quarterly results obtained with �ve-step-ahead

forecasts for 1- and 5-year bonds. In both maturities, it can be seen a better

forecasting behavior in the second half of 1995 than in the �rst one. For 1-year

bonds, both models show a MAPE smaller than 0:2% in all the quarters and

the Vasicek-CIR model outperforms the Vasicek-Vasicek model whose error

measures are decreased between 5% and 15% in the period April-September.

Focusing on the forecasting errors for 5-year bond prices, the MAPE

statistic ranges between 0:6% and 1%. In this case, the Vasicek-CIR model

improves the forecasts from its competing model in 10% from July to Septem-

ber and, in the remaining quarters, its improvement is much smaller (1�2%).

This paper has presented a two-factor (Vasicek-CIR) model in continuous

time for the analysis of the terms structure of interest rates and its empirical

behavior has been analyzed with respect to a second alternative model. The

main common characteristic of these two models is that both employ the same

factors (state variables) to explain the unexpected changes that interest rates

may show in the future. These factors are the long-term interest rate and

the spread, the di�erence between the long- and the short-term interest rate.

The Vasicek-CIR model assumes that the spread follows a Vasicek process

while the long-rate is modeled as a CIR-type process. On the other hand,

the Vasicek-Vasicek model has assumed that both variables follow a Vasicek

process. This second model was previously presented Moreno (1996) which

also developed its pricing properties, the implications on the term structure

of interest rates and analyzed its empirical properties with a sample of daily

interest rates and bond prices that cover the period 1991-1995.

The main objective of this paper is analyze and compare the empirical
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performance of both models in the period 1991-1995. Therefore, we can

determine if modeling the volatility of the long-term interest rate may help

us to explain the future movements of interest rates. As a starting point, we

have derived a bond pricing equation whose solution indicates the price of

a zero-coupon bond under certain assumptions, namely, this price depends

solely on the current values of two state variables (mentioned above) and the

time to maturity of the bond.

After this solution is obtained, it is used to analyze the �tting and fore-

casting properties of this model. These properties are, in a posterior stage,

compared with the ones derived from the Vasicek-Vasicek model. The pa-

rameters of our competing models have been estimated in two steps. In the

�rst one, the parameters of the di�usion processes have been estimated by the

Generalized Method of Moments by Hansen (1982). Once these values are

obtained, the remaining parameters are estimated by using a cross-section

technique. As a result of this combination of estimation methods, we have

been able to obtain the daily market prices of risk corresponding to both

state variables for both models.

Thus, it has been shown that, for the Vasicek-CIR model, these prices are

highly signi�cant and have a constant sign during all the period 1991-1995.

On the other hand, under the Vasicek-Vasicek model, it can be seen that

the market prices of risk are signi�cantly di�erent from zero and positive for

1991-1995 although they show a changing sign when analyzing yearly this

period.

Finally, we have analyzed the �tting and forecasting power of both mod-

els. The within- and out-of-sample periods are 1991-1994 and 1995, respec-

tively. After computing the within- and out-of-sample forecasts, the pricing

errors of both models (and several accuracy measures) for di�erent subperi-

ods have been obtained to compare one each other.

All these statistics show the following facts: (1) both models provide a

very big accuracy to the observed bond prices for all the maturities, (2)

the pricing errors are increasing with the maturities, (3) the MAPE for

the Vasicek-Vasicek and the Vasicek-CIR models is smaller than 0:26% and

0:02%, and (4) in the Vasicek-CIR (Vasicek-Vasicek) model, this statistic is

always smaller than 0:01% (0:08%) except for the 5-year bond price.

Comparing both models, it can be seen that (1) the Vasicek-CIR model

outperforms the Vasicek-Vasicek model for all maturities and for all the

statistics, (2) in maturities smaller than one month, both models provide
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negligible errors and the relative improvement obtained with the Vasicek-

CIR model is not very large, (3) dealing with maturities greater than one

month, the errors from the Vasicek-Vasicek model are decreased in more than

88% for all these maturities, (4) the biggest improvement (about 90� 94%)

in accuracy is achieved in the medium-term maturities and in 5-year bonds.

Several subperiods have been analyzed and the same conclusions are reached.

The forecasting power of both models has been analyzed by one- and �ve-

step ahead forecasts for every maturity and for every day of the year 1995.

Looking at one-step-ahead forecasts, it has been shown that - similarly to the

within-sample period - both models perform quite well, the forecasting power

decreases with the time to maturity and, for the shortest maturities, both

models perform similarly. However, for maturities beyond one month, the

Vasicek-CIR model forecasts better than the Vasicek-Vasicek model although

this superior forecasting behavior is not monotonic in the time to maturity.

Thus, the best relative performance is obtained in the 1-year bond prices

when the error measures from the Vasicek-Vasicek model are decreased in

more than 21%. In the remaining bonds, the improvement is much smaller

ranging between 2% and 12%.

Finally, dealing with �ve-step-ahead forecasts, all the statistics re
ect a

worse performance than in the previous (shorter) forecasts although similar

results are shown: (1) the forecasting power decreases with time to maturity,

(2) the Vasicek-Vasicek model outperforms its rival model in the shortest

maturities and (3) the Vasicek-CIR forecasts better than the Vasicek-Vasicek

model in the maturities beyond six months. In this case, this improvement

is usually quite small, between 1% and 5%.

Therefore, the main conclusion is that the modeling of the volatility in

the long-term rate process can help (in a large amount) to �t the observed

data can improve - in a reasonable quantity - the prediction of the future

movements in the medium- and long-term interest rates. However, for shorter

maturities, it has been shown that the pricing errors are, basically, negligible

and it is not so clear which is the best model to be used.
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Appendix: Proofs

Proof of Proposition 1

The method of the separation of variables allows us to write the solution

of the equation (5) subject to (6) as

P (s; L; t; T ) = X(s; t; T ) Z(L; t; T ) (17)

where X(s; t; T ) solves the equation

1
a

2
�2
1Xss + q1(�̂1 � s)Xs +Xt � sX = 0 (18)

subject to the terminal condition

X(s; T; T ) = 1; 8 s (19)

and Z(L; t; T ) is the solution of the equation

1
a

2
�2
2LZLL + q2(�̂2 � L)ZL + Zt � LZ = 0 (20)

with terminal condition

Z(L; T; T ) = 1; 8 L (21)

To solve equation (18), we posit a solution of the type

X(s; t; T ) = X(s; � ) = A1(� )e
�B(�)s (22)

Hence, the equation (18) becomes

1
a

2
�2
1B

2(� )� q1(�̂1 � s)B(� )�

"
A0

1(� )
a

A1(� )
�B0(� )s

#
� s = 0 (23)

where, from (19), the terminal conditions are given by

A1(0) = 1; B(0) = 0 (24)
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Equation (23) is linear in the variable s and, therefore, it becomes null when

the corresponding coe�cients are equal to zero. Hence, this equation is

equivalent to the following system of �rst-order di�erential equations

q1B(� ) +B0(� )� 1 = 0 (25)

1
a

2
�2
1B

2(� )� q1�̂1B(� )�
A0

1(� )
a

A1(� )
= 0 (26)

subject to the terminal conditions (24).

We �rst solve (25) with terminal condition B(0) = 0. Including this

solution in (26), integrating this equation, and using A1(0) = 1, we obtain

B(� ) =
1 � e�q1�
a

q1

A1(� ) = exp

(
�
�2
1
a

4q1
B2(� ) + s�(B(� )� � )

)
(27)

where

s� = �̂1 � �2
1=(2q

2
1)

Replacing (27) into (22), we obtain the �nal expression for X(s; t; T ). In a

similar way, to solve equation (20), we posit a solution of the type

Z(L; t; T ) = Z(L; � ) = A2(� )e
�C(�)L (28)

Hence, the equation (20) becomes

1
a

2
�2
2LC

2(� )� q2(�̂2 � L)C(� )�

"
A0

2(� )
a

A2(� )
� C 0(� )L

#
� L = 0 (29)

where, from (21), the terminal conditions are given by

A2(0) = 1; C(0) = 0 (30)

As equation (29) is linear in the variable L, this equation is equivalent to the

following system of �rst-order di�erential equations

1
a

2
�2
2C

2(� ) + q2C(� ) + C 0(� )� 1 = 0 (31)

q2�̂2C(� ) +
A0

2(� )
a

A2(� )
= 0 (32)
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subject to the terminal conditions (30).

We �rst solve (31). It is straightforward to show that this equation can

be rewritten as

�
2
a

�2
2

dC(� )
a

(C(� )� c1)(C(� )� c2)
= d�

where

c1 =
�q2 + 

a

�2
2

> 0; c2 =
�q2 � 

a

�2
2

< 0; 
 =
qa
q22 + 2�2

2

Integrating this equation and using the terminal condition C(0) = 0, it is

obtained that
1
a



ln

 
C(� )� c2
a

C(� )� c1

!
= � +

1
a



ln

�
c2
a

c1

�

and a little algebra leads to

C(� ) =
2 (expf
�g � 1)
a

(q2 + 
) expf
�g+ (
 � q2)
(33)

Once we know C(� ), we can solve the equation (32) or, equivalently

k2�2C(� ) +
A0

2(� )
a

A2(� )
= 0

Integrating, we have

ln[A2(� )] = �k2�2

Z
C(� )d� + kA (34)

Let y = expf
�g. Then, more algebra givesZ
C(� )d� =

2
a

�2
2

�
ln((q2 + 
) expf
�g+ (
 � q2))� (q2 + 
)

�
a

2

�

Replacing this expression in (34) and applying the condition A2(0) = 1, the

�nal expression for A2(� ) is given by

A2(� ) =

2
4 2
 exp

n
(q2 + 
) �a

2

o
a

(q2 + 
) expf
�g+ (
 � q2)

3
5
2k2�2=�

2

2

(35)

Including (33) and (35) into (28), we obtain the �nal expression for Z(L; t; T ).

This expression, jointly with (22), gives the closed-form formula for the

default-free discount bond prices for all maturities.

2
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Table I. Estimates of the Di�usion Parameters

This table provides the parameter estimates (with t-values in parentheses) of the processes

followed by each state variable. The sample period is from January 1991 to December 1995.

The parameters are estimated by means of the Generalized Method of Moments applied

to the following equations

st � st�1 = a1 + b1st�1 + "s
t
; "s

t
� IID (0; �2

1
)

Lt � Lt�1 = a2 + b2Lt�1 + "L
t
; "L

t
� IID (0; �2

2
rt�1)

Lt � Lt�1 = a3 + b3Lt�1 + "L
t
; "L

t
� IID (0; �2

3
)

a

Variable a b k � �
a

Spread -2.08 �10�6 -0.01544 0.01544 -0.1347 �10�3 0.003467
(-0.0210) (-3.0756) (3.0756) (-0.021)
a

Long-Term Rate 1.079 �10�3 -0.01042 0.01042 0.103532 0.070703
(CIR process) (3.5991) (-3.6285) (3.6285) (33.2787)
a

Long-Term Rate 0.732 �10�3 -0.00728 0.00728 0.100574 0.001159
(Vasicek process) (2.2968) (-2.3988) (2.3988) (20.881)
a
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Table II. Averages of Pure Cross-Sectional Regressions

This table contains the estimation results, for each day of the period 1991-1995, of the

parameters (qi; i = 1;2; s�) in the closed-form pricing equation for the Vasicek-CIR model

P (s; L; t; T ) = P (s; L; � ) = A(� )e�B(�)s�C(�)L

where

A(� ) = A1(� ) A2(� )

A1(� ) = exp

�
�

�2
1
a

4q1
B2(� ) + s�(B(� ) � � )

�
; A2(� ) =

"
2
 exp

�
(q2 + 
) �a

2

	
a

(q2 + 
) expf
�g+ (
 � q2)

#2k2�2=�22

B(� ) =
1� e�q1�
a

q1
; C(� ) =

2(expf
�g � 1)
a

(q2 + 
) expf
�g+ (
 � q2)

with
q1 = k1 + b�1; �̂1 = (k1�1 � a�1)=q1; s� = �̂1 � �2

1
=(2q2

1
)

q2 = k2 + d�2; �̂2 = k2�2=q2; 
 =
pa

q2
2
+ 2�2

2

Numbers in parentheses represent the average of the t-statistics of cross-sectional regres-

sions. The numbers in square brackets [:] represent the standard deviation of the time

series of parameter estimates.

a

1991-1995 1991 1992 1993 1994 1995
a

0.6302 0.9068 0.4618 0.8731 0.5440 0.3577

q1 (120.66) (99.92) (116.21) (70.97) (154.12) (162.88)

[0.5376] [0.7612] [0.2526] [0.7065] [0.1749] [0.1515]
a

0.6461 0.8175 0.3490 1.2430 0.5823 0.2227

q2 (87.88) (92.79) (77.04) (117.71) (104.31) (46.68)

[0.6430] [0.7786] [0.1967] [0.7156] [0.4736] [0.1431]
a

0.0939 0.1059 0.0919 0.1010 0.0828 0.0876

s� (784.10) (1559.51) (572.70) (945.38) (580.79) (254.74)

[0.0170] [0.0103] [0.0150] [0.0081] [0.0174] [0.0199]
a
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Table III. Averages of Market Prices of Risk

This table contains the estimation results, for each day of the period 1991-1995, of the

market prices of risk (�i; i = 1; 2) related to each state variable in both two-factor models.

Numbers in parentheses represent the average of the t-statistics of these estimates. The

numbers in square brackets [:] represent the standard deviation of the time series of market

prices of risk estimates.

Panel A: Vasicek-CIR Model
a

1991-1995 1991 1992 1993 1994 1995
a

�1 -16.6370 -25.4189 -11.1207 -19.0044 -15.8773 -11.6185

(Spread) (-89.24) (-89.14) (-76.07) (-86.83) (-118.56) (-75.26)

[13.0414] [21.2431] [7.3795] [11.5403] [6.1945] [5.9674]
a

�2 2.8754 3.8128 1.5872 5.5101 2.4110 0.9865

(Long rate) (85.99) (91.24) (74.87) (116.41) (102.51) (44.00)

[2.9495] [3.6390] [0.9426] [3.4294] [1.9340] [0.6534]
a

Panel B: Vasicek-Vasicek Model
a

1991-1995 1991 1992 1993 1994 1995
a

�1 0.2386 3.1513 1.8632 2.6534 -0.7678 -5.7401

(Spread) (5.09) (46.88) (34.10) (1.19) (-2.07) (-54.31)

[12.2793] [10.1866] [5.6779] [13.3915] [18.0933] [7.5040]
a

�2 4.8419 -8.4789 -6.9682 37.8514 -1.7900 2.8856

(Long rate) (15.22) (-49.31) (-30.41) (30.75) (-29.76) (1.75)

[41.8299] [32.8720] [15.2471] [59.6728] [44.0095] [20.7386]
a
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Table IV. Within-Sample Pricing Error Measures. 1991-1994

This table contains the within-sample pricing error measures of both two-factor models

for the period 1991-1994. We consider zero-coupon bonds with face value of $1 and

with maturities ranging from 1 day to 10 years. We have computed �ve di�erent error

measures: the mean error (ME), the mean absolute error (MAE), the root mean squared

error (RMSE), the mean absolute percentage error (MAPE) and the root mean squared

percentage error (RMSPE).

Vasicek-CIR Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day -0.000000 0.000001 0.000004 0.000083 0.000366

15-day -0.000001 0.000002 0.000012 0.000175 0.001214

1-month -0.000002 0.000004 0.000034 0.000382 0.003471

3-month -0.000001 0.000008 0.000035 0.000803 0.003651

6-month 0.000006 0.000013 0.000060 0.001373 0.006402

1-year 0.000020 0.000032 0.000115 0.003515 0.012915

3-year 0.000003 0.000061 0.000133 0.008256 0.018230

5-year -0.000077 0.000119 0.000187 0.019644 0.030982
a

Vasicek-Vasicek Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day -0.000000 0.000001 0.000004 0.000106 0.000421

15-day 0.000000 0.000003 0.000015 0.000321 0.001519

1-month 0.000003 0.000012 0.000053 0.001239 0.005413

3-month 0.000034 0.000074 0.000273 0.007631 0.028254

6-month 0.000109 0.000200 0.000712 0.021114 0.075686

1-year 0.000241 0.000480 0.001457 0.053265 0.162536

3-year -0.000081 0.000517 0.001156 0.070541 0.159114

5-year -0.000481 0.001547 0.002887 0.256526 0.467754
a
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Table V. Within-Sample Pricing Error Measures. 1992

This table contains the within-sample pricing error measures of both two-factor models for

the year 1992. We consider zero-coupon bonds with face value of $1 and with maturities

ranging from 1 day to 10 years. We have computed �ve di�erent error measures: the

mean error (ME), the mean absolute error (MAE), the root mean squared error (RMSE),

the mean absolute percentage error (MAPE) and the root mean squared percentage error

(RMSPE).

Vasicek-CIR Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day 0.000000 0.000000 0.000000 0.000021 0.000033

15-day 0.000000 0.000000 0.000001 0.000038 0.000064

1-month 0.000001 0.000001 0.000001 0.000084 0.000140

3-month 0.000004 0.000004 0.000005 0.000428 0.000551

6-month 0.000011 0.000012 0.000015 0.001304 0.001630

1-year 0.000023 0.000033 0.000041 0.003671 0.004636

3-year -0.000012 0.000034 0.000048 0.004963 0.007023

5-year -0.000069 0.000119 0.000146 0.020964 0.025712
a

Vasicek-Vasicek Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day 0.000000 0.000000 0.000001 0.000035 0.000068

15-day 0.000000 0.000001 0.000002 0.000124 0.000230

1-month 0.000001 0.000005 0.000009 0.000533 0.000940

3-month 0.000005 0.000037 0.000062 0.003838 0.006357

6-month 0.000002 0.000109 0.000188 0.011595 0.019969

1-year -0.000042 0.000305 0.000510 0.034493 0.057827

3-year -0.000081 0.000349 0.000500 0.050313 0.072872

5-year 0.000208 0.001013 0.001542 0.181938 0.281741
a
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Table VI. Within-Sample Pricing Error Measures for 1-year Bonds

This table contains the within-sample pricing error measures of both two-factor models

for each semester of the period 1991-1994. We consider zero-coupon bonds with face value

of $1 and with maturity of 1 year. We have computed �ve di�erent error measures: the

mean error (ME), the mean absolute error (MAE), the root mean squared error (RMSE),

the mean absolute percentage error (MAPE) and the root mean squared percentage error

(RMSPE).

Vasicek-CIR Model
a

Period ME MAE RMSE MAPE RMSPE
a

1991:I 0.000003 0.000023 0.000030 0.002556 0.003426

1991:II 0.000007 0.000023 0.000033 0.002587 0.003700

1992:I 0.000031 0.000037 0.000045 0.004192 0.005008

1992:II 0.000015 0.000028 0.000037 0.003132 0.004217

1993:I 0.000040 0.000052 0.000308 0.005884 0.034621

1993:II 0.000039 0.000039 0.000045 0.004286 0.004886

1994:I 0.000019 0.000024 0.000029 0.002616 0.003080

1994:II 0.000008 0.000026 0.000047 0.002821 0.005079
a

Vasicek-Vasicek Model
a

Period ME MAE RMSE MAPE RMSPE
a

1991:I -0.000138 0.000365 0.000708 0.041316 0.079741

1991:II 0.000386 0.000663 0.001082 0.074359 0.121425

1992:I -0.000062 0.000269 0.000428 0.030164 0.048048

1992:II -0.000022 0.000342 0.000584 0.038968 0.066439

1993:I 0.000586 0.000774 0.003241 0.086797 0.364635

1993:II 0.000480 0.000493 0.001365 0.053847 0.149408

1994:I 0.000753 0.000794 0.001435 0.085701 0.154830

1994:II -0.000096 0.000113 0.000444 0.012277 0.048524
a
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Table VII. Comparison of One-Step-Ahead Forecasts. 1995

This table contains the out-of-sample pricing error measures of both two-factor models

for the year 1995. We compute one-step-ahead forecasts for prices of zero-coupon bonds

with face value of $1 and with maturities ranging from 1 day to 10 years. We report �ve

di�erent error measures: the mean error (ME), the mean absolute error (MAE), the root

mean squared error (RMSE), the mean absolute percentage error (MAPE) and the root

mean squared percentage error (RMSPE).

Vasicek-CIR Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day 0.000000 0.000016 0.000024 0.001649 0.002412

15-day 0.000001 0.000032 0.000047 0.003247 0.004745

1-month 0.000002 0.000067 0.000098 0.006782 0.009899

3-month 0.000006 0.000176 0.000254 0.017962 0.025969

6-month 0.000015 0.000292 0.000417 0.030523 0.043680

1-year 0.000036 0.000457 0.000650 0.050227 0.071588

3-year 0.000168 0.001273 0.001703 0.173836 0.233587

5-year 0.000310 0.001847 0.002397 0.315120 0.411416
a

Vasicek-Vasicek Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day 0.000000 0.000016 0.000024 0.001648 0.002410

15-day 0.000000 0.000032 0.000047 0.003242 0.004738

1-month -0.000001 0.000067 0.000098 0.006781 0.009874

3-month -0.000016 0.000180 0.000255 0.018363 0.026064

6-month -0.000065 0.000321 0.000436 0.033589 0.045608

1-year -0.000209 0.000580 0.000767 0.063822 0.084462

3-year -0.000239 0.001320 0.001790 0.180321 0.245460

5-year 0.000961 0.002096 0.002760 0.357493 0.473140
a
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Table VIII. Comparison of One-Step-Ahead Forecasts. 1-year Bonds

This table contains the out-of-sample pricing error measures of both two-factor models for

each month of the year 1995. We compute one-step-ahead forecasts for prices of zero-

coupon bonds with face value of $1 and with maturity of 1 year. We report �ve di�erent

error measures: the mean error (ME), the mean absolute error (MAE), the root mean

squared error (RMSE), the mean absolute percentage error (MAPE) and the root mean

squared percentage error (RMSPE).

Vasicek-CIR Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.000102 0.000830 0.001048 0.091516 0.115583
1995:II 0.000037 0.000592 0.000726 0.065100 0.079775
1995:III -0.000149 0.000758 0.000971 0.083832 0.107340
1995:IV 0.000044 0.000679 0.000821 0.074892 0.090439
1995:V -0.000086 0.000650 0.000798 0.071588 0.087900
1995:VI 0.000056 0.000299 0.000367 0.032940 0.040464
1995:VII 0.000081 0.000171 0.000284 0.018823 0.031279
1995:VIII 0.000180 0.000285 0.000396 0.031256 0.043447
1995:IX -0.000013 0.000339 0.000485 0.037148 0.053150
1995:X 0.000047 0.000187 0.000264 0.020504 0.028900
1995:XI 0.000147 0.000274 0.000377 0.029984 0.041194
1995:XII 0.000217 0.000462 0.000650 0.050265 0.070714
a

Vasicek-Vasicek Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.000128 0.000806 0.001028 0.088825 0.113421
1995:II 0.000042 0.000598 0.000736 0.065687 0.080922
1995:III -0.000157 0.000751 0.000966 0.082970 0.106741
1995:IV 0.000007 0.000642 0.000755 0.070767 0.083297
1995:V -0.000564 0.000861 0.000993 0.094891 0.109457
1995:VI -0.000553 0.000726 0.000900 0.080044 0.099249
1995:VII -0.000336 0.000522 0.000727 0.057492 0.080025
1995:VIII -0.000311 0.000480 0.000628 0.052822 0.069009
1995:IX -0.000476 0.000550 0.000713 0.060301 0.078096
1995:X -0.000183 0.000272 0.000346 0.029797 0.037896
1995:XI 0.000055 0.000278 0.000374 0.030352 0.040852
1995:XII 0.000233 0.000458 0.000651 0.049808 0.070898
a
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Table IX. Comparison of Five-Step-Ahead Forecasts. 1995

This table contains the out-of-sample pricing error measures of both two-factor models

for the year 1995. We compute �ve-step-ahead forecasts for prices of zero-coupon bonds

with face value of $1 and with maturities ranging from 1 day to 10 years. We report �ve

di�erent error measures: the mean error (ME), the mean absolute error (MAE), the root

mean squared error (RMSE), the mean absolute percentage error (MAPE) and the root

mean squared percentage error (RMSPE).

Vasicek-CIR Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day 0.000000 0.000029 0.000041 0.002910 0.004115

15-day 0.000001 0.000057 0.000081 0.005754 0.008149

1-month 0.000003 0.000121 0.000171 0.012148 0.017260

3-month 0.000019 0.000327 0.000471 0.033447 0.048175

6-month 0.000062 0.000581 0.000855 0.060846 0.089560

1-year 0.000194 0.001072 0.001558 0.117955 0.171596

3-year 0.000868 0.003318 0.004242 0.452690 0.581056

5-year 0.001312 0.004669 0.005904 0.795712 1.011933
a

Vasicek-Vasicek Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

7-day 0.000000 0.000029 0.000041 0.002909 0.004112

15-day 0.000001 0.000057 0.000081 0.005751 0.008135

1-month 0.000001 0.000120 0.000171 0.012137 0.017204

3-month -0.000003 0.000327 0.000469 0.033434 0.047936

6-month -0.000017 0.000590 0.000857 0.061792 0.089773

1-year -0.000052 0.001140 0.001600 0.125428 0.176266

3-year 0.000457 0.003296 0.004247 0.449916 0.582409

5-year 0.001967 0.004852 0.006077 0.826338 1.039909
a
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Table X. Comparison of Five-Step-Ahead Forecasts. 1- and 5-year

Bonds

This table contains the out-of-sample pricing error measures of both two-factor models for

each quarter of the year 1995. We compute �ve-step-ahead forecasts for prices of zero-

coupon bonds with face value of $1 and with maturity of 1 and 5 years. We report �ve

di�erent error measures: the mean error (ME), the mean absolute error (MAE), the root

mean squared error (RMSE), the mean absolute percentage error (MAPE) and the root

mean squared percentage error (RMSPE).

Panel A: 1-year Bonds
a

Vasicek-CIR Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.000505 0.001652 0.002308 0.182288 0.255000

1995:II 0.000180 0.001082 0.001431 0.119313 0.157693

1995:III 0.000447 0.000698 0.000985 0.076596 0.108032

1995:IV 0.000667 0.000860 0.001161 0.093834 0.126462
a

Vasicek-Vasicek Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.000513 0.001642 0.002300 0.181183 0.254149

1995:II -0.000186 0.001326 0.001612 0.146189 0.177747

1995:III -0.000005 0.000761 0.001005 0.083563 0.110399

1995:IV 0.000520 0.000836 0.001153 0.091139 0.125664
a

Panel B: 5-year Bonds
a

Vasicek-CIR Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.001216 0.004647 0.006103 0.822578 1.086229

1995:II 0.001559 0.005908 0.007249 1.021432 1.251052

1995:III 0.001996 0.004360 0.005489 0.729830 0.918156

1995:IV 0.002977 0.003765 0.004417 0.609400 0.711505
a

Vasicek-Vasicek Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.000945 0.004740 0.006169 0.838764 1.097282

1995:II 0.002615 0.005902 0.007305 1.019201 1.258717

1995:III 0.003061 0.004897 0.005972 0.820306 1.000055

1995:IV 0.003184 0.003853 0.004517 0.623691 0.727507
a
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Figure 1: Plot of pure-cross parameters in the Vasicek-CIR model.
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Figure 2: Plot of market prices of risk in the Vasicek-CIR model.
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Figure 3: Within-Sample Errors of the Vasicek-Vasicek and Vasicek-CIR

Models.
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Figure 4: Within-Sample Percentage Errors of the Vasicek-Vasicek and

Vasicek-CIR Models.


