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Abstract

We argue the importance both of developing simple suÆcient conditions for the stability of general

multiclass queueing networks and also of assessing such conditions under a range of assumptions on the

weight of the traÆc 
owing between service stations. To achieve the former, we review a peak-rate

stability condition and extend its range of application and for the latter, we introduce a generalisation of

the Lu-Kumar network on which the stability condition may be tested for a range of traÆc con�gurations.

The peak-rate condition is close to exact when the between-station traÆc is light, but degrades as this

traÆc increases.

Key words: Multiclass queueing networks, stability, 
uid model, Lu-Kumar network.
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1 Introduction

The stability problem for open multiclass queueing networks may be stated as follows: given a family of

scheduling policies for such a model, characterize the parameter region under which any policy in the family is

stable (i.e., the time-average number of customers in the network is �nite). The problem has drawn extensive

research attention since it was shown that the stability condition prevalent in product-form networks (i.e.,

that the nominal traÆc intensity at each station is less than unity) does not guarantee stability more generally

(see, e.g. Bramson (1994)).

Researchers have addressed the problem by developing methods to construct a Lyapunov function with

negative drift (quadratic or, more recently, piecewise linear), for the network or its 
uid model, that implies

stability. See Dai (1995). Two kinds of results have emerged: (1) computational tests, which seek to construct

such a Lyapunov function for speci�c model parameters, typically by solving a linear programming (LP)

problem (see e.g., Kumar and Meyn (1996)), and (2) qualitative results, which establish the stability of a

family of policies for a restricted network topology under some stability condition (see e.g., Dai and Weiss

(1996)).

The current paper is motivated by two important considerations. Firstly, there has been a dearth in the

literature of (necessary and) suÆcient conditions for stability which (i) apply to reasonably general families

of stochastic networks, (ii) are intuitive, (iii) can be easily checked and (iv) are well suited for addressing

subsequent performance evaluation and optimization issues. Glazebrook and Ni~no-Mora (1999) present

one such - namely, a suÆcent condition for stability in open Markovian networks with single-server stations

which is based around the simple notion that stations should have the capacity to process traÆc arriving at a

maximum possible (or peak) rate from elsewhere in the network. This so-called peak-rate stability condition

is described in Section 2 and a proof of its suÆciency is given under general distributional assumptions, thus

extending the previous result for Markovian networks.

Secondly, the stability literature has been preoccupied with highly connected networks, most especially

reentrant lines. This is understandable, in that stability issues are at their most acute and intractable in

such cases. However, in many applications there will be light traÆc between stations (including those in

which most customers are served at a single station, while a minority have requirements which involve an

excursion within the network) and it is important not to neglect contributions to stability which are designed

to deal with such situations. With this in mind, we introduce a class of simple networks in Section 3 in which
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the weight of traÆc between stations may be varied by the setting of a single parameter q. The networks

generalise the two station network investigated by Lu and Kumar (1991), which is recovered as the case

q = 1. A suÆcient condition for stability of these networks is obtained, which is tight enough for practical

purposes. This result allows us to use these networks to test proposed suÆcient conditions for stability across

a range of assumptions about the weight of between-station traÆc.

In particular, in Section 4, we use these networks to assess the peak-rate stability condition of Section 2.

We propose and evaluate a measure, r(q), of the tightness of the peak-rate condition which depends on the

level of between-station traÆc, as measured by parameter q. In fact we have that r(q) ! 1; q ! 0 and so

the condition is close to exact and will be a viable option for checking stability simply when traÆc between

stations is light. The condition is seen to degrade as q increases in that r is a decreasing function.

2 A peak-rate stability condition for a class of general networks

with single-server stations

Glazebrook and Ni~no-Mora (1999) studied stability and performance issues for a general open Markovian

queueing network with N customer classes and M single-server stations. Here we shall consider a larger

class of networks in which interarrival and service times are drawn from general distributions. Station

m 2 M = f1; : : : ;Mg provides service to a constituency of customer classes Cm � N = f1; : : : ; Ng, where

C1; : : : ; CM is a partition of class set N . Class i customers (or i-customers) arrive exogenously at the network

as a renewal process with rate �i (equivalently, mean interarrival time 1=�i when �i > 0) and require an

amount of service time at station s(i) 2 M which has positive mean mi = 1=�i; i 2 N . We require that

arrival streams are either null or have �nite mean interarrival times and that all mean service times are

�nite. Further, interarrival times are \unbounded and spread out" in the sense of (1.4) and (1.5) of Dai

(1995). Upon completion of its service, an i-customer may be routed for further service as a j-customer,

with probability pij , or it may leave the network, with probability pi0 = 1 �
P

j2N pij . To ensure that a

customer entering the network leaves it with probability one we require that matrix I�P is invertible, where

I denotes the identity matrix and P = (pij)i;j2N is the network routing matrix. We further assume that

all arrival, service and routing processes are mutually independent. Note that the generalised Lu-Kumar

network discussed in Section 3 belongs to this general class.
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The total arrival rate of j-customers, denoted by �j , is given by the solution to the system of traÆc

equations

�j = �j +
X
i2N

�ipij ; for j 2 N :

The nominal traÆc intensity of j-customers, denoted by �j , is given by

�j = �j=�j ; for j 2 N :

We de�ne similarly the nominal traÆc intensity at station m, denoted by �(m), as

�(m) =
X
j2Cm

�j ; for m 2M:

It is well known that the condition

�(m) < 1; for m 2 M; (1)

is necessary for the network to be stable, and hence we shall assume in what follows that it holds.

The network evolution is governed by a scheduling policy, which speci�es dynamically how servers are

allocated to availablecustomers. We consider policies that are stationary (decisions depend on the current

system state); non-idling (servers cannot idle when they have work to do); and preemptive (service of a

customer may be interrupted, and resumed later).

To formulate our peak-rate stability condition we introduce additional network parameters, derived from

the model primitives. For each class i 2 N and class subset S � N , we shall consider the mean S-workload

of an i-customer, denoted by V S
i , to be the mean remaining service time a current i-customer receives until

it �rst leaves classes in S following completion of its current service. The V S
i 's are determined as the unique

solution of the linear system

V S
i = mi +

X
j2S

pijV
S
j ; for i 2 N : (2)

The peak traÆc intensity from class i into station m, denoted R(i;m), is the maximum rate at which work

brought in by current i-customers can enter that station i.e.,

R(i;m) = �i
X
j2Cm

pijV
Cm
j ; for i 2 N ; m 2M: (3)
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The peak traÆc intensity from station m0 into station m, denoted R(m0;m), is the maximum rate at which

work can be transferred from station m0 into m, i.e.,

R(m0;m) = max
i2C

m0

R(i;m); for m;m0 2M; with m0 6= m: (4)

Finally, we denote the peak traÆc intensity for station m by �(m), de�ned as the maximum rate at which

work can be transferred into that station, i.e.,

�(m) =
X
j2Cm

�jV
Cm
j +

X
m02Mnfmg

R(m0;m); for m 2M: (5)

The following result extends Theorem 2 in Glazebrook and Ni~no-Mora (1999).

Theorem 1

When (1) holds, the above queueing network is stable under all non-idling stationary policies when

��(m) < 1; m 2 M: (6)

Comments

1. We would argue that the condition (6) in Theorem 1 has the properties (i)-(iv) outlined in the third

paragragh of the Introduction.

2. It is easily shown that if �(m) < 1 then �(m) � ��(m), and so the condition ��(m) < 1 is at least as

strong as �(m) < 1. Since also ��(m) � �(m) ! 0 as maxi2NnCm;j2Cm pij ! 0 and moreover �(m) < 1

is necessary for stability, it follows that condition (6) is close to sharp when the 
ow between stations

is light.

3. Glazebrook and Ni~no-Mora (1999) establish the result in Theorem 1 in the context of Markovian

networks for which all class speci�c arrival streams are Poisson and all service times are exponential.

They utilise the results of Kumar and Meyn (1996) who establish the boundedness of the so-called

non-idling performance LP as a suÆcient condition for stability and further obtain a closed form upper

bound on the mean number of customers in the system. We shall prove our more general result by
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means of a 
uid model approach.

In brief, a non-idling 
uid model of the above network is a solution L(t) = fLj(t); j 2 Ng and T(t) =

fTj(t); j 2 Ng to the following equations for t � 0:

L(t) = L(0) +�t�T(t)Diag(�)(I�P)

L(t) � 0

T(0) = 0 and T(t) is nondecreasing componentwise (7)

Bm(t) =
X
i2Cm

Ti(t); m 2M

Um(t) = t�Bm(t) is nondecreasing, but increases only at times t for which
X
i2Cm

Li(t) = 0; m 2M.

Note that, in (7) Diag(�) is diagonal matrix whose entries are the �i's, while L(t); T(t) and � are all taken

to be row vectors. The interpretation of the quantities in (7) is clear. In particular, Li(t) (the ith component

of L(t)) is the amount of class i 
uid present in the network at time t; Bm(t) is the cumulative amount

of processing performed at station m by t, with Um(t) the corresponding cumulative amount of idle time,

m 2 M. This 
uid model is said to be stable if there exists at time Æ > 0 such that any solution of (7)

having
P

j2N Lj(0) = 1 satis�es

Lj(t) = 0; for t � Æ; j 2 N :

Our proof of Theorem 1 is along the lines of Dai and Weiss (1996). We shall construct a Lyapunov function

G(t) = maxm2MGm(t) which is piecewise linear in L(t) and which has negative drift. Dai and Weiss (1996)

show that this implies the stability of the 
uid model under any non-idling policy. By Dai (1995) this

implies the stability of the original stochastic network under any non-idling policy, or global stability as it

is sometimes called. Lemma 1 expresses what we need. We �rstly write

Wm(t) =
X
i2Cm

miLi(t); m 2M (8)

for the workload at station m in the 
uid model at time t � 0.
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Lemma 1

Let fGm(t); m 2Mg be a collection of nonnegative linear functions of L(t) such that

(a) Wm(t) > 0)
:

Gm(t) � ��m for some �m > 0; m 2 M;

(b) Wm(t) = 0) Gm(t) � Gm0(t); m0 2M;m0 6= m:

It then follows that

(i) G(t) = maxm2MGm(t) is an absolutely continuous nonnegative function such that

G(t) > 0)
:

G(t) � �( min
m2M

�m)

whenever t is a regular point of G;

(ii) The 
uid model is stable under all non-idling policies.

(iii) The original stochastic network is stable under all non-idling policies.

We now utilise Lemma 1 to prove Theorem 1 above.

Proof of Theorem 1

We introduce the Lyapunov function G(t) = maxm2MGm(t), where

Gm(t) =
X
i2Cm

V Cm
i Li(t);m 2M:

For each class subset S � N , let LS(t) = fLj(t)gj2S , PSS = fpijgi2S; j2S and de�ne �S , TS(t), DiagS(�),

IS and PScSc analogously, where S
c = N n S. It follows from (7) that

LS(t) = LS(0) +�St�TS(t)DiagS(�)(IS �PSS) +TSc(t)DiagSc(�)PScS : (9)
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Postmultiplying (9) by column vector VS
S = fV S

i gi2S , and simplifying by use of (2), (3) and (7) yields, in

the special case S = Cm, the identities

Gm(t) = Gm(0) + t
X
j2Cm

�jV
Cm
j �

X
j2Cm

Tj(t) +
X

i2NnCm

Ti(t)�i
X
j2Cm

pijV
Cm
j

= Gm(0) + t
X
j2Cm

�jV
Cm
j �Bm(t) +

X
m02Mnfmg

X
i2C

m0

Ti(t)R(i;m): (10)

= Gm(0)� tf1� ��(m)g+ ft�Bm(t)g �
X

m02Mnfmg

ft �R(m0;m)�
X
i2C

m0

Ti(t)R(i;m)g: (11)

Now consider part (a) of Lemma 1. At a regular time t of Gm(t) for which Wm(t) > 0, it must be true that

:

Bm(t) = 1: Hence, taking derivatives through (11) we obtain

:

Gm(t) = �f1� ��(m)g �
X

m02Mnfmg

f �R(m0;m)�
X
i2C

m0

:

T i(t)R(i;m)g

� �f1� ��(m)g: (12)

Inequality (12) is a straightforward consequence of (4) and (7). Hence, part (a) of Lemma 1 holds with

�m = 1� ��(m) > 0; m 2M. Note also that, by de�nition of the quantities concerned,

Wm(t) = 0) Gm(t) = 0; m 2M

and Lemma 1 part (b) holds trivially.

Hence, under the peak-rate stability condition (6), the requirements of Lemma 3(a), (b) are met and

by Lemma 3(iii) we conclude that the original stochastic network must also be stable under all non-idling

policies. This concludes the proof of Theorem 1. �

3 A generalised Lu-Kumar network

Motivated by the considerations outlined in the penultimate paragraph of the Introduction, we describe

an extension of the two station network investigated by Lu and Kumar (1991). This generalisation is

able to model a range of assumptions about the degree of connectivity between its two stations and has

a parameter (q) which is a natural measure of this. Because of the simplicity of the network's structure

we are able to obtain a suÆcient condition for stability which comes close to determining the network's
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global stability region (i.e., the region over which the network is stable under all non-idling policies) exactly.

The network then becomes a natural vehicle for testing proposed suÆcient conditions for stability across a

range of assumptions about the weight of between-station traÆc. Such an analysis of the peak-rate stability

condition discussed in Section 2 is given in Section 4.

Speci�cally, our network is a member of the family of open networks introduced in Section 2. There are

4 customer classes, numbered f1; 2; 3; 4g and 2 single-server stations, numbered f1; 2g. Classes 1 and 4 are

served at station 1 (i.e., C1 = f1; 4g) with classes 2 and 3 served at station 2 (C2 = f2; 3g). Classes 1 and 2

arrive exogonously at the network with rates �1 = 1 and �2 = 1�q respectively, where 0 � q � 1. The mean

service time for class i customers is mi and the corresponding rate �i; 1 � i � 4, as before. The positive

entries in the routing matrix P are p12 = q, p14 = 1� q, p23 = 1, p34 = q, p30 = 1� q, p40 = 1. Note that

when q = 0 the network consists of two autonomous stations, while q = 1 gives the reentrant line studied by

Lu and Kumar (1991) under Markovian assumptions. See Figure 1.

1 µ2µ1

Station 1 Station 2

1-q

1-q

q
µ4 µ3

1-q

q

Figure 1: Generalized Lu-Kumar network.

Note that the standard necessary stability condition (1) in this case is

�(1) = m1 +m4 < 1 and �(2) = m2 +m3 < 1: (13)

With condition (13) we associate the corresponding region of m = (m1;m2;m3;m4)-space, namely,

R = fm > 0 : �(1) < 1 and �(2) < 1g: (14)
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Our suÆcient condition for stability for this family of networks is given as Theorem 2. The proof utilises

the 
uid model approach described in Section 2 and, in particular, makes heavy use of Lemma 1, adapted

to this case.

Theorem 2

When (13) holds, the 
uid model for the generalised Lu-Kumar network is stable under all non-idling policies

when m2 + qm4 < 1.

Proof

In order to utilise Lemma 1, we introduce Lyapunov function G(t) = maxfG1(t); G2(t)g given by

G1(t) = �1L1(t) + (1� �1)[(1� q)L1(t) + q2L1(t) + qL2(t) + qL3(t) + L4(t)];

G2(t) = �2[qL1(t) + L2(t)] + (1� �2)[qL1(t) + L2(t) + L3(t)]: (15)

We shall show that, when (13) holds and m2 + qm4 < 1 then it is possible to choose �1; �2 2 (0; 1) in such

a way that G satis�es the conditions (a) and (b) of Lemma 1. By the result in Lemma 1(iii), this is enough

to establish the theorem.

We �rstly consider (b). Note that

W2(t) = m2L2(t) +m3L3(t) = 0) L2(t) = L3(t) = 0)

G1(t) = f1� (1� �1)q(1� q)gL1(t) + (1� �1)L4(t);

G2(t) = qL1(t)

and hence

G2(t) � G1(t); 0 < �1 < 1; 0 � q � 1: (16)
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Further,

W1(t) = m1L1(t) +m4L4(t) = 0) L1(t) = L4(t) = 0)

G1(t) = (1� �1)qfL2(t) + L3(t)g;

G2(t) = L2(t) + (1� �2)L3(t)

and so

(1� �1)q � 1� �2 ) G1(t) � G2(t): (17)

Now consider (a). From an appropriate version of (7) we conclude, upon taking derivatives at all regular

points (almost everywhere), that

:

G1(t) = 1� �1�1
:

T 1(t)� (1� �1)�4
:

T 4(t); (18)

:

G2(t) = 1� �2�2
:

T 2(t)� (1� �2)�3
:

T 3(t): (19)

Now, if W1(t) > 0 then, under all non-idling policies
:

T 1(t) +
:

T 4(t) = 1. Hence, from (18) we conclude that,

for all such policies

:

G1(t) � �minf�1�1 � 1; (1� �1)�4 � 1g < 0; if m1 < �1 < 1�m4: (20)

Similarly, if W2(t) > 0 we conclude from (19) that for all non-idling policies

:

G2(t) � �minf�2�2 � 1; (1� �2)�3 � 1g < 0; if m2 < �2 < 1�m3: (21)

The conclusion from Lemma 1 and (16), (17), (20) and (21) is that the stochastic network will be stable

under all nonidling policies if there exists (�1; �2) 2 (m1; 1�m4)�(m2; 1�m3) such that (1��1)q � (1��2).

It is straightforward to establish that this will be so if and only if the lower right corner of the rectangle

(m1; 1�m4)� (m3; 1�m3) satis�es the required inequality, i.e. if and only if m2+ qm4 < 1: This concludes

the proof. �
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As in (14), we now write

Rfluid
q = fm > 0 : �(1) < 1; �(2) < 1 and m2 + qm4 < 1g (22)

for the region of m-space corresponding to the suÆcient stability condition in Theorem 2. From Theorem 2

we have

Rfluid
q � Rstable

q � R; (23)

where in (23), Rstable
q is the global stability region of the stochastic network.

We now proceed in Section 4 to utilise the generalised Lu-Kumar network in an assessment of the peak-

rate stability condition of Section 2.

4 Assessing the peak-rate stability condition on the generalised

Lu-Kumar network

As indicated in Comment 2 following Theorem 1, there are sound theoretical reasons for believing that the

simple peak-rate stability condition of Section 2 is close to sharp when the 
ow between stations is light. In

this section, we explore its performance more generally by testing it on the generalised Lu-Kumar network

of Section 3.

Firstly note that, for general q 2 [0; 1], the peak-rate condition of (6) applied to the network of Section

3 is given by

��q(1) = m1 + (1� q)m4 + qm4=m3 < 1;

(24)

��q(2) = (1� q + q=m1)(m2 +m3) < 1:

In (24) we have made the q-dependence explicit in the notation ��q. It is easy to show that

��q(1) < 1 and ��q(2) < 1) �(1) < 1 and �(2) < 1:
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In keeping with the ideas and notation developed in Section 3, we use Rpeak
q to denote the region of m-space

determined by the peak-rate stability condition in (6), i.e.,

Rpeak
q = fm > 0 : ��q(1) < 1 and ��q(2) < 1g:

We shall also use vol(Rpeak
q ) to denote the corresponding volume, namely

vol(Rpeak
q ) =

Z Z Z Z

R
peak
q

dm1dm2dm3dm4:

Now, from (23) and some simple algebra we can show that for all q 2 [0; 1]

Rpeak
q � R
uid

q � Rstable
q � R: (25)

Taking volumes through (25) we conclude that

vol(Rpeak
q ) �

1

4
�

q2

24
� vol(Rstable

q ) �
1

4
; (26)

where the second and fourth expressions in (26) can be shown by direct calculation to be vol(R
uid
q ) and

vol(R) respectively.

From the above discussion we propose

r(q) � vol(Rpeak
q )=

�
1

4
�

q2

24

�
; q 2 [0; 1]

as a (q-dependent) measure of the tightness of our simple peak-rate stability condition in this case. From

(26) note that �
1�

q2

6

�
r(q) �

vol(Rpeak
q )

vol(Rstable
q )

� r(q); q 2 [0; 1] (27)

with the right hand inequality in (27) an equality should Rfluid
q be the exact global stability region. Figure

2 shows a plot of r(q). We note that r(1) = 0:04 and infer that for the Lu-Kumar network (i.e. q = 1) the

peak-rate stability condition captures about 4% of the stability region. However, r(q) ! 1; q ! 0 and so,

when there is little customer 
ow between stations the condition is close to exact. Hence, the quality of the
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q

r(q)

0 0:2

0:2

0:4

0:4

0:6

0:6

0:8

0:8

1

1

Figure 2: Plot of the ratio r(q) = vol(Rpeak
q )=vol(R
uid

q ) for the generalized Lu-Kumar network.

condition is high in conditions of light traÆc between stations and is seen to degrade as q increases.
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