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Abstract

We introduce simple nonparametric density estimators that gen-

eralize the classical histogram and frequency polygon. The new esti-

mators are expressed as linear combination of density functions that

are piecewise polynomials, where the coe�cients are optimally chosen

in order to minimize the integrated square error of the estimator. We

establish the asymptotic behaviour of the proposed estimators, and

study their performance in a simulation study.

Key-words: Convolution, frequency polygon, nonparametric density esti-

mation, smoothing techniques, splines.

JEL Classi�cation: C13, C14.
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1 Introduction

Let X1; : : : ; Xn be a random sample with unknown density function f . The

oldest and widely used estimator of f is the histogram. Consider the set

of points fa + jh; j 2 Zg; h > 0; without loss of generality, we can assume

that the anchor a is 0 (see Simono�, 1995, and Simono� and Udina,1997,

for discussions about the anchor choice). This set induces the partition IR =

[
j2ZBj, where each interval Bj = (jh; (j + 1)h] = (cj � h=2; cj + h=2], with

length h, is centered at cj = hj�(h=2). Given this partition and the observed
values X1; : : : ; Xn, the histogram estimator of the density f is

f̂H(x) =
nj

nh
=

fj

h
; if x 2 Bj;

where nj is the number of observations in Bj, and fj = nj=n is the relative

frequency of Bj. Note that if we consider KU(u) = I(�:5;:5](u), we have

f̂H(x) =
X
j

fj
1

h
KU

�
x� cj

h

�
: (1)

Another well known density estimator is the frequency polygon, de�ned as

the function that linearly interpolates the points f(cj; f̂H(cj)) : j 2 Zg. This
estimator is given by (see e.g. Simono�, 1996, p.20),

f̂P (x) =
1

h2
(fjcj+1 � fj+1cj + (fj+1 � fj)x); x 2 Bj:

If we consider KT (u) = (1� juj)I(�1;1](u), we have the alternative expression

f̂P (x) =
X
j

fj
1

h
KT

�
x� cj

h

�
: (2)

The list of commonly used density estimators also includes kernel estima-

tors, de�ned as

f̂Kb (x) =
1

nb

nX
i=1

K

�
x�Xi

b

�
;

where the kernel function K is usually a symmetric density function, and b >

0 is the bandwidth. Kernel density estimation provides smoother estimators

with better asymptotic properties than histograms and frequency polygons.

Nevertheless, in practice, the most widely used density estimator is still the

histogram, mainly because its simplicity and availability in standard statistics

packages (Simono�, 1995).
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Expressions (1) and (2) show that histograms and frequency polygons can

be expressed as linear combinations of functions KU and KT properly trans-

lated and scaled. Observe that KU is the density of a uniform distribution

U([�:5; :5]), and KT is the density of the convolution of two of these distribu-

tions. This fact suggests generalizing the classical estimators by considering

linear combinations of densities Km corresponding to the convolution of m

distributions U([�:5; :5]). These basic densities are piecewise degree (m� 1)

polynomial functions having (m � 2) continuous derivatives (i.e., they are

splines; see e.g. Schumaker, 1981, Chap. 4). Our proposal accomplishes two

goals. Firstly, due to its construction, the new estimators are smoother than

the histogram and frequency polygon (note that the continuity of the fre-

quency polygon, probably its most appealing advantage over the histogram,

is achieved by the convolution of two uniform densities; more regularity is at-

tained convolving more than two uniform random variables). Secondly, good

density estimators should be obtained if the linear combination coe�cients

were chosen accordingly to a spci�c criterion.

The rest of the paper is organized as follows. In Section 2 we present a

wide class of density estimators, the generalized histograms, and we propose

a criterion to obtain optimal estimators. Section 3 is devoted to prove that

such optimal choice is feasible; moreover, the estimators for m = 1; 2 are

compared with the classical histogram and frequency polygon. The asymp-

totic properties of the new estimators are studied in Section 4. Simulated

data are used to test the proposed estimators in practice, and the results are

summarized in Section 5. The proofs are deferred to the Appendix.

2 A Family of Simple Density Estimators

Let Km be the density function of the sum of m independent distributions

U([�:5; :5]). We consider the family of density estimators

f̂mw (x) =
X
j2Z

wj

1

h
Km

�
x� cj

h

�
=
X
j2Z

wjK
m
h (x� cj); (3)

depending on w 2 IRZ, a sequence of real weights summing one. We call

these estimators generalized histograms.

Let us note that the edge frequency polygon (Jones et al., 1998) can

be expressed as a generalized histogram (m=2) taking wj = (fj�1 + fj)=2

and centering the kernels K2
h at bj instead of at cj. Histosplines de�ned in

Boneva et al. (1971) could also be expressed as in (3) with wj = fj, but using

a kernel that is not a density function: the deltaspline, a continuous piece-

wise quadratic function taking negative values in some intervals. A di�erent
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estimator family would be obtained by substituting the kernel Km in the

de�nition (3) by an arbitrary kernel function with an associated bandwidth b

not necessarily equal to the length h. For certain weights, this would include

the binned kernel estimators: fB(x) = �jfjKb(x�cj), studied by Hall (1982)
and Scott and Sheather (1985), and the prebinned kernel estimators (Jones,

1989): fPB(x) = �jd(cj)Kb(x� cj), where d(cj) is some discretization of the

sample based on Bj.

Our proposal is to improve the histogram-type estimators by means of

the estimators f̂mw (x). The smoothness increases using Km instead of KU or

KT , and the weights in (3) may be chosen accordingly to a sensible criterion.

For the following discussion we can consider in the de�nition (3) a general

kernel function K, denoting the associated estimator by f̂w. Let Kh(u) =

(1=h)K(u=h). It is easy to prove that under some mild conditions on K

ful�lled by the kernels Km (for instance, boundedness and monotonicity over

[0;1), we have that

X
j2Z

Kh(x� cj) � K(0) +
X
j2Z

K(j) � K(0) +

Z
IR
K(t)dt = K(0) + 1:

Thus, the sequence Kh(x; c) = fKh(x � cj)g belongs to l1, the set of real

sequences fajg with
P

j2Z jajj <1; since their elements are in [0; 1], Kh(x; c)

it is also in l2, the Hilbert space of sequences fajg with
P

j2Z a
2
j < 1.

Therefore, assuming w 2 l2, the estimator f̂w(x) can be written as the inner

product in l2:

f̂w(x) =< w;Kh(x; c) > :

If a; b 2 l2, we also write aTb for < a; b >.

We now deal with the election of the weight sequence w based on the

sample X1; : : : ; Xn. To evaluate the estimator f̂w, we take the integrated

square error, ISE,

ISE(f̂w) =

Z
(f̂w(x)� f(x))2dx =

Z
f̂ 2
w(x)dx� 2

Z
f(x)f̂w(x)dx +

Z
f(x)2dx =

Z
f̂ 2
w(x)dx� 2E(f̂w(X)) +

Z
f(x)2dx:

Estimating E(f̂w(X)) by
Pn

i=1 f̂w(Xi)=n, we obtain a feasible version of ISE,

FISE(f̂w) =

Z
f̂ 2
w(x)dx�

2

n

nX
i=1

f̂w(Xi) +

Z
f(x)2dx:
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Disregarding the term
R
f(x)2dx, we have the closeness measure:

�(w) =

Z
f̂ 2
w(x)dx�

2

n

nX
i=1

f̂w(Xi):

The following result characterizes the sequences minimizing �(w).

Theorem 1 Let �Kh(X1; : : : ; Xn; c) denote the sequence

f̂Kh (cj) =
1

n

nX
i=1

Kh(Xi � cj); j 2 Z:

The sequences of weights w minimizing �(w) = FISE(f̂w) are the solutions

of the linear system with in�nite equations

Mw = h �Kh(X1; : : : ; Xn; c); (4)

where M 2 IRZ�Z has the generic element (k; l) equal to �k;l = �(jk � lj),
being

�(s) =

Z
K(u)K(u+ s)du: (5)

Consequently, we are concerned with the solutions of the system (4).

Observe that the in�nite matrixM is symmetric and veri�es that the element

j in row k coincides with the element (j+ l) in row (k+ l), for all l 2 Z (i.e.,

each row in M is the result of shifting the row above one position); so M

is an in�nite symmetric Toeplitz matrix (i.e., its entries (i; j) and (k; l) are

equal if j� i = k� l), and it is easy to see that rows in M are symmetric, in

the sense that the elements (j � l) and (j + l) in row j are equal. Therefore,

we have that w = fwkgk2Z veri�es (4) if and only if

X
l2Z

�(l)wk+l = hf̂K(ck); for all k 2 Z: (6)

From (5), we deduce that the di�erence equation (6) has �nite order (i.e.,

the sum on the left hand side has only a �nite number of terms) if and only

if the kernel K has compact support.

In the sequel, we restrict ourselves to the study of the proposed density

estimators f̂mw (x). Note that the kernels Km have compact support. When

a sequence of weights ŵ minimizing �(w) is used in (3), we call the resulting

estimator optimal generalized histogram:

f̂mŵ (x) =
X
j2Z

ŵjK
m
h (x� cj):

The next section is devoted to prove the existence of such estimators.
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Values of s

m s = -4 -3 -2 -1 0 1 2 3 4

1 1

2 1 4 1

3 1 26 66 26 1

4 1 120 1191 2416 1191 120 1

5 1 502 14608 88234 156190 88234 14608 502 1

Table 1: Values of �(s)(2m� 1)! for some values of m.

3 Optimal Generalized Histograms

Proving the existence of optimal generalized histogram requires to know more

about the structure of the matrix M introduced in (4).

Proposition 1 When the kernel Km is used, M is a banded matrix with

bandwidth equal to (2m � 1). The element (k; l) in M is �m(jk � lj), where
�m(s) is

�m(s) =
1

(2m� 1)!

s+mX
j=0

 
2m

j

!
(�1)j(s+m� j)2m�1

for s = �m+ 1; : : : ;�1; 0; 1; : : : ; m� 1, and it is equal to zero for any other

integer value s. Moreover, the sum of the elements of any row (or column)

in M is equal to one.

Table 1 shows the basic row of matrix M (multiplied by (2m � 1)!) for

some values of m.

Before dealing with the solution of system (4) for a generic m, we will

obtain the optimal generalized histogram estimators for the particular cases

m = 1 and m = 2. We will see that for m = 1 the optimal choice of the

weights w leads us just to the usual histogram, but for m = 2 the resulting

piecewise linear estimator is di�erent to the frequency polygon.

3.1 Optimal estimator for m = 1 and m = 2.

For m = 1, it is easy to see that matrix M is the identity operator (M has

ones in its diagonal and zeros outside), so the optimal weights are

ŵj =
h

n

nX
i=1

K1
h(Xi � cj) =

1

n

nX
i=1

I[cj�:5h;cj+:5h](Xi) = fj;
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and the optimal generalized histogram for m = 1 is the classical histogram.

For m = 2 the elements of matrix M are given by

�k;l =

8><
>:

4=6 if l = k

1=6 if jl � kj = 1

0 in other cases.

It is easily checked that weights wP
j = fj used to build the usual frequency

polygon are not optimal. Let Lj be the generic left hand side term in the

equation (4) when w is replaced by wP , and let Rj be the corresponding right

hand term; we have

Lj =
1

6
(fj�1 + 4fj + fj+1);

Rj =
1

n

nX
i=1

 
1� jXi � cjj

h

!
I[cj�h;cj+h](Xi):

These expressions are di�erent in general: for instance, if we move an obser-

vation Xi from (cj�1� h=2; cj�1) to (cj�1; cj�1 + h=2), the Lj value does not

change, but Rj does. Thus, the frequency polygon is not the best piecewise

linear density estimator in terms of ISE.

The computation of the inverse of the operator M can be handled as

follows. Assume by now |see the next subsection| that the inverse operator

of M exists and can be represented by an in�nite symmetric Toeplitz matrix

N = M�1 = f�k;lgk;l2Z, with rows in l2. Then,

X
j2Z

�k;j�j;l =

(
1 if l = k

0 in other case.

Therefore,

(1=6)�k�2;l + (4=6)�k�1;l + (1=6)�k;l = 0; k 6= l + 1;

which is a di�erence equation with the initial condition

(1=6)�k�1;k + (4=6)�k;k + (1=6)�k+1;k = 1:

Since N is a Toeplitz symmetric matrix (�l+k;l = �l�k;l) with rows in l2, the

above equation can be solved and the solution sequence is

�k;l =
p
3(�2 +

p
3)jk�lj:

Observe that the sum of the elements in each row or column of N is one.

Moreover �k;k+l only depends on l, so, de�ning al = �k;k+l, we have al = a�l,

and the optimal weights are:

ŵj = h
1X

l=�1

alf̂K2(cj+l):
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Thus, the weight of the box centered at cj is a weighted mean of the values

of the kernel density estimator at points cj+l, where the weights are given by

the columns of N = M�1. The optimal estimator is

f̂ŵ(x) = h

[x=h�:5]+1X
j=[x=h�:5]

8<
:

1X
l=�1

alf̂K2(cj+l)

9=
;K2

h(x� cj):

Example 1. Figure 1 compares the classical frequency polygon with the

optimal generalized histogram estimator corresponding to m = 2, piecewise

linear. Two samples of size n = 100 were simulated. For the �rst one (upper

panel), data follow a standard normal distribution, and the length was h = :8.

The model used in the second case (lower panel) is a mixture of normal data:

Xi � :6N(0; 1) + :4N(3; �2 = :64);

and h = 1:2.

3.2 Optimal estimation for an arbitrary m

Theorem 1 translates the minimization of �(w) to the solution of the system

(4), that can be written as a di�erence equation of order (2m � 2) with

constant coe�cients:

�m(m� 1)wk�m+1 + � � � �m(1)wk�1 + �m(0)wk+

�m(1)wk+1 + � � � �m(m� 1)wk+m�1 = hf̂K(cj); 8k 2 Z:

Let Pm be the characteristic polynomial of this equation:

Pm(w) = pm�1 + pm�2w + � � �+ p0w
m�1 + � � �+ pm�2w

2m�3 + pm�1w
2m�2;

where pk = �m(k) for k = 0; : : : ; m � 1. Some properties of Pm can be

easily derived from Proposition 1, for instance: pk � pk�1; k = 1; : : : ; m �
1, Pm(1) = 1, the real roots of Pm are negative, and if v is a real root

of Pm then 1=v is also a root of Pm. A numerical study developed with

Mathematica (some of its results are summarized in Table 2) shows that

all roots of Pm are real and di�erent form = 2; : : : ; 43, and that some complex

roots appear for m � 44. Apparently, these complex roots do not seem to

arise due to numerical instability. In practice, only small values of m will

be used; therefore, the assumption of real and di�erent roots for Pm is not

restrictive. The following result gives the solutions of the equations (6) under

such condition.
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0.25

0.3
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0.45

0.5

 N(0,1), n=100

Frequency polygon and the new estimator for m=1.

-4 -2 0 2 4 6
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0.15
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.6 * N(0,1) + .4 * N(3,.8^2); n= 100

Frequency polygon and the new estimator for m=1.

Figure 1: Frequency polygon (dashed line) and the new estimator for m = 2

(solid line). The true density is represented by a dotted curve.
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m Absolute value of some roots of Pm
2 .2679

3 .4306 .0431

4 .5353 .1226 .9149 E-2

5 .6080 .2018 .4322 E-1 .2121 E-2

6 .6613 .2722 .8976 E-1 .1667 E-1 .5106 E-3

7 .7019 .3331 .1389 .4321 E-1 .6738 E-2 .1251 E-3

8 .7339 .3856 .1865 .7591 E-1 .2175 E-1 .2801 E-2 .3094 E-4

9 .7597 .4309 .2311 .1108 .4321 E-1 .1126 E-1 .1186 E-2 .7688 E-5

Table 2: Absolute value of the roots of Pm polynomials for some values of

m. Only absolute values of roots v 2 (�1; 0) are shown.

Proposition 2 Let us assume that Pm has real roots with multiplicity one.

Let us call v1; : : : ; vm�1 the roots belonging to (�1; 0). De�ne the sequences

w(j) with w
(j)
k = v

jkj
j ; k 2 Z. Let e0 be the sequence in l2 having e0k = 0 for

k 6= 0 and e00 = 1. Consider the di�erence equation associated to the modi�ed

version of system (4)

Mw = e0:

Then, this equation has a unique solution � in l2, that have the form

� =
m�1X
j=1

�jw
(j);

where the real numbers �j, j = 1; : : : ; m�1, are the solutions to the (2m�1)

linear system8<
:
Pm�1

l=�m+1

�
�(jlj)Pm�1

j=1 �jv
jlj
j

�
= 1;Pm�1

l=�m+1

�
�(jlj)Pm�1

j=1 �jv
jk+lj
j

�
= 0; k = �m + 2; : : : ;�1; 1; : : : ; m� 2

Consequently, the linear operator characterized by the in�nite matrix M

is invertible and, therefore, the system (4) has a unique solution.

Proposition 3 Let us assume that Pm has all its roots real with multiplicity

one. Consider kernel K = Km. Let M : l2 �! l2 be the linear operator

characterized by the in�nite symmetric Toeplitz banded matrix M de�ned in

Theorem 1.

(i) There exists a linear operator N : l2 �! l2 such that both M � N and

N �M are equal to the identity operator on l2. Denote N by M�1. The

operator M�1 is given by an in�nite symmetric Toeplitz matrix, say

M�1, with generic row (and column) � de�ned in Proposition 2. The

sequence � 2 l2 and the sum of its elements is equal to one.
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(ii) Let �j be the sequence �
j
k = �k�j. The vector

ŵ = hM�1 �Kh(X1; : : : ; Xn; c) = h
X
j2Z

f̂(cj)�
j

is the unique solution in l2 to the system (4). The sum of the elements

of this optimal sequence, ŵ, is equal to one.

(iii) The optimal density estimator,

f̂mŵ (x) = ŵTKm
h (x; c);

can be written as

f̂mŵ (x) = l(x)T �Kh(X1; : : : ; Xn; c); (7)

a linear combination of kernel density estimation at points cj with co-

e�cient vector given by

l(x) = hM�1Km
h (x; c): (8)

Example 1 (cont.). Figure 2 completes the Figure 1 illustrating the

behaviour of optimal generalized histogram estimators corresponding for

m = 1; 2; 3.

4 Asymptotic Behaviour

The next result gives the asymptotic properties of the optimal generalized

histogram density estimators.

Theorem 2 Assume that the density function f has an absolutely continu-

ous m-th derivative f (m). The mean integrate squared error of the estimator

f̂mŵ is

MISE(f̂mŵ ) =
1

nh
+

h2m

(m!)2
S2
M(Km)R(f (m)) +O

�
1

n

�
+ o

�
h2m

�
;

where S2
M(Km) =

R :5
�:5 S

2
m(t)dt; Sm(t) =

R
Km(t; Z)TM�1Km(u; Z)(u�t)mdu,

Km(t; Z) is the sequence with generic term Km(t � k); k 2 Z, and R(g) =R
g(y)2dy.
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Generalized histogram estimators. m=0,1,2

-4 -2 0 2 4 6
0

0.05

0.1
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0.2

0.25

.6 * N(0,1) + .4 * N(3,.8^2); n= 100

Generalized histogram estimators. m=0,1,2

Figure 2: Optimal generalized histogram estimators for m equal to 1 (his-

togram), 2 (polygonal line) and 3 (solid line). The true density is represented

by a dotted curve.
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The minimizer of asymptotic MISE, AMISE, is

hm =

 
(m!)2

2mS2
M(Km)R(f (m))

! 1

2m+1

n�
1

2m+1 = ch;m(R(f
(m))n)�

1

2m+1 ;

and the minimal AMISE, AMISEm is

2m+ 1

2m

 
2mS2

M (Km)R(f (m))

(m!)2

! 1

2m+1

n�
2m

2m+1 = cA;mR(f
(m))

1

2m+1n�
2m

2m+1 :

Table 3 shows the values of S2
M(Km) and the constant multiplicative fac-

tors, depending on m, for the optimal bandwidth hm and the minimum

AMISEm. In the same table, the constants for AMISEm are compared

with that of some known estimators with the same rate of convergence: the

frequency polygon (FP) and the Epanechnikov kernel estimator (EpK) for

m = 2, and the order 4 polynomial kernel (PK4) for m = 4 (see Scott, 1992,

p. 134). Based on these asymptotic results, and as expected, the optimal

generalized frequency polygon, f̂ 2
ŵ, performs better than the FP estimator,

and very similar to EpK estimator. Also, the optimal generalized histogram

estimator for m = 4 behaves better than the PK4 estimator.

The values in Table 3 allow quick and simple rules for selecting the band-

width replacing f by a reference density. For instance, using the gaus-

sian density as reference we obtain the results in Table 4; in this case,

hm = c
�
h;m�n

�1=(2m+1) and AMISEm = c
�
A;m�

�1n�2m=(2m+1).

Let us note that, arguing as Jones et al. (1998) do in relation with the

practice of their edge frequency polygon, we could use methods of bandwidth

selection in kernel density estimation for selecting the length h of the optimal

generalized histograms. For instance, the constants appearing in Table 3 indi-

cate that, form = 2, we may take a length equal to (2:8832=1:7188) = 1:6774

times the bandwidth we would use for the Epanechnikov kernel estimator.

5 Some simulation results and conclusions

We study the behaviour of the optimal generalized histograms for �nite sam-

ples and their agreement with the asymptotic properties studied above. A

Fortran-90 program was written for this purpose.

Samples were generated from two populations: the standard normal, and

the mixture of normal populations used in previous examples: N(0; 1) with

probability :6 and N(3; �2 = :64) with probability :4. For each of them,

samples of sizes n = 50, 200 and 1000 were taken. We consider the seven

estimators included in Tables 3 and 4: optimal generalized histograms for

14



m S2
M(Km) ch;m cA;m

1 .08333 1.8171 .8255

2 .005556 2.8252 .4424

3 .001192 3.3794 .3452

4 .0006136 3.6582 .3075

Constants for some comparable estimators

FP 1.5784 .5280

EpK 1.7188 .4364

PK4 3.2431 .4501

Table 3: S2
M(Km) and constants giving hm and AMISEm for m = 1; 2; 3; 4.

Constants for some comparable estimators when m = 2 (FP and EpK) or

m = 4 (PK4).

m c
�
h c

�
A

1 3.4908 .4297

2 3.8545 .3243

3 3.7013 .3152

4 3.4163 .3293

Constants for some comparable estimators

FP 2.15 .387

EpK 2.35 .320

PK4 3.03 .482

Table 4: Constants giving hm and AMISEm in the N(�; �) case. Constants

for some comparable estimators when m = 2 (FP and EpK) or m = 4 (PK4).
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m = 1; 2; 3; 4, noted by GH(m), frequency polygon (FP), Epanechnikov ker-

nel estimator (EpK) and the order 4 polynomial kernel (PK4). The density

function is estimated in a grid of 400 equispaced points covering the interval

[�4; 4] for the standard normal and [�3; 5] for the mixture case. For each

combination of population and sample size, 2000 simulations were done. Nu-

merical integration based on Simpson's method was used to compute MISEs

values.

Bandwidth parameters h are determined by the normal reference rule,

using the values of constant c
�
h shown in Table 4. This is the asymptotic

optimal choice for the normal case. Nevertheless, as could be expected, this

rule leads to oversmoothing when data are generated from the mixture of

normals population. Therefore, for non normal simulated data we use also

the ad hoc rule: choose h as 1=2 times the quantity given by the normal

reference rule.

The values of the mean integrated squared error (MISE) are shown in

Table 5. The proportion of MISE due to the integrated squared bias (the rest

is due to the integrated variance) is indicated in brackets. This information

is useful for detecting oversmoothing.

We start our comments by the rows of Table 5 relative to standard normal

data. The generalized version GH(2) of the frequency polygon gives always

better results than the classical version FP. For n = 200 and 1000, the EpK

estimator beats slightly to GH(2), as it happens asymptotically (see Table

4). The performances of GH(4) and PK4 also agree with the asymptotic

results: GH(4) gives lower MISEs values than PK4. On the other hand,

GH(3) performs better than EpK and PK4. Asymptotic results do not allow

to compare these three estimators.

The second set of rows in Table 5 corresponds to the mixture population

and the choice of bandwidth based on the normal reference rule. In these

cases classical estimators are in general preferred to optimal generalized his-

tograms, specially for n = 1000. If we look at proportions of MISE due to

estimators bias, we deduce that oversmoothing occurs in all the estimators,

being more important for GE(m), m = 2; 3; 4. Therefore we conclude, as

should be expected, that the normal reference rule for choosing the band-

width h is not appropriate for mixture populations.

In order to reduce oversmoothing, we implemented the above ad hoc rule.

The results of this procedure form the last part of Table 5. All the estimators

perform better now than they previously did. The MISEs values for GH(3)

(even for m = 3; 4) are now comparable with other estimators.

As a general conclusion, we point out three positive aspects of gener-

alized histograms. Firstly, their asymptotic properties overcome those of

histograms and some other known density estimators. Secondly, they are
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Population GH(m) FP EpK PK4

and h choice n m = 1 m = 2 m = 3 m = 4 (m = 2) (m = 2) (m = 4)

50 .0261 .0070 .0045 .0055 .0119 .0092 .0088

(.16) (.18) (.08) (.27) (.18) (.21) (.05)

N(0; 1) 200 .0111 .0036 .0015 .0017 .0042 .0033 .0027

(.18) (.35) (.03) (.23) (.20) (.22) (.07)

h = c
�
hn

�1=(2m+1) 1000 .0041 .0012 .0006 .0003 .0013 .0010 .0007

(.20) (.35) (.33) (.02) (.22) (.24) (.09)

50 .0320 .0252 .0325 .0326 .0234 .0296 .0284

(.94) (.99) (.99) (.99) (.98) (.99) (.99)

:6N(0; 1) + :4N(3; :82) 200 .0158 .0201 .0150 .0170 .0136 .0128 .0172

�2 = 3:016 (.80) (.97) (.99) (.99) (.92) (.94) (.96)

h = c
�
h�n

�1=(2m+1) 1000 .0035 .0079 .0147 .0162 .0022 .0019 .0032

(.41) (.94) (.98) (.99) (.74) (.77) (.88)

50 .0247 .0151 .0147 .0145 .0136 .0110 .0120

(.05) (.37) (.51) (.55) (.08) (.10) (.03)

:6N(0; 1) + :4N(3; :82) 200 .0100 .0047 .0069 .0073 .0047 .0037 .0035

�2 = 3:016 (.06) (.25) (.65) (.71) (.09) (.10) (.03)

h = :5c
�
h�n

�1=(2m+1) 1000 .0036 .0013 .0016 .0028 .0014 .0011 .0009

(.07) (.17) (.56) (.80) (.09) (.10) (.04)

Table 5: Simulation results. MISE values for seven density estimators and

some combinations of populations and sample sizes. Proportion of MISE due

to bias is given in brackets.

less computationally demanding than kernel estimators, as equation 3 indi-

cates and simulations con�rm. Finally, optimal generalized histograms seem

to give very good results in practice, when h is appropriately chosen.

Future work should be addressed in bandwidth selection other than the

normal reference rule. In this regard, the solution pointed out at the end

of Section 4, taken from a proposal by Jones et al. (1998), and based on

adapting with known constants any reasonable bandwidth selector in kernel

density estimation, could be a good practical solution.
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Appendix: Proofs

We begin this section recalling two results on kernels Km. The �rst lemma

(see e.g. Feller, 1971, p. 28) gives an explicit expression for Km, and the

second one (see e.g. Schumaker, Secs. 4.3-4.4) establishes the properties of

the family of splines derived from Km.

Lemma 1 The function Km is given by

Km(x) =
1

(m� 1)!

[x+m
2
]X

j=0

 
m

j

!
(�1)j

�
x +

m

2
� j

�m�1

I[�m=2;m=2](x):

Lemma 2 The set fKm
h (x � cj) = (1=h)Km((x � cj)=h); j 2 Zg is a ba-

sis of the space of piecewise polynomial functions with (m � 1) continuous

derivatives (splines) having knots at points fcjgj.

Theorem 1: Noting f̂w(x) = wTKh(x; c), we haveZ
f̂ 2
w(x)dx =

Z
wTKh(x; c)K

T

h (x; c)wdx = wTA(c)w;

where A(c) = fak;l(c)gk;l2Z 2 IRZ�Z, and

ak;l(c) =
1

h2

Z
K

�
x� ck

h

�
K

�
x� cl

h

�
dx =

1

h

Z
K(u)K (u� (l � k))) du:

Thus, the elements ak;l(c) of matrix A(c) only depend on kernel K and are

equal to h�1�k;l = h�1�(jk � lj), where �(s) is given by (5). Recalling the

de�nition of M , we have that

Z
f̂ 2
w(x)dx =

1

h
wTMw:

Since,

1

n

nX
i=1

f̂w(Xi) =
1

n

nX
i=1

wTKh(Xi; c) = wT �Kh(X1; : : : ; Xn; c);

where �Kh(X1; : : : ; Xn; c) is the sequence with j-th term equal to (
Pn

i=1Kh(Xi�
cj))=n, j 2 Z, we have

�(w) =
1

h
wTMw � 2wT �Kh(X1; : : : ; Xn; c):
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Observe that for any pair of weight sequences w and wo,

�(w) = �(wo + (w � wo)) =

�(wo) +
1

h
(w � wo)

TM(w � wo)�
2

h
(w � wo)

T(h �Kh(X1; : : : ; Xn; c)�Mwo):

Hence, for any solution w0 to (4), we conclude �(wo) � �(w) for all w. 2

Proposition 1: The �rst part follows directly from Lemma 1, and from

the fact that �m(x) is the convolution of two densities Km, so �m(x) equals

K2m(x), the density function of the sum of 2m independents U([�:5; :5]).
Let fX be now the density of a continuous distribution with compact

support. The density, fY , of the convolution of this distribution with the

U([�:5; :5]) is

fY (y) =

Z :5

�:5
fX(y � u)du =

Z y+:5

y�:5
fX(x)dx;

then X
j2Z

fY (j) =
X
j2Z

Z j+:5

j�:5
fX(x)dx =

Z
fX(x)dx = 1; (9)

proving the second part. 2

Proposition 2: The system Mw = e0 is equivalent to the di�erence equa-

tion
m�1X

l=�m+1

�(jlj)wk+l = �0(k); k 2 Z; (10)

where �0(k) is 0 for k 6= 0 and �0(0) = 1.

First we will prove that there exists a solution of (10), and then we will

deal with uniqueness. Consider the sequence

� =
m�1X
j=1

�jw
(j):

For any coe�cients �j, � veri�es (10) for k � m� 1 because for these values

of k, � is a linear combination of sequences fvkj gk, and the standard di�erence
equation theory assures that these sequences solve the equation

m�1X
l=�m+1

�(jlj)wk+l = 0; k 2 Z:

Similarly, � veri�es (10) for k � �m+1 and any choice of �j, j = 1; : : : ; m�1.
So, we only need to prove that the (2m+ 1) linear system

m�1X
l=�m+1

8<
:�(jlj)

m�1X
j=1

�jv
jk+lj
j

9=
; = �0(k); k = �m + 2; : : : ;�1; 0; 1; : : : ; m� 2;

19



has a unique solution (�1; : : : ; �m�1). Observe that the equation correspond-

ing to k 2 f1; : : : ; m�1g coincides with that corresponding to �k, because of
the symmetry of �. So we have in fact a linear system with (m�1) unknowns

and (m� 1) equations. Let A be the coe�cients matrix:

A =

0
BB@

Pm�1
l=�m+1 �(jlj)vjlj1 : : :

Pm�1
l=�m+1 �(jlj)vjljm�1

...
. . .

...Pm�1
l=�m+1 �(jlj)vjm+l�2j

1 : : :
Pm�1

l=�m+1 �(jlj)vjm+l�2j
m�1

1
CCA :

We know that

bij =
m�1X

l=�m+1

�(jlj)vl+ij = 0; i = 0; : : : ; m� 2; j = 1; : : :m� 1;

by standard di�erence equations results. So B = (bij) is the null (m � 1)�
(m� 1) matrix and, writing A = A�B, we have

A =

0
BBBBBBBB@

Pm�1
l=1 �(l)

�
vm�l1 � 1

vm�l
1

�
: : :

Pm�1
l=1 �(l)

�
vm�lm�1 � 1

vm�lm�1

�
...

. . .
...Pm�1

l=m�2 �(l)

�
vm�l1 � 1

vm�l
1

�
: : :

Pm�1
l=m�2 �(l)

�
vm�lm�1 � 1

vm�lm�1

�
�(m� 1)

�
v1 � 1

v1

�
: : : �(m� 1)

�
vm�1 � 1

vm�1

�

1
CCCCCCCCA
:

A is non singular if and only if matrix ~Am is also non singular, where ~Am is

obtained subtracting to each row the preceding one, dividing the resulting

j-th row by �(j), j = 1; : : : ; m� 1, and reversing the order of rows; that is,

~Am =

0
BBB@

v1 � 1
v1

: : : vm�1 � 1
vm�1

...
. . .

...

vm�1
1 � 1

vm�1
1

: : : vm�1
m�1 � 1

vm�1m�1

1
CCCA

Let dm be the determinant of ~Am. We will prove that

dm =
m�1Y
j=1

 
vj �

1

vj

!
�

m�1Y
i;j=1;i>j

 
vi +

1

vi
� vj �

1

vj

!
; (11)

for all m � 2, by induction on m. It is easy to check the proposed expression

for m = 2 and m = 3. Let us assume that it is also true for ~Am. Note that 
vlk �

1

vlk

!
=

 
vl�1
k � 1

vl�1
k

!�
vk +

1

vk

�
+

 
vl�2
k � 1

vl�2
k

!

20



for all l � 2. So

 
vlk �

1

vlk

!
�
( 

vl�1
k � 1

vl�1
k

!�
v1 +

1

v1

�
+

 
vl�2
k � 1

vl�2
k

!)
=

 
vl�1
k � 1

vl�1
k

!�
vk +

1

vk
� v1 �

1

v1

�

We transform ~Am as follows: for k = m� 1; : : : ; 3, we add to the row k the
row (k � 1) multiplied by �(v1 + 1=v1), plus the row (k � 2) multiplied by
�1; we also subtract the �rst row to the second one. Thus, dm is equal to

det

0
BBBBBB@

v1 �
1
v1

v2 �
1
v2

: : : vm�1 �
1

vm�1

0

�
v2 �

1
v2

��
v2 +

1
v2
� v1 �

1
v1

�
: : :

�
vm�1 �

1
vm�1

��
vm�1 +

1
vm�1

� v1 �
1
v1

�
...

...
. . .

...

0

�
vm�22 �

1

vm�2
2

��
v2 +

1
v2
� v1 �

1
v1

�
: : :

�
vm�2m�1 �

1

vm�2
m�1

��
vm�1 +

1
vm�1

� v1 �
1
v1

�

1
CCCCCCA

=

�
v1 �

1

v1

�m�1Y
j=2

 
vj +

1

vj
� v1 �

1

v1

!
�

det

0
BBB@

v2 � 1
v2

: : : vm�1 � 1
vm�1

...
. . .

...

vm�1
2 � 1

vm�1
2

: : : vm�1
m�1 � 1

vm�1m�1

1
CCCA =

(by the induction hypothesis)

�
v1 �

1

v1

�m�1Y
j=2

 
vj +

1

vj
� v1 �

1

v1

!
�
m�1Y
j=2

 
vj �

1

vj

!
�

m�1Y
i;j=2;i>j

 
vi +

1

vi
� vj �

1

vj

!
=

m�1Y
j=1

 
vj �

1

vj

!
�

m�1Y
i;j=1;i>j

 
vi +

1

vi
� vj �

1

vj

!
;

proving (11). So we conclude that matrix A has rank equal to (m�1) because
dm is di�erent from 0 if and only if all the roots of Pm are di�erent. Then,

the sequence � is uniquely determined.

Finally, we will show that � is the only sequence in l2 that solves the

di�erence equation (10). Observe �rst that solutions of the homogeneous

version of (10) are not in l2, because they should be linear combinations

of fvkj gk2Z, that are not in l2. Moreover, if ~� is another sequence in l2

solving (10), the sequence  = � � ~� belongs to l2 and it is a solution of the

homogeneous di�erence equation, so  is a linear combination of sequences
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fvkj gk2Z. Therefore,  = 0 and ~� = �, what proves the uniqueness of �. 2

Proposition 3: The former parts of (i) follow directly from Proposition

2, de�ning the in�nite matrix N as that having the 0-th column equal to �

and the column j equal to � shifted j positions, for all j 2 Z. Observe also

that ��k = �k, because the de�nition of �k only depends on jkj. Then N is a

Toeplitz symmetric matrix. Also, Proposition 2 implies � 2 l2. To see thatP
j2Z �j = 1, we have to de�ne some new elements. For h 2 Z, let 1[h] be

the sequence in l2 having elements equal to 1 in positions �jhj; : : : ; jhj, and
equal to 0 otherwise, and let 1fhg be the sequence that has a one in position

h and zeros otherwise. Let be Sh = �T1[h]. Our goal is to prove that

lim
h!1

Sh = 1:

Observe that, for h � 0,

M1[h+m�1] = 1[h] +
m�1X
j=1

jX
l=1

�(l)
�
If�h�lg + Ifh+lg

�
:

Multiplying both sides by N , and equalling the element at position 0 of the

obtained sequences, we have

1 = Sh +
m�1X
j=1

jX
l=1

2�(l)�h+l:

Therefore,

jSh � 1j �
m�1X
j=1

jX
l=1

2�(l)j�h+lj �

(because �(l) � 1)

� (m� 1)m max
l=h;:::;h+m�1

j�h+lj � (m� 1)mmax
l�h

j�h+lj

and this last expression goes to zero as h goes to in�nity because � belongs

to l2, so j�hj converges to zero.

The �rst part of (ii) is the result of applying operator N = M�1 to

both sides of (4). Note that only a �nite number of cj have kernel density

estimation f̂K(cj) di�erent from 0 because the used kernel K = Km has

compact support. Then, the resulting sequence ŵ is well de�ned and belongs

to l2. To prove the last part, observe thatX
j2Z

ŵj = h
X
j2Z

X
l2ZS

�j;j�lf̂K(cl�j) =
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(the sum on l is over a �nite subset of Z denoted by ZS)

h
X
l2ZS

f̂K(cl)
X
j2Z

�j;l = h
X
l2ZS

f̂K(cl) =

h
1

nh

X
l2ZS

nX
i=1

K

�
cl �Xi

h

�
=

1

n

nX
i=1

X
l2ZS

K(l);

and, recalling (9), this is equal to

1

n

nX
i=1

1 = 1:

Finally, (iii) follows directly. 2

Theorem 2: The proof of this result is divided into two parts, the �rst one

refers to the estimator bias, and the second one deals with the variance.

Estimator bias.

For simplicity, we write K instead of Km. From (7),

E(f̂ŵ(y)) = l(y)TE( �Kh(X1; : : : ; Xn; c)) = l(y)T
Z
Kh(z; c)f(z)dz;

where
R
Kh(z; c)f(z)dz is the element in IRZ with j-th term equal to

Z
1

h
K

�
z � cj

h

�
f(z)dz:

Firstly, we prove that the new estimator is unbiased when the density is

a piecewise polynomial function with degree lower than or equal to (m� 1).

Let g be that polynomial. By Lemma 2, there exist �k 2 IR, k 2 Z, such that

g(z) =
X
k

�kKh(z � ck) = �TKh(z; c);

and, therefore, recalling the de�nition of l(y) in equation (8),

E(ĝw(y)) = l(y)T
Z
Kh(z; c)g(z)dz = l(y)T

Z
Kh(z; c)Kh(z; c)

T�dz =

=
1

h
l(y)TM� = (Kh(y; c))

T� = g(y):

As we have, for all z 2 IR,

f(z) = f(y) + (z � y)f (1)(y) + : : :+ f (m�1)(y)
(z � y)m�1

(m� 1)!
+
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f (m)(y)
(z � y)m

m!
+ o((z � y)m);

the preceding result gives

Bias(f̂ŵ(y)) = E(f̂ŵ(y))� f(y) =

l(y)T
Z
Kh(z; c)

 
f (m)(y)

(z � y)m

m!
+ o((z � y)m)

!
dz =

h
f (m)(y)

m!
(Kh(y; c))

TM�1
Z
Kh(z; c)(z � y)mdz+

l(y)T
Z
Kh(z; c)o((z � y)m)dz: (12)

Let us assume that y 2 Bl and put t = (y � cl)=h 2 [�:5; :5). For an

arbitrary cj we have that y � cj = y � cl � (cj � cl) = ht � h(j � l), and

then (y� cj)=h = t� (j� l). So the generic element of sequence hKh(y; c) is

K(t� (j � l)) = K((t+ l)� j), j 2 Z, and, substituting u = (z � cl)=h, the

�rst adding term in (12) is

f (m)(y)

m!
(K(t+ l;Z))TM�1

Z
Kh(z; c)(z � y)mdz =

hm
f (m)(y)

m!

Z
(K(t+ l;Z))TM�1K(u+ l;Z)(u� t)mdu =

hm
f (m)(y)

m!

Z
(K(t;Z))TM�1K(u;Z)(u� t)mdu = hm

f (m)(y)

m!
Sm(t);

the second equality follows from the fact that N = M�1 is a Toeplitz matrix:

Ni;j = Ni�l;j�l. The second adding term in (12) is trivially o(hm), so we have

for y 2 Bl,

Bias(f̂ŵ(y)) = hm
f (m)(y)

m!
Sm

�
y � cl

h

�
+ o(hm):

Writing g for (f (m))2, we have thatZ
Bl

(f (m)(y))2S2
m

�
y � cl

h

�
dy = h

Z :5

�:5
g(cl + ht)S2

m(t)dt =

h

Z :5

�:5
g(cl)S

2
m(t)dt+h

Z :5

�:5
h t g(1)(�(t))S2

m(t)dt = h

Z :5

�:5
g(cl)S

2
m(t)dt+O(h2);

being �(t) an intermediate point between cl and cl + ht, and being the term

O(h2) independent of l. Therefore,

Z
Bl

(Bias(f̂ŵ(y)))
2dy =

h2m

(m!)2
hg(cl)

Z :5

�:5
S2
m(t)dt+ o(h2m):
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Recalling the notation used in Theorem 2, we have

Z
IR
(Bias(f̂ŵ(y)))

2dy =
h2m

(m!)2
S2
M(K)

X
l

hg(cl) + o(h2m) =

h2m

(m!)2
S2
M(K)

�Z
g(y)dy +O(h)

�
+ o(h2m) =

h2m

(m!)2
S2
M(K)

Z
(f (m)(y))2dy + o(h2m) =

h2m

(m!)2
S2
M(K)R(f (m)(y)) + o(h2m):

(13)

Estimator variance.

According to (7), the random component in f̂ŵ(y) is given by the sequence
�Kh(X1; : : : ; Xn; c). We �rstly consider its covariance structure. Let

Vjj = Var

 
1

nh

nX
i=1

K

�
Xi � cj

h

�!
=

1

nh2
Var

�
K

�
Xi � cj

h

��
:

We have

Z
K

�
z � cj

h

�2

f(z)dz =

Z cj+
mh
2

cj�
mh
2

K

�
z � cj

h

�2

f(z)dz =

Z mh
2

�mh
2

K

�
t

h

�2

f(t+ cj)dt =

Z mh
2

�mh
2

K

�
t

h

�2

(f(cj) + tf (1)(�j(t)))dt =

Z mh
2

�mh
2

K

�
t

h

�2

f(cj)dt+O(h2) = hf(cj)

Z
K(u)2du+O(h2):

Also

�Z
K

�
z � cj

h

�
f(z)dz

�2
=

�
hf(cj)

Z
K(u)du+O(h2)

�2
= O(h2);

and we obtain

Vjj =
1

nh

�
f(cj)

Z
K(u)2du

�
+O

�
1

n

�
: (14)

Consider now

Vjk = Cov

 
1

nh

X
i

K

�
Xi � cj

h

�
;
1

nh

X
i

K

�
Xi � ck

h

�!
=

1

nh2
Cov

�
K

�
Xi � cj

h

�
; K

�
Xi � ck

h

��
:
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Since

E

�
K

�
Xi � ck

h

��
=

Z
K

�
z � ck

h

�
f(z)dz = O(h);

it follows that

Cov

�
K

�
Xi � cj

h

�
; K

�
Xi � ck

h

��
=

Z
K

�
z � cj

h

�
K

�
z � ck

h

�
f(z)dz +O(h2) =

h

Z
K(u)K(u+ (j � k))f(cj + uh)du+O(h2) = hf(cj)�k�j +O(h2):

Therefore

Vjk =
1

nh
f(cj)�k�j +O

�
1

n

�
: (15)

Observe that this covariance term can be also written as

1

nh
f(ck)�j�k +O

�
1

n

�
;

because ck = cj + h(k � j) and then

f(ck) = f(cj) + h(k � j)f (1)(�jk) = f(cj) +O(h):

From (14) and (15) we obtain that

V( �Kh(X1; : : : ; Xn; c)) =
1

nh
DM +O

�
1

n

�
;

where D is the in�nite dimensional square diagonal matrix with j-th diagonal

term equal to f(cj), j 2 Z. Recalling (7), we have that

Var
�
f̂ŵ(y)

�
= h2Kh(y; c)

TM�1

�
1

nh
DM +O

�
1

n

��
M�1Kh(y; c) =

h

n
Kh(y; c)

TM�1DKh(y; c) + h2Kh(y; c)
TM�1O

�
1

n

�
M�1Kh(y; c);

that are terms with order 1=(nh) and 1=n, respectively. Therefore,

Var
�
f̂ŵ(y)

�
=

h

n
tr
�
Kh(y; c)Kh(y; c)

TM�1D
�
+

h2tr

�
Kh(y; c)Kh(y; c)

TM�1O

�
1

n

�
M�1

�
;

where tr(A) is the trace of matrix A. Since

M =

Z
hKh(y; c)Kh(y; c)

Tdy = O

�
1

h

�
;

26



it follows thatZ
Var

�
f̂ŵ(y)

�
dy =

1

n
tr(D) + htr

�
O

�
1

n

�
M�1

�
=

1

n
tr(D) +O

�
1

n

�
=

1

nh
tr(hD) +O

�
1

n

�
=

1

nh

0
@X

j

f(cj)h

1
A+O

�
1

n

�
=

1

nh

�Z
f(z)dz +O(h)

�
+O

�
1

n

�
=

1

nh
+O

�
1

n

�
: (16)

Finally, from (13) and (16), we conclude

MISE
�
f̂ŵ
�
=

1

nh
+

h2m

(m!)2
S2
m(K)R(f (m)) +O

�
1

n

�
+ o(h2m):

2
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