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Abstract

Since the actual solution to intertemporal rational expectations models
is usually not known, it is useful to have criteria for judging the accuracy
of a given numerical solution. In this paper we propose a test for accuracy
that is easy to implement and can be applied to a wide class of models without
knowledge of the exact solution. We discuss the power of the test by simulating
several models with the linear-quadratic approximation and with the method
of parameterized expectations. We conclude that the test i powerful.




1. Introduction

Because of the difficulty in finding analytic solutions to stochastic
dynamic models with rational expectations, it is becoming more and more
common to resort to numerical methods for solving these models. Recent
applications to economics are reviewed in Marcet (1993). Different
simulation methods are based on different types of approximation and,

therefore, they are subject to approximation error.

Some procedures can, in principle, approximate the solution
arbitrarily well. These include procedures that i) convert continuous
variables into a discrete ones by use of a grid, for example, the
procedures used by Miller (1984), Rust (1987), Tauchen (1986), and Wolpin
(1984), and ii) methods that approximate some unknown function with
flexible functional forms of finite elements (for example polynomials or
linear interpolation), such as in the methods discussed in Coleman (1991),
Marcet (1988) and Judd (1989). Methods of type i) can get an arbitrarily
accurate solution by refining the grid, and methods of type ii) can get an
accurate solution as the number of elements in the function (e.g., the
degree of the polynomial) goes to infinity. Nevertheless, computing costs
often hold the approximation to a level that has no guarantee of being the

‘correct’ one.

The issue of accuracy is even more important in methods where the
solution can not be refined. For example, the backwards solution procedure
of Sims (1989), Ingram (1990) and Novales (1991); the extended path method
of Fair and Taylor (1983) and the linear quadratic approximation used, for

example, by Kydland and Prescott (1982) and Christiano (1990).

In this paper we propose a test for the accuracy of a numerical
solution to a rational expectations model. Our test is very easy to
implement, it is computationally inexpensive, it can be performed without
knowledge of the true solution and it can be used by most solution
procedures. We will discuss the principle underlying the test, as well as
several ways of implementing it. Versions of the test-statistic proposed in
this paper are used in Taylor & Uhlig (1990) to compare solutions to the
simple growth model with alternative methods: their comparisons suggest

that those methods that passed the test also gave similar solutions.




The test presented here is powerful enough to discover inaccuracies in
several models. In fact, we will present cases where some important
characteristics of the solution are fairly accurate, but the accuracy test
still rejects the solution. In the case where the solution is rejected the
accuracy test can be used to determine which part of the solution is
inaccurate. For example, in Section 4.3 we discuss an example where the

real part of the model is accurate, but the monetary part is not.

Our test can be used as guidance for applying a given algorithm, when
we have to select functional forms, size of the grid, convergence
criterion, etc. For example, it can tell us if we should use a higher
degree polynomial. Or, for another example, it can help in choosing between
a linear-quadratic (LQ) and a log-linear-quadratic approximation (loglLQ) as
in Christiano (1990). Furthermore, when used in conjunction with the
parameterized expectations algorithm, the test indicates if some elements
of a higher order polynomial do not have to be introduced, thereby reducing

the cost of using high order polynomials.

The papers by Tauchen (1991), Danthine, Donaldson and Mehra :1991) and
Christiano (1990) evaluate the accuracy of a particular algorithm in
solving a particular model by comparing an approximate solution with an
’exact’ solution found by either analytic methods or by using a very fine
grid. This way of checking for accuracy is only indicative, since the
conclusion is model dependent. More importantly, in general we do not have
analytic solutions and we can not spend huge amounts of computing time only
to check for accuracy, so that we can not compare our solutions to an
’exact’ one. Our test can be applied without any knowledge of the exact

solution, and it can be applied in virtually all solution procedures.

In Section 2 we present the idea behind the test and discuss how it
can be implemented. In Section 3 we illustrate the properties of the
accuracy test with a simple example; we will see that the results of the
accuracy tests improve as the solution procedure becomes more precise. In
Section 4 it is shown, that the results of the accuracy tests indicate that
the logl.Q approximation is more accurate than the LQ solution, which is the
same result obtained by Christiano (1990) with a more expensive procedure

for testing accuracy. We also give an economic justification of the better




performance of loglQ in that model,by arguing that the restrictions imposed
by the logLQ approximation make more economic sense. In order to see how
the test would help in comparing solutions that can obtain arbitrary
accuracy with solutions that can not, we also compare the solutions

obtained by the parameterized expectations approachl versus LQ and loglLQ.

2. A Test for Accuracy

Consider an economic model where a set of variables z, completely
describes the economy at time t. Some of the elements in 2z can be
exogenous. In stochastic dynamic models with rational expectations, it is
often the case that the solution is stationary and ergodic, and that a

system of equations of the following type has to be satisfied:
(2.1 f(z) = El¢(z ,z ,...)IQt).

where, given the parameters of the model, f:R"™SR™  and qt":R"xRoo—>Rm are
known functions, and where E(x|y) represents the conditional expectation of
X given y. The information set Qt contains a subset of current and past
values of z,. Notice that we can accomodate models with suboptimal
equilibria, private information and inequality constraints. For many
stochastic dynamic models one can guarantee that if certain side conditions
are satisfied (such as transversality conditions or time invariant

solutions), then, (2.1) determines the solution uniquely.

If the above equation is satisfied, then the residual

(2.2) u = ¢z ,z ,...) - f(z)
t+1 t+l t+2 t
satisfies
(2.3) E{u eh{x )}=0,
t+l t

for any k-dimensional vector X, that belongs to the information set Qt, and
any function h:R*5R%. The idea for the test is to see if equation (2.3) is
close to being satisfied for the simulated series (Et) obtained with a

certain numerical algorithm. (Throughout the paper we use the bar to denote

simulated series).




In general this is a challenging test, because most solution
procedures do not enforce (2.3)2. It is also a meaningful test because, if
we could check (2.3) for any function h(-), if (2.1) contained all the
equations that determine the solution of the model, and X, is a vector of
sufficient state varaibles, in effect we would have shown that our solution
is exact, since the conditional expectation is the only function having
this property. When equations (2.1) come from the maximization problem of
the agents, testing (2.3) can be interpreted as testing if the derivative

of the solution is zero along the directions given by the function h(+)°

The accuracy test consists of obtaining long simulations of the

process and calculating

T - -—
z u.,, © h(xt)
(2.3) BT = ,
T

where Gt and h(;ct) are calculated with the simulated Et, and checking if BT
is close to zero. Clearly, if the solution were exact BT converges to zero

almost surely as T goes to infinity.

Obviously, BT will neverr be exactly equal to zero because of sampling
error. The question that arises is how to decide whether BT is
significantly different from zero. We have to be careful because BT could
be made arbitrarily small by, for example, taking a function h(-} with
sufficiently small function values. One way of avoiding this problem is to
use the distribution of some test-statistic related to BT under the null
hypothesis that the solution is accurate. To be precise, we use TBT’A;lBT

as our test-statistic, where AT is some consistent estimate of the matrix

There are many choices for AT. The simplest case is when

¢(z ,z _,...) do depends only on z.. and m=l; then we can use

t+l t+2




Consistent estimators of S in more general cases are described in the GMM
w
literature; see, for example, Hansen (1982), Newey and West [1987] and

Christiano and den Haan (1993)4.

The test-statistic satisfies:

Proposition 1 If <zt) is stationary and ergodic, the numerical solution is

exact, S is finite and invertible, then
w

TBT’A_B —5 x as T 5 o

Proof

The process <ut®h(xt)) is a function of a stationary and ergodic
process, so it is itself stationary and ergodic. We have that
E(u o®h(x)l|z,z
t+l t T e
5.15 in White (1984) are satisfied, and

, ...)=0 and Sw<oo, so that all the conditions of theorem

T
™% B = 1TV Z u ehix) 25 NOS) asT o
T t+l t w

Given a positive semidefinite matrix M, we let M™% be some uniquely

determined decomposition satistying MY% MY= M' Since S is
w

. . . . -/ . .

invertible, the mapping f defined by f(M)=M 2 is  continuous at

- . - -1/2
S , and ATl/2 converges in probability to S s , so that
w w

TV? A;l/z BT —2—9 N(O,I). Since A;l/z BT is a gm-dimensional vector, the

proposition follows.

The above  proposition mimicks the test of  over-identifying
restrictions of Hansen [1982]. The proof is very similar and is offered
only for completeness. One important difference is that, in our case, the
parameters that generate the observations are known with certainty so that
there is no loss of degrees of freedom in the xz distribution due to the

number of estimated parameters.




This result suggests the following:

Accuracy test Obtain a large number of observations by simulating the

model for a realization of the exogenous process. If the value of TBTA;IB’T
. . 2 oL .
belongs to the lower or upper critical region of a x distribution, there
qm

is evidence against the accuracy of the solution.

Note that this test can be implemented without any knowledge of the
analytic form of the true solution, so it has wide applicability. Also
note that, for most solution procedures, simulating the model for a

realization of the exogenous process is computationally inexpensive and so
-1
T
possible that an accurate solution is rejected (Type 1 error) or an

is calculating T BT A B’T. As with any other test-statistic it is
inaccurate solution is not rejected (Type Il error). But, since the test
can be performed at such low costs, Type | error can be eliminated by
repeating it for different realizations of the exogenous process and
reporting the percentage in the upper and lower critical 5% of a sz
distribution. This to convince the reader that not rejecting t(}lle
null-hypothesis is not due to a lucky draw. For the solutions that we
tested we repeated the accuracy test 250 and 500 times and we found very

similar answers for both number of repetitions.

To implement the test the researcher has to choose the number of
observations (T) and the function h(-); these choices will be discussed
next. We know that any given numerical solution will fail the accuracy
test for sufficiently large T. The reason is that, since any numerical
solution is only an approximation, (2.3) is never exactly satisfied by the
simulated series, and the test-statistic will discover this if enough
observations are used. Therefore, the choice of T governs the stringency
of the test: the higher T the harder it is for a given solution to be
deemed accurate. One possible criticism to this test is that it makes no
sense to ask whether BT is close to zero, since we know that this will not
be true for T high enough, but this could be said of most accuracy criteria
used traditionally in numerical computations. For example, assume we have a
function F(x) and we find its fixed point x=F(x) numerically. The usual way
of checking if this fixed point is correct is by looking at the number of
digits that F(x) and X have in common, even though for a given x found

numerically, there is always a criterion stringent enough (a high enough



number of digits) that will deem X inaccurate.

Therefore, in our case, T can be interpreted as a measure of how
stringent the criterion is: if the solution passes the test even for a very
large T, this is evidence that the solution is very accurate. The user of
the accuracy test has to be careful to report the T that he used, just as a
researcher calculating a fixed point numerically should report the number
of digits of accuracy. In the next section we show that at least for the
growth model it is possible to come up with a solution that is so accurate
that the test passes even in enormous samples. If one wants to compare the
data generated with a numerical solution with an actual series, then we
suggest to choose T  substantially bigger than the length of the empirical
series; in this way, one can insure that the numerical error is small
compared with the inevitable sampling error contained in real data. In the
next sections we used 3000 observations, which is around 20 times as big as

a typical post-war series of quarterly data.

It is clear that h(-) can be chosen in an infinite number of ways. In
the examples we tried we found little sensitivity to this choice, but this
may be problem-specific. In principle we would want to choose h(-. in such
a way as to maximize the power of the test statistic. An idea from Lee,
White and Granger (1989) can be used to increase the power of the test
statistic; these authors develop a test for neglected nonlinearity in time
series models by choosing the dimension in which to test the null
hypothesis randomly. A simple example is the following: suppose that X
contains one element, e.g. the capital stock kt; letting ¢ be a random
variable, we can choose h(xt)=k§ (here, ¢ is a power). In the next few
sections we show that the test is already very powerful even in identifying
small inaccuracies, so we do not pursue this idea of randomizing h(-) in

the present paper.
Since the test is so powerful it is possible that a numerical solution
fails the accuracy test, even though some important characteristics of the

solution, like second moments, are accurately simulated.

Applying the Test to the Parameterized Expectations Method

The method of parameterized expectations, described in Marcet (1988)




and den Haan and Marcet (1990), substitutes the conditional expectation in

the right side of (2.1) by a particular function w(Br'St)‘ where S,
represents the state variables in the model. Here y , Br and s, are chosen
so that the function w(Br,-) is close to the conditional expectation in
(2.1). Among other things, this means that Br solves the following

minimization problem:

* T* - _ 2
(2.4) min (1/T ) Z [ oz ) - YiB,s) ] ,
B t+l t

where Et and gt are simulated by substituting the conditional expectation
in (2.1) with the parameterized expectation w(Br' gt). From the first order

conditions of (2.4) we have that

. -
(2.5) ! LR w(Bf'St)
T Ut+l - 0
B
by construction. Hence, for the particular choice h = 8 w(Br") / 8B, for

the particular realization used in finding Br' and for the particular
sample size T* (which need not be equal to T), the parameterized
expectations solution makes BT exactly equal to zero. The accuracy test
would always be in the lower tail (but never in the upper tail), and it

would always reject the solution obtained with this method.

Therefore, in order to use the accuracy tests on solutions obtained
with this method, we have to choose a function h that is different from
ay/aRB; also, in calculating the test statistics one should use a
realization of the stochastic exogenous shocks that is different from the

one used in calculating Br'

Finally, the accuracy test can be used for guidance as to what type of
function ¢ should be used in PEA. In this solution procedure, as in all
finite element procedures, arbitrary accuracy can be obtained, in
principle, by increasing the degree of the polynomials. In practice,
however, increasing the degree of the polynomial is costly, since higher
degree polynomials entail more terms and the number of coefficients
involved increases quite fast. For example, with three state variables,
going from a first degree to a second degree polynomial involves going from

a polynomial of four coefficients to one with ten coefficients, since all




Here, € is 1.i.d., has a N(O,(rz) distribution and k1 and 60 are given. A
list of variables is given at the end of Appendix 1. The parameter values

used are t=0.50, «=0.33, u=1.00, p=0.95 ¢=0.10 38=0.95 .

Three solutions to this model are obtained by parameterizing the

conditional expectation in the Euler equation. The solutions differ in the
order of the polynomial used for the parameterization. Details are given
in Appendix 1. The prediction error corresponding to the first-order

condition of capital is given by
(3.3) u = 8c ' (ak ] +u)-c;T

this equation will play the role of (2.2) in the accuracy tests. For all

three solutions the growth model is simulated 500 times with 3000

observations. We use as instruments hi(x)={l,k .,k ,k ,0.,8 ,0 |, so
2 t t t-1 t-2 t t-1 t-2

that the test statistic has a X, distribution. In Table 3.1 we report the

percentage of draws that are in the lower and upper 5% tails.

10




Table 3.1. Accuracy of the growth model (T = 3000)

lower 57% upper 57%
Ist-order polynomial 0.6% 29.6%
2nd-order polynomial 4 . 8% 6.47%
3rd-order polynomial 4.6% 5.6%

We see that the Ist-order parameterization is clearly inaccurate,
since too many times the test statistic is higher than the critical 95%
value and it is not lower than the critical 5% often enough. The results
for the 2nd and 3rd-order polynomial, however, are very close to the
theoretical S57%. In Figure 3.1 the whole distribution of the test statistic
is given. The conclusions that can be drawn from the graph are the same as
the conclusions from the table. That is, only the first-order

approximation is not close to the distribution of the true solution.

The sensitivity of the accuracy test to the number of observations
used in calculating the test statistic is investigated by increasing the
number of observations for the solution of the 3rd-order polynomial. Only
a slight increase in the number of draws in the higher 5% region is
observed. No decline in the number of draws in the lower 5% could be
detected. Even with enormous samples of 20,000 observations, which make
for a very stringent test (see discussion in section 2) we only get 9.87 in

the upper S7 and 4.67 in the lower 5% region.

4. Using the accuracy test to choose between alternative solutions.

4.1 Choosing Linear-Quadratic Approximations in the Simple Growth Model

In Taylor & Uhlig (1990) it is shown that even for the simple growth
model with a low standard deviation, different solution techniques may
display different characteristics of the model. It is thus certainly not
the case that computation methods can in general be used interchangeably.

Also, given a method, choices have to be made about the functional form,

11



the grid, the convergence criterion, etc. The accuracy tests can be used

as a device in making these choices.

In this section we compare the results of the accuracy test for LQ and
logLQ in the simple growth model. Christiano (1990) shows that except in
states that occur with a low probability loglQ is more accurate than LQ.
He obtains this conclusion by comparing the solutions to the solution
obtained by value function iteration, which is very accurate (but also very

expensive).

Our test confirms the results in Christiano (1990) on the high degree
of accuracy of the loglQ approximation, without the need of performing
value function iterations. Note that the standard accuracy test
automatically puts less weight on states that occur less often in the
steady state distribution®. In addition we provide an economic explanation
of why loglLQ is a better approximation than LQ: both approximations impose
restrictions on the means of the variables, but the restrictions imposed by
the loglQ technique are shown to be more realistic. For a user of LQ
approximations, our accuracy test would be useful in choosing betws=en these

two alternatives.

4.2 Accuracy Comparisons between LQ and Parameterized Expectations.

Again we use the growth model discussed in the last section. The
model is solved with the method of parameterized expectations and with the
logLQ and the LQ solution method. We solve the growth model with t=0.50
and 3.00, a=0.33, p=0.975, p=0.95, ¢=0.01, 0.02 and 0.03, 8=0.99 .

Details about the solutions are again given in Appendix l. For the low
variance case, we can not use all seven instruments from the last section
to do the accuracy tests, since for some parameter values we obtain a
nearly singular weighting matrix Sw. This only means that some elements
from h(.) are redundant and they can be omitted from the test with no loss
of power; therefore, we use the constant as the only instrument? In Table
4.1 the results of the accuracy tests are given. Again, the tests use 500

draws of 3000 observations.
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In Table 4.1 we see that the accuracy test would tell us that the LQ
approximation is clearly inaccurate for five out of the six parameter
cases, while the loglQ approximation is clearly more accurate, although its
results are not satisfactory for all parameter values. For the PE
solution, a second-order polynomial was chosen in order to pass the
accuracy tests for the high standard deviation. One explanation provided
in Christiano (1990) of why the loglLQ solution method performs better than
the LQ solution, is that for the special case of the model with complete
depreciation and log utility, the rational expectations policy functions
are exactly loglQ. We want to discuss another explanation; the policy

functions for the LQ and loglQ approximation are given, respectively, by
(4.1) k = a + a Kk + a_ log(e)
t 3 t

(4.2) log(it) = b + b log(it

. 5 1) + b3 log(et),

where a2, a3, b2 and b3 are positive (again, we use bars to denote the
approximated series). Values for a's and b’s are given in Appendix 1. If

we take the unconditional expectation, then we get for the LQ capital stock

(4.3) E(k) =

(4.4) E ( log l=<t )

where the expectation is taken with respect to the steady state

distribution.

In the simple growth model, there are two reasons why, in the true
solution, the mean of the capital stock becomes hiogher with an increase in
uncertainty. First, if 0‘2 goes up, the mean of Bt goes up, so that average
productivity increases; second, since the representative agent uses capital
as an asset for insuring against periods of low productivity, if the
uncertainty increases he needs more insurance and a higher capital average.
On the other hand, the loglLQ solution forces the mean of capital to go up:
since the exponential function is convex, an increase in the variance of
log }—_ct will cause the mean of }——ct to go up. The point we want to drive home
is that the loglLQ solution, by construction, causes the mean of the capital

stock to increase, which in this model happens to be the right direction in

13



which the mean of capital should move. This suggests that in a model where
the true solution had a lower mean of the state variable when uncertainty

increased, plain LQ may be better than logLO.

In Table 4.2 we illustrate the (in)dependence between the mean capital
value and the standard deviation for the three solution techniques.
Although the mean of the loglQ capital stock rises with o, it does not rise
as much as the PE capital stock. First, consider the case where T = 3.0.
If we increase ¢ from 0.0l to 0.02, for instance, then we find an increase
in the loglQ capital stock of 0.58% and an increase in the PE capital stock
of 1.70%. This is consistent with Christiano (1990) who also finds that
the loglQ average capital stock is between the average capital stock of the

LQ and the value function iteration solution.




Table 4.1. Accuracy of the solut on techniques ( T 3000 )
T 0.5 T = 3.0
lower 5% upper lower 5% upper 5%
o = 0.0l
LQ 0.47% 54.67% .27 10.47%
loglLQ 4.07% 8.8% .6% 4.6%
PE 4.47 5.2% .8% 3.8%
o = 0.02
LQ 0.07% 94.47 .8% 36.8%
logLQ 2.2% 28.6% 4.6%7 7.8%
PE 3.8% 5.0% .47 4.47%
o = 0.03
LQ 0.0% 99.87% .47 64.07%
loglQ 0.67% 49 .47 2.2% 13.87%
PE 5.4% 5.0% . 8% 5.8%
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Table 4. 2. The mean capital stock for different values of o

T = 0.5
c = 0.0 c = 0.02 c = 0.03
LQ 28.353 28.357 28.361
(0.007) (0.013) (0.020)
loglQ 28.371 28.432 28.529
{0.007) {0.013) (0.020)
PE 28.385 28.479 28.635
{0.007) (0.013) {0.020)

T =3.0
c = 0.0l c = 0.02 c = 0.03
LQ 28.360 28.371 28.382
(0.011) (0.022) (0.032)
loglQ 28.411 28.577 28.848
(0.011) (0.022) (0.033)
PE 28.526 29.007 29.790
(0.011) (0.022) (0.033)

The approximate standard errors are given in parentheses. The means are

for a sample of 25000 observations.

Table 4. 3. The increase in capital for T going from 0.5 to 3.0

c = 0.01 c = 0.02 c = 0.03
LQ 0.025% 0.0497 0.0747%
loglLQ 0.1417% 0.510% 1.1807%
PE 0.497% 1.8547%7 4.0347%

16




4.3 The accuracy test i

the Cash~in-advance model of Cooley and Hansen

In this subsection we use a monetary equilibrium modei to study the

properties of the accuracy test. in Cooley and Hansen (1989) a
cash-in-advance model is soived by forming a LQ approximation. The
standard LQ solution procedure, however, can not be applied, since in a

cash-in-advance economy the competitive equilibrium is not the solution to
a planner’s problem. Therefore, in addition to taking a LQ approximation
of the utility function, the authors have to assume that the perceived law
of motion for prices (scaled by the money supply) is linear in the state
variables. This extension of the LQ solution technique is new to the
literature and its accuracy has never been discussed. We tested the LQ
solutions for accuracy and made comparisons with the solutions obtained
with the method of parameterizing expectations (PE). More details are given
in the Appendix, and in the the working paper version of this article.

Here we give a summary of the results.

The model has two stochastic Euler equations. One for capital and one
for real money balances. We looked at two sets of parameters. The first
one has a moderate money growth of 1.5% per quarter and the second has a

high money growth of 15% per quarter.

With the PE numerical solution we can duplicate all the statistics
that are reported in the tables in Cooley and Hansen (1989). However,
using the LQ solution we find that the results of the accuracy test for the
money equation are dramatically bad for both parameter sets. The results
for the residual of the Euler equation for capital are good for the low
growth case but bad for the high growth case. The PE numerical solution,
however, does pass the accuracy tests. The different results in the
accuracy tests suggest that there are differences between the series
generated by both methods, even though these do not affect the statistics

reported by Cooley and Hansen and, therefore, the conclusions in that

paper.

The main differences are as follows: i) it is possible to show
analytically that, in the true rational expectations equilibrium, the costs
due to the -cash-in-advance constraint {(as a fraction of the marginal

utility of consumption) are a fixed function of only the current money

17




growth rate, so that the correlation between these two variables should be
very close to one. With the LQ solution, however, we find a value of
0.939; ii), the behavior in the tails is different; i{ii) the LQ value for
the mean of capital stock is low: for the high money growth case it is 1.6%
lower than the value obtained with PE, confirming our intuition in the

previous subsection of why the loglLQ solution behaves differently.

This example illustrates that the accuracy test is very powerful, in
the sense that it detects small inaccuracies. That is, the results of the
accuracy test may reject a solution, although only some characteristics of
the LQ solution showed substantial differences with the (accurate) PE

solution.

5. Concluding remarks

Since the actual solution to rational expectations models is usually
not known, it is useful to have criteria for judging the accuracy of the
numerical solution. The test introduced in this paper can be used tc detect
inaccurate solutions with low computing costs. The test can be used for
guidance in any algorithm where one has to make choices about the
functional form, the grid or the convergence criterion, andin sorting
between alternative solutions. Furthermore, the test can be wused to
eliminate irrelevant terms from a high order polynomial in the method of
parameterized expectations, thereby reducing the computational costs of

refining the solution.

Perhaps the most important message of this paper is that tests can be
designed to check for accuracy in a way that is inexpensive, powerful and
constructive. Further research should concentrate on finding ways to test

the parts of the model that we are interested in.
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Appendix 1: Solutions of the models

In this Appendix we give more detailed information about the solutions
to the wused models. For details on the method of parameterized
expectations we refer the reader to Marcet (1988) and den Haan and Marcet
(1990). In Christiano (1990) a description of the LQ-approximation is

presented.

The simple growth model

The first-order conditions for the simple growth model are (3.2) and

(A.1) Tt = 8 E ¢ (ak¥' o+ u)

t t t+1 t
Let Pn(k,e) stand for the nth-order linear polynomial. The conditional
expectation in Equation (A1) is parameterized with
exp(Pn(log(k),log(e)) ), where n = 1,2,3. If n =1, we get

-T
(A.3) c, = Bl expl [32 log(kt_l) + Balog(et) )

The fixed point for the vector B is calculated wusing 29000
observations. The solutions for the three polynomials are given in Table

A.l. For the growth model of section 4, the fixed point parameters are

given in Table A.2.

The LQ policy functions for T = 3.0 and 0.5 are respectively given by

(A.4) kt 0.57631 + 0.97967 kt 1 + 2.17301 log(et)

(A.4") kt 1.55914 + 0.94500 L +  2.54911 log(et)

For the loglQ approximation we get, respectively,

(A.5) log(kt) 0.06799 + 0.97967 logk ) + 0.07665 log(et)

t-1

(A.5") log(kt) 0.18395 + 0.94500 loglk. ) + 0.08992 log(et)

t-1

The Cooley-Hansen model
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Let At and n be the Lagrange multipliers of respectively the

budget equation and the cash-in-advance constraint. The first-order

conditions for the Cooley-Hansen model can be written as follows:

(A.6) A = E sxr (8 ok*'p%! w)
t t t+1 t+1 t t+1
A A + N
(A.7) : = E, S el el
Py Py
1
(A.8) = by + n
c t t
t
(A.9) B = A O-a) @ k¥ h”
t tot-l ot
™ M a - M,
(A.10) c +k o+ = + uk o+ (g-1) !
t t p t ot-1 ot 1
t t
(A.11) P, €, = m,

If we multiply Equation (A.7) with m, impose the equilibrium condition

and use Equation (A.l1l1), then we get

(A.12) A C
t ot

]
[e7)
m
1l
[e7)
m

Since Et(l/gtﬂ) is a known function of g, we get the result mentioned
in section 4.2 that n, as a fraction of marginal utility is a function
of only g, This is a property that was strongly violated by the LQ
solution. The conditional expectation in equation (A.12) can be
calculated analytically, since g, has a log-normal distribution. Thus
we only have to parameterize the conditional expectation in equation
(A.6). Let h(kt_l,et,gt;B) be the parameterization for the conditional

expectation, where f is the vector of parameters. Equation (A.1) is
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thus replaced by

(A.13) At = h(kt_l,et,gt;B)
Given initial values for the parameter of h(-), it is again easy to
solve the model. Equation (A.13) directly solves for At. Equation

(A.12) can be used to solve for consumption and Equation (A.9) to solve
for the labor supply. The budget equation solves for the capital stock.
The cash-in-advance constraint together with the law of motion for money
gives the price level. Again we let h(-) be the exponential of a linear
polynomial. The fixed point for the parameters of h(-) are calculated
using 40000 observations. The parameter values at the fixed point are

reported in Table A.3.

List of Variables

c, consumption

kt end-of -period capital stock

6t productivity

ht labor supply

m end-of -period nominal money holdings

P, price level

Mt nominal money sapply

g, Mt/Mt-1

n, Lagrange multiplier of the cash-in-advance constraint
A Lagrange multiplier of the budget constraint

~-
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Table A.1l. Br for the growth model of section 3
n = | n =2 n = 3
constant 2.0359 1.8106 1.8151
ln(kt l) —0.4063 -0.3212 -0.3252
In(6 ) -0.1157 -0.2243 -0.2747
ln(kt_l)2 -0.0152 -0.0130
ln(kt_l) ln(et) 0.0388 0.0725
In(8 )2 -0.0294 -0.0846
3
ln(kt_ ) -0.0004
2
In(k )7 1In(e ) -0.0055
t-1 t
In(k. ) In(e ) 0.0193
t-1 t
Inte ) ~0.0117
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Table A.2. Bf for the growth model

of section 4

constant

constant

1.59583

—0.1229

-0.2089

-0.0415

0.0323

-0.0353

c = 0.0l

0.6250

—0.0790

-0.8616

-0.1573

-0.0692

-0.2080

1.8885

-0.2238

-0.2066

-0.0264

0.0316

-0.0294

-0.0767

0.0991

-0.1289

c = 0.03
1.9982
-0.2575
-0.2054
-0.0213
0.0312

-0.0274

-1.6521
-0.0450
0.1694

-0.1026
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Table A.3. B( for the Cooley-Hansen mode|
= 1.015
constant 3.0275
ln(kt_l) ~0.2293
ln(Gt) -1.3177
ln(gt) -0.0324
ln(kt_)2 ~0.0631
In(k } In(6 ) 0.3553
t-1 t
2
ln(et) -0.1833
3
ln(Gt) -1.3690

.9511

.2451

.2734

.0324

.0631

.3553

.1833

.3690
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1
This approach has been applied among others, by Marshall (1988), den Haan
(1990a,b), Marcet and Singleton (1989) and Marcet and Marimon (1992).

This is not true of the backwards solution procedure, that constructs u
in a way that guarantees (2.3) to hold for any h('). To do a similar test
for that procedure one would have to test if the innovations to the
exogenous shocks that the backwards solution recovers are orthogonal to

lagged variables.

It is of course impossible to check whether (2.3) is satisfied for any
function h(*); at the end of this section, however, we discuss a procedure
with which it is possible to avoid the problem of checking (2.3) in a

predetermined dimension.

Some of these estimates are designed especially to guarantee
positive-semidefiniteness of the estimator. Since we are using many
observations and the true model, it is less likely that the estimator will
be non-positive semidefinite even if the estimator is not so by

construction.

5
A formal proof of this approximation result is available for the PEA.

See Marcet and Marshall (1992).

If a researcher is interested in the accuracy of his solutlion for a
specific range of the state variables, he can always condition on the state

variables being in that specific set.

Note that, since we use an exponentiated polynomial (see equation A.3 in
the appendix) the derivative of the parameterized expectation with respect
to the constant term is given by aw/aBl:lﬂ/Bl ,  which is not equal to one.
Therefore, even if  h() is constant, it is not equal to the derivative of w

and the problems described at the end of section 2 are avoided.
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FIGURE 3.1: ACCURACY FOR THE GROWTH MODEL
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