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Abstract

We investigate on-line prediction of individual sequences. Given a class of predic-

tors, the goal is to predict as well as the best predictor in the class, where the loss is

measured by the self information (logarithmic) loss function. The excess loss (regret)

is closely related to the redundancy of the associated lossless universal code. Using

Shtarkov's theorem and tools from empirical process theory, we prove a general upper

bound on the best possible (minimax) regret. The bound depends on certain metric

properties of the class of predictors. We apply the bound to both parametric and non-

parametric classes of predictors. Finally, we point out a suboptimal behavior of the

popular Bayesian weighted average algorithm.

Key words and phrases: universal prediction, universal coding, empirical processes, on-

line learning, metric entropy
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1 Introduction

Assume that elements of an arbitrary sequence y1; : : : ; yn are revealed one by one, where the

elements yt belong to some set Y, which, in the simplest case, is assumed to be �nite. At

each time t = 1; : : : ; n, before revealing an element yt, we are asked to assign a probability

mass function pt on Y and then observe yt incurring the logarithmic loss � ln pt(yt). Our

total loss at the end is the sum of the losses su�ered at each round. As we know the pre�x

y1; : : : ; yt�1 before choosing each probability assignment pt, we may view each pt as the

conditional p(� j y1; : : : ; yt�1) of some joint distribution p that we choose before the game

begins. We call p a prediction strategy. Any strategy for playing this game is equivalent to

a probability distribution on Yn.

Our goal is to predict (almost) as well as the best strategy in a given \reference" set

of strategies. We will call \experts" the strategies in the reference set. In other words, we

intend to accumulate a loss not much larger than that of the best expert, regardless of what

the sequence y1; : : : ; yn might be.

In this paper we investigate the minimum excess loss, with respect to the total loss of

the best expert, achievable on any sequence. This quantity, known as minimax regret (under

logarithmic loss), will turn out to depend on certain metric properties of the class F of

experts.

It is well-known, via arithmetic coding (Rissanen, [12]), that every sequential prediction

strategy may be converted into a sequential lossless source code. Conversely, every uniquely

decodable code over Yn de�nes a probability distribution. Thus, the prediction problem

under logarithmic loss is formally equivalent to the problem of sequential universal coding in

data compression. In this context, the subject of our study is the smallest achievable worst-

case redundancy of a sequential lossless code, with respect to a general class of reference

codes. The study of the worst-case regret was pioneered by Shtarkov [15], and later studied

from various points of view by De Santis et al. [14], Vovk [17, 18], Haussler and Barron [8],

Weinberger, Merhav and Feder [19], Yamanishi [20], Rissanen [13], Haussler, Kivinen, and

Warmuth [9], and others. Merhav and Feder summarize the relevant history in their recent

survey [10].

The notion of minimax regret has natural applications in gambling and portfolio selection.

This connection was explored by Cover [3], Feder [6], Cover and Ordentlich [4], Barron and

Xie [2], and others.

De�nitions. Let Y be a measurable set equipped with a �-algebra A and �-�nite measure

�. Let n be any �xed positive integer denoting the length of the sequence or, equivalently,

the number of game rounds. Let hYn;A; �i denote the probability space obtained as the

n-fold product of hY;A; �i. Throughout the paper, all densities on Y and Yn are understood

with respect to the measures � and �, respectively. Moreover, all integrals are computed

over the set Yn unless explicitly speci�ed. (If Y is a countable set, then � is usually the

counting measure, and all densities are understood as probabilities.)

For any integer t � 0, we use yt to denote a sequence of t elements from Y (where

y0 is the empty sequence). In this context, a prediction strategy is a density p on Yn.

Upon observing the pre�x yt�1, the strategy p uses the conditional density p(� j yt�1) as a
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probability assignment for the next element yt of the sequence.

Fix a class F of \reference" strategies, called here experts. The worst-case regret of a

strategy p (with respect to the class F) is de�ned by

Rn(p;F) = sup
yn2Yn

 
nX
t=1

ln
1

p(ytjyt�1)
� inf

f2F

nX
t=1

ln
1

f(ytjyt�1)

!

or, equivalently, in terms of the joint densities

Rn(p;F) = sup
yn

ln
supF f(y

n)

p(yn)
:

In other words, Rn(p;F) is the worst-case di�erence between the log-likelihood of yn under

the density p and the log-likelihood of yn under its maximum likelihood estimator (MLE)

in the class F . The smallest worst-case regret achievable by any predictor is the minimax

regret

Rn(F) = inf
p
sup
yn

ln
supF f(y

n)

p(yn)

where the in�mum is taken over all densities p on Yn.

The main contribution of this paper is a general upper bound on the minimax regret

Rn(F) in terms of some metric structure of the expert class F . In previous works, Rissa-

nen [13] obtained general upper bounds for parametric classes, which was generalized con-

siderably by Yamanishi [21]. Opper and Haussler [11] were the �rst to prove upper bounds

for nonparametric classes. However, their bounds are restricted to classes of static experts,

that is, experts which correspond to product distributions. Our main result, Theorem 3

below, extends both results: (1) in the parametric case we are able to signi�cantly weaken

Rissanen's conditions, and to obtain nonasymptotical bounds; (2) our results extend those

of Opper and Haussler to classes of arbitrary, not just static, experts.

The rest of the paper is organized as follows: In Section 2 we review Shtarkov's optimal

prediction strategy p�, whose regret Rn(p
�;F) is always equal to the minimax regret Rn(F).

In Section 3 we establish our main result: a general upper bound on the minimax regret for

any class of experts. In Section 4 we apply our upper bound in concrete situations, which

could not be handled by any of the previous methods. Finally, in Section 5 we point out that

for certain classes of experts, prediction strategies based on mixture of experts may have a

regret which is signi�cantly larger than that of Shtarkov's optimal predictor.

2 Shtarkov's theorem, mixture strategies

Shtarkov proved the remarkable fact that the density corresponding to the normalized MLE

achieves the minimax regret for any class of experts.

Proposition 1 (Shtarkov, [15].) For any class F of experts, the density (normalized MLE)

p�(yn) =
supF f(y

n)R
supF f(x

n) d�(xn)
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is a minimax strategy, that is,

Rn(p
�;F) = Rn(F) :

Moreover, p� is an equalizer. That is, for all yn 2 Yn

ln
supF f(y

n)

p�(yn)
=
Z
sup
F

f(xn) d�(xn) = Rn(F) : (1)

Note that the equalizer property (1) implies that the minimax regret may be expressed as

Rn(F) =
Z  

sup
F

ln
f(yn)

p�(yn)

!
p�(yn) d�(yn) : (2)

The above expression is at the basis of the proof of the main result of this paper, see

Theorem 3 below.

Even though by Shtarkov's theorem we may explicitly compute the minimax optimal

predictor, its practical use is limited by the hardness of computing each conditional p�(yjyt).
The most common way to de�ne more easily computable prediction strategies is to consider

mixture strategies of the form

p(yn) =
Z
�

f�(y
n)dw(�);

where � is a set of parameters by which the experts are parametrized: F = ff� : � 2 �g,
and w is a probability measure over �. For an exhaustive survey of related results, we again

refer to [10].

A simple example of a mixture strategy is when F is a �nite class and w is the uniform

distribution over F . In this case, the conditionals of the mixture strategy take the simple

form

p(yjyt�1) =
P

f2F f(yjyt�1)f(yt�1)P
g2F g(y

t�1)
: (3)

This is just the weighted average (WA) algorithm of De Santis et al. [14], see also [8, 9, 18, 20].

Besides being computationally easier to handle than p�, mixture strategies are (in general)

universal, that is, their conditionals can be computed without knowing the sequence length n

in advance. On the other hand, there are simple �nite classes F on which mixture strategies

perform very poorly compared to the optimal predictor. We will discuss this further in

Section 5.

We close this section by recalling the simple and elegant analysis of the regret of the WA

strategy. This result will be used in Section 3.

Proposition 2 (De Santis et al., [14]) For the WA strategy p and for any �nite class F of

experts,

Rn(p;F) � ln jFj :

Proof. Let W1 = jFj, and Wt =
P

f2F f(y
t�1), t � 2. Then, on the one hand,

ln
Wn+1

W1

= ln

0
@X
f2F

f(yn)

1
A� ln jFj � lnmax

f2F
f(yn)� ln jFj ;
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and the other hand,

ln
Wn+1

W1

=
nX
t=1

ln
Wt+1

Wt

=
nX
t=1

ln

P
f2F f(y

t)P
f2F f(y

t�1)

=
nX
t=1

ln p(ytjyt�1) = ln p(yn) :

Thus, we obtain

Rn(p;F) � sup
yn

ln
maxf2F f(y

n)

p(yn)
� ln jFj :

2

3 Main result

We start with some de�nitions. The diameter of a totally bounded metric space (S; �) is

sup
x;y2S

�(x; y) :

Let T � S. Then for any " > 0, the "-covering number N�(T; ") of T is the cardinality of

the smallest subset T 0 � S such that

(8x 2 T )(9x0 2 T 0) �(x; x0) � " :

To any class F of experts, we associate the metric d de�ned by

d(f; g) =

vuut nX
t=1

sup
yt

(ln f(ytjyt�1)� ln g(ytjyt�1))2 : (4)

We use N(F ; ") to denote the "-covering number of F under the metric d.

Theorem 3 For any class F of experts,

Rn(F) � inf
">0

�
lnN(F ; ") + 24

Z "

0

q
lnN(F ; �) d�

�
:

Remark I. The main Theorem in Opper and Haussler [11] has a similar form. In particular,

they showed that if every expert f in the class F has the special form f(ytjyt�1) = f 0(yt)
(i.e., every expert f corresponds to the product of n identical distributions f 0 on Y | we

call such experts static), then for some constant K,

Rn(F) � inf
">0

�
lnN�(F ; ") + K

Z "

0

q
lnN�(F ; �)d� + n"2

�
(5)

where � is a metric on F . With Theorem 3 above, we show that in the upper bound (5)

the term n"2 is unnecessary. We also show that the metric � can be replaced by another

metric d, de�ned in (4), which satis�es Nd(F ; �) � N�(F ; �) for any � > 0 and any class F
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of static experts. (Note that the relative weakness of the bound (5) did not prevent Opper

and Haussler from obtaining upper bounds of the right order in their applications.) Most

importantly, however, we extend the result of [11] to classes of arbitrary, not just product

experts. Our proof of Theorem 3 shows some similarities with that of Opper and Haussler,

in that we also use techniques from empirical process theory. Nevertheless, their proof does

not seem to be extendable to handle the general case treated here.

Remark II. Theorem 3 requires that the expert class be �nitely coverable in the metric

d. This in turn requires that all conditional densities be bounded away from zero. It is

unclear whether such a condition is necessary. For certain special expert classes, such as the

class of all product distributions, such boundedness conditions are not needed, see [2, 7].

Nevertheless, we do not know how to avoid this condition in the general case.

In order to prove the theorem, �rst we recall some well-known notions from empirical

process theory. A family

fTf : f 2 Fg
of zero mean random variables (indexed by a metric space (F ; �)) is called subgaussian in

the metric � whenever

E
h
e�(Tf�Tg)

i
� e�

2�(f;g)2=2

holds for any f; g 2 F and � > 0. We also assume that the family is sample continuous, that

is, for any sequence f1; f2; : : : 2 F converging to some f 2 F , we have Tfn � Tf ! 0 almost

surely.

The main tool used in our proofs is the following result of empirical process theory, stating

that the expected supremum over a subgaussian family is governed by geometrical properties

of the family in an appropriate metric. The result is a simple version of Dudley's classical

metric entropy bound (see, e.g., [16]), whose proof is given in the Appendix for completeness.

Note that we ignore measurability issues here, by implicitly assuming the measurability for

all suprema.

Proposition 4 If fTf : f 2 Fg is subgaussian and sample continuous in the metric �, then

E

"
sup
F

Tf

#
� 12

Z D=2

0

q
lnN�(F ; ")d"

where D is the diameter of F .

We use Proposition 4 to obtain a �rst (weak) bound on Rn(F) based on a direct analysis

of Sharkov's strategy p�. This will be later used as a tool to prove the stronger bound of

Theorem 3, which is based on the analysis of a variant of p�.

Lemma 5 For any class F of experts,

Rn(F) � 24
Z D=2

0

q
lnN(F ; ") d"

where D is the diameter of F .
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Proof. Using (2), we write

Rn(F) =
Z  

sup
F

ln
f(yn)

p�(yn)

!
p�(yn) d�(yn)

= E

"
sup
F

ln
f(Y n)

p�(Y n)

#

(where Y n = (Y1; : : : ; Yn) is a vector of random

variables distributed according to p�)

= E

"
sup
F

nX
t=1

ln
f(YtjY t�1)

p�(YtjY t�1)

#

� E

"
sup
F

nX
t=1

 
ln

f(YtjY t�1)

p�(YtjY t�1)
� E

"
ln

f(YtjY t�1)

p�(YtjY t�1)

���Y t�1
#!#

where the last step follows from the nonnegativity of the Kullback-Leibler divergence of the

conditional densities (see, e.g., [5]):

E

"
ln
p�(YtjY t�1 = yt�1)

f(YtjY t�1 = yt�1)

#
� 0 : (6)

Now, for each f 2 F let

Tf (y
n) =

1

2

nX
t=1

 
ln

f(ytjyt�1)
p�(ytjyt�1)

�E

"
ln

f(YtjY t�1)

p�(YtjY t�1)

���Y t�1
#!

so that we have Rn(F) � 2E [supF Tf ].
To apply Proposition 4, we need to show that fTf : f 2 Fg is indeed a subgaussian

family under the metric d. (Sample continuity of the process is obvious.) To this end, note

that for any f; g 2 F ,
Tf (y

n)� Tg(y
n) =

nX
t=1

Zt(y
t) ;

where

Zt(y
t) =

1

2

 
ln
f(yt j yt�1)
g(yt j yt�1)

� E

"
ln
f(Yt j Y t�1 = yt�1)

g(Yt j Y t�1 = yt�1)

#!
:

Now it is easy to see that Tf � Tg = Tf (y
n) � Tg(y

n) is a sum of bounded martingale

di�erences, that is, each term Zt has zero conditional mean and range bounded by 2dt(f; g).

Then the Hoe�ding-Azuma inequality [1] implies that, for all � > 0,

E
h
e�(Tf�Tg)

i
� exp

 
�2

2
d(f; g)2

!
:

Thus, the family fTf : f 2 Fg is indeed subgaussian. Hence, recalling that Rn(F) �
2E [supF Tf ] and applying Proposition 4 we obtain the statement of the lemma. 2

Lemma 5 provides a sharp bound on the regret of p� if the diameter D of F is very

small. However, inequality (6) becomes very loose for experts f far away from p�. To avoid
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such situations, we prove our general bound by analyzing the following prediction strategy

(di�erent from p�): F is partitioned into small subclasses and the minimax predictor is

calculated for each subclass (in which Lemma 5 may be applied). Finally, these predictors

are combined using the WA algorithm.

Proof of Theorem 3. Fix an arbitrary " > 0 and let G be an "-covering of F of minimum

size N = N(F ; "). Let F1; : : : ;FN be the cells of the Voronoi tessellation of F , under the
metric d, having the elements of G as cell centers (remember that F and G live in the same

metric space, but G does not have to be a subset of F). Then F1; : : : ;FN is a partition of

F . For each i = 1; : : : ; N , let g(i) be Shtarkov's optimal predictor for Fi,

g(i)(yn) =
supFi f(y

n)R
supFi f(x

n) d�(xn)
:

Now let the predictor p" be the WA algorithm de�ned in (3) run over the set of \experts"

g(1); : : : ; g(N). Clearly, Rn(F) � inf">0Rn(p";F). So all we have to do is to bound the regret

of p".

To this end, �x any yn 2 Yn and let k = k(yn) be such that

ln sup
F

f(yn) = ln sup
Fk

f(yn) :

Then,

ln
supF f(y

n)

p"(yn)
= ln

g(k)(yn)

p"(yn)
+ ln

supFk f(y
n)

g(k)(yn)
: (7)

As k = k(yn) ranges in f1; : : : ; Ng, by Proposition 2 we get

sup
yn

ln
g(k)(yn)

p"(yn)
� lnN : (8)

Furthermore

sup
yn

ln
supFk f(y

n)

g(k)(yn)
� max

1�i�N
sup
yn

ln
supFi f(y

n)

g(i)(yn)
= max

1�i�N
Rn(Fi) : (9)

Hence, combining (7), (8), and (9) we get

Rn(p";F) � lnN + max
1�i�N

Rn(Fi) : (10)

Now note that the diameter of each element of the partition F1; : : : ;FN is at most 2". Hence,

applying Lemma 5 to each Fi in (10) we �nd that

Rn(p";F) � lnN + max
1�i�N

24
Z "

0

q
lnN(Fi; �) d�

� lnN(F ; ") + 24
Z "

0

q
lnN(F ; �) d�

concluding the proof. 2
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Remark III. Similarly to an analogous derivation in [11], Theorem 3 could be also proven

by direct manipulation of the minimax regret in the form

ln
Z
sup
F

f(yn) d�(yn) :

This is done by partitioning F as in the proof of Theorem 3 and then replacing the derivation

of the bound (10) with the following:

Rn(F) = ln
Z
sup
F

f(yn) d�(yn)

� ln
Z  

NX
i=1

sup
Fi

f(yn)

!
d�(yn)

� lnN + max
1�i�N

ln
Z
sup
Fi

f(yn) d�(yn)

= lnN + max
1�i�N

lnRn(Fi) :

Though a bit more concise, this proof ignores the algorithmical meaning of the right-hand

side of (10).

Remark IV. It is interesting to note that, while strategies like p" can have a regret close

to the optimal value Rn(F), p� is the unique strategy with regret equal to Rn(F), and
this is precisely due to the fact that p� is an equalizer. To show this, pick any F and

assume there exists p0 such that p0 6= p� and yet Rn(p
0;F) = Rn(p

�;F) = Rn(F). As p is

normalized, p0 6= p� implies that p(yn) < p�(yn) for some yn. Hence, supF f(y
n)=p0(yn) >

supF f(y
n)=p�(yn) for this yn. But (2) implies that supF f(y

n)=p�(yn) = Rn(F) for any yn.

Hence supF f(y
n)=p0(yn) > Rn(F) contradicting the assumption Rn(p

0;F) = Rn(F).

4 Applications

In this Section we illustrate some natural applications of our upper bounds that, to the best

of our knowledge, could not be obtained with previous techniques.

4.1 Parametric classes

As a �rst example, consider classes F such that there exist positive constants k and c such

that for all " > 0,

lnN(F ; ") � k ln
c
p
n

"
: (11)

This is the case for most \parametric" classes, that is, classes which can be parametrized

by a bounded subset of Rk in some \smooth" way. Asymptotic expressions for Rn(F) were
established by Rissanen [13] for such classes under certain general conditions. In particular,

Rissanen showed under his conditions that Rn(F) � (k=2) lnn. However, these conditions

are di�cult to check in some situations, and they are asymptotic in nature. Theorem 3

allows us to derive a simple nonasymptotic bound under the sole metric condition (11).
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Corollary 6 Assume that the covering numbers of the class F satisfy (11). Then for each

n so large that

c
p
n � 48

p
2
q
ln(c

p
n)=k ;

we have

Rn(F) �
k

2
lnn+

k

2
ln
ln(c

p
n)

k
+ k ln c + 6k :

Proof. Substituting (11) in the upper bound of Theorem 3, the �rst term of the expression

is bounded by k
2
lnn+ k ln c� k ln ". Then the second term may be bounded as follows:

24
Z "

0

q
lnN(F ; �) d� � 48c

p
kn

Z 1

an

x2e�x
2

dx

(by substituting x =
q
ln(c

p
n=�)

and writing an =
q
ln(c

p
n="))

= 48c
p
kn

"
an

2c
p
n="

+
1

2

Z 1

an

e�x
2

dx

#

(by integrating by parts)

� 48c
p
kn

"
an

2c
p
n="

+
1

2anc
p
n="

#

(by using the gaussian tail estimateR1
t e�x

2

dx � e�t
2

=(2t))

� 48
p
kan" (whenever e" � c

p
n)

� 48
p
2"
q
k ln(c

p
n) (whenever " � 1=(c

p
n))

The obtained upper bound is minimized for

" =
1

48
p
2

s
k

ln(c
p
n)

;

which yields the desired result. 2

Remark V. The main term (k=2) lnn is known to be the best possible for most k-

dimensional parametric families such as the family of all i.i.d. measures over a �nite alphabet

Y of k + 1 elements [15], or, if k = 2m, for the family of all m-th order stationary Markov

measures over a binary alphabet [19]. The lower-order term in the Corollary above is how-

ever not the best possible in some cases, when much sharper estimates are available (see,

e.g., Barron and Xie [2], Freund [7]). In fact, typical speci�c upper bounds have the form

(k=2) lnn+O(1). We do not know if, in the generality treated here, the second O(k ln lnn)

term is necessary. Also, Corollary 6 may only be used if all conditional densities are bounded

away from zero. Such condition is not necessary in the parametric examples mentioned above.

On the other hand, the general condition under which the Corollary holds makes it useful in

situations where all previously known techniques fail. This is illustrated in the next simple

example.
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Example: fading-memory predictors. Let Y = f0; 1g, and consider the one-parameter

class F of distributions on f0; 1gn containing all experts f (a) with a 2 [0; 1], where each f (a)

is de�ned by its conditionals as: f
(a)
1 (1) = 1=2, f

(a)
2 (1jy1) = y1, and

f
(a)
t (1jyt�1) = 1

t� 1

t�1X
i=1

yi

 
1 +

a(2i� t)

t� 2

!
;

for all yt�1 2 f0; 1gt�1 and for all t > 2. In other words, each expert predicts according to a

weighted average of the past outcomes with linearly decaying weights as we go back in the

past. The parameter a determines the slope of the decay. Unfortunately, Theorem 3 cannot

handle this class because the values of f
(a)
t (1jyt�1) and f

(a)
t (0jyt�1) may be arbitrarily close

to zero, and therefore the covering numbers of this class with respect to the metric d are

in�nite. To avoid this di�culty, we slightly modify the experts by considering the class G of

all experts g of the form

g
(a)
t (1jyt�1) = �(f

(a)
t (1jyt�1)) ;

where

�(x) =

8><
>:

x if x 2 [�; 1� �]

� if x < �

1� � if x > 1� �

for some �xed 0 < � < 1=2. Now clearly, for all t � 1, and a; b 2 [0; 1],

dt(g
(a); g(b)) = max

yt�12f0;1gt�1

���ln g(a)t (1jyt�1)� ln g
(b)
t (1jyt�1)

���
� 1

�
max

yt�12f0;1gt�1

���g(a)t (1jyt�1)� g
(b)
t (1jyt�1)

���
� 1

�
max

yt�12f0;1gt�1

���f (a)t (1jyt�1)� f
(b)
t (1jyt�1)

���
=

1

�
max

yt�12f0;1gt�1

����� 1

t� 1

t�1X
i=1

yi
(a� b)(2i� t)

t� 2

�����
=

1

�
max

yt�12f0;1gt�1

�����(a� b)
1

t� 1

t�1X
i=1

yi
(2i� t)

t� 2

�����
� 1

�
max

yt�12f0;1gt�1
ja� bj

����� 1

t� 1

t�1X
i=1

yi

�����
� ja� bj

�
:

Therefore, we immediately see that for all " > 0,

lnN(G; ") � ln

p
n

"�
;

so Corollary 6 yields

Rn(G) �
1

2
lnn +

1

2
ln ln

p
n

�
+ ln

1

�
+ 6 :

11



Note that this class cannot be handled by Rissanen's asymptotic expansion, which requires

that the MLE in the class satisfy a uniform central limit theorem condition. In fact, the

experts in G are nonstationary, and reach far back in the past, so proving a central limit

theorem for the MLE of a would be extremely di�cult (let alone a uniform one!), even if we

had known what the MLE was.

4.2 Nonparametric classes

Next, we illustrate on two examples how Theorem 3 can be applied for very large, nonpara-

metric classes. The �rst example shows that nontrivial bounds may be obtained even for

utterly huge classes of predictors.

Example: Lipschitz-Markov predictors. Assume, for simplicity, that the alphabet is

Y = [0; 1]. Let C be a class of densities (with respect to the Lebesgue measure) on [0; 1] such

that its covering number N�(C; ") with respect to the metric

�(p; p0) = sup
x2[0;1]

j ln p(x)� ln p0(x)j

satis�es lnN�(C; ") � c"�a for some a; c > 0. (An example of a nonparametric class of

densities satisfying this condition is the class of all Lipschitz densities which are uniformly

bounded away from zero, a class also considered in [11].)

Now consider the class F of all k-th order Markov measures on [0; 1]n such that for all

t � n and

yt�1t�k = (yt�k; : : : ; yt�1) 2 [0; 1]k ;

the conditional densities satisfy ft(�jyt�1t�k) 2 C; and moreover, for all t � n and yt�1t�k; z
t�1
t�k 2

[0; 1]k,

sup
x2[0;1]

���ln ft(xjyt�1t�k)� ln ft(xjzt�1t�k)
��� � max

t�k�s�t�1
jys � zsj :

The last condition requires that a small change in the past does not cause a drastic change

in the log of the conditional density. Notice that all these are quite natural smoothness

assumptions, and the resulting class of experts is very large.

To use Theorem 3 it su�ces to observe that NF(") may easily be bounded by

NF(") � [NC("=2)]
(c1
p
n=")k

;

where c1 is a positive constant. Now it is a matter of routine calculation to obtain the bound

Rn(F) = O
�
n

a+k
2+a+k

�
:

Example: Monotone predictors. Let Y = f0; 1g be a binary alphabet, and consider the

class F of all experts f =
Q

t ft such that f(1jyt�1) = ft(1) 2 [�; 1 � �], where � 2 (0; 1=2)

is some �xed constant, and for each t = 2; 3; : : : ; n, ft(1) � ft�1(1). In other words, F
contains all static experts (i.e., experts which predict independently of the past data) which

assign a probability to the outcome \1" in a monotonically increasing manner. This class is

12



again \nonparametric", but here the richness of the class is not due to the richness of the

conditional densities, but rather to the nonstationarity of the experts in F . To estimate the

covering number of F , consider the �nite subclass G of F containing only those monotone

experts g =
Q

t gt which take values of the form gt(1) = �+(i=k)(1� 2�), i = 0; : : : ; k, where

k is a positive integer to be speci�ed later. It is easy to see that jGj =
�
n+k

k

�
� (2n)k if

k � n, and jGj � 2k otherwise. On the other hand, for any f 2 F , if g is the expert in G
which is closest to f , then for each t � n,

max
y2f0;1g

j ln ft(y)� ln gt(y)j � 1

�
max
y2f0;1g

jft(y)� gt(y)j

=
1

�
jft(1)� gt(1)j

� 1

�k
:

Thus, d(f; g) � p
n=(�k), where the metric d is de�ned in (4). By taking k =

p
n=(��), it

follows that the covering number of F is bounded as

N(F ; ") �
(
(2n)

p
n=(�") if � � 1

�
p
n

2
p
n=(�") otherwise.

Substituting this bound into Theorem 3, it is a matter of straightforward calculation to

obtain

Rn(F) = O
�
n1=3��2=3 ln2=3 n

�
:

Note that the radius optimizing the bound of Theorem 3 is about � � n1=6��1=3 ln1=3 n.

5 Suboptimality of mixture predictors

As we have pointed it out in the introduction, instead of the minimax predictor given by

Proposition 1, often mixture predictors are used. In some cases, the worst-case regret of

mixture predictors, in particular, the WA predictor (3), is very close to the optimal value

Rn(F), see [2, 7, 9]. The purpose of this section is to point out that this is not necessarily

so. In fact, even for very simple classes of static experts, the ratio of the minimax regret

of the WA algorithm and that of the optimal algorithm can be arbitrarily large. Note that

this does not contradict Theorem 3, where the WA algorithm was run on a special set of

predictors derived from F , instead of being run directly on the expert class F , as prescribed
by (3).

Theorem 7 For every n > 1 there exists a class Fn of two static experts such that, if p

denotes the predictor de�ned in (3), then

Rn(p;Fn)

Rn(Fn)
� c

p
n;

where c is a universal constant.

13



Proof. Let Fn contain the two experts f; g de�ned over the binary alphabet Y = f0; 1g
by

f(1jyt�1) = 1

2
and g(1jyt�1) = 1

2
+

1

2n

for all t � n and yt�1 2 f0; 1gt�1. We may easily estimate the minimax regret Rn(Fn) using

Lemma 5. The diameter of Fn is easily seen to be

D = d(f; g) =
p
n ln

�
1 +

1

n

�
� 1p

n
:

Also, since N(Fn; �) � 2 for all � > 0, Lemma 5 provides the upper bound

Rn(Fn) �
12
p
ln 2p
n

: (12)

On the other hand, the de�nition of the WA algorithm in (3) shows that

p(yn) =
f(yn) + g(yn)

2
:

The relative loss of p is

Rn(p;Fn) = lnmax
yn

max(f(yn); g(yn))

p(yn)

= lnmax
yn

2max(f(yn); g(yn))

f(yn) + g(yn)

� lnmax
yn

2f(yn)

f(yn) + g(yn)

= ln max
0�k�n

2
2�n

2�n +
�
1

2
� 1

2n

�k �
1

2
+ 1

2n

�n�k
= ln max

0�k�n

2

1 +
�
1� 1

n

�k �
1 + 1

n

�n�k
= ln

2

1 +
�
1� 1

n

�n
� ln

2

1 + 1

e

:

Comparing this lower bound with (12), we obtain the statement of the theorem with c =

ln

�
2

1+
1
e

�.
12
p
ln 2 � 0:038. 2

Appendix

To prove Proposition 4, we use the following simple lemma, whose elegant proof was shown

to one of us by Pascal Massart.
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Lemma 8 Let � > 0, and let X1; : : : ; XN be real-valued random variables such that for all

� > 0 and 1 � i � N , E
h
e�Xi

i
� e�

2�2=2. Then

E

�
max
i�N

Xi

�
� �

p
2 lnN :

Proof. By Jensen's inequality, for all � > 0,

e�E[maxi�N Xi] = E
h
e�maxi�N Xi

i
= E

�
max
i�N

e�Xi

�

�
NX
i=1

E
h
e�Xi

i
� Ne�

2�2=2 :

Thus,

E

�
max
i�N

Xi

�
� lnN

�
+
��2

2
;

and taking � =
q
2 lnN=�2 yields the result. 2

Proof of Proposition 4. For each k = 0; 1; 2; : : :, let F (k) be a minimal cover of F of

radius D2�k. Note that jF (k)j = N(F ; D2�k). Denote the unique element of F (0) by f0.

Let f � 2 F be such that supf2F Tf = Tf�. (Here we implicitly assume that such an

element exists. The modi�cation of the proof for the general case is straightforward.)

For each k � 0, let f �k denote an element of F (k) whose distance to f � is minimal. Clearly,

�(f �; f �k ) � D2�k, and therefore, by the triangle inequality, for each k � 1,

�(f �k�1; f
�
k ) � �(f �; f �k ) + �(f �; f �k�1) � 3D2�k : (13)

Clearly, limk!1 f �k = f �, and so by the sample continuity of the process,

sup
f

Tf = Tf� = Tf0 +
1X
k=1

�
Tf�

k
� Tf�

k�1

�
;

and therefore

E

"
sup
f

Tf

#
�

1X
k=1

E

"
max

f2F(k);g2F(k�1)
(Tf � Tg)

#
:

Since there are at most N2(F ; D2�k) pairs (f; g) with f 2 F (k) and g 2 F (k�1), and recalling
that fTf : f 2 Fg is subgaussian, we can apply Lemma 8 using (13). Thus, for each k � 1,

E

"
max

f2F(k);g2F(k�1)
(Tf � Tg)

#
� 3D2�k

q
2 lnN(F ; D2�k)2 :

Summing over k, we obtain

E

"
sup
f

Tf

#
�

1X
k=1

3D2�k
q
2 lnN(F ; D2�k)2

= 12
1X
k=1

D2�(k+1)
q
lnN(F ; D2�k)

� 12
Z D=2

0

q
lnN�(F ; ") d" ;

as desired. 2
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