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Abstract

In this paper we address a problem arising in risk management;

namely the study of price variations of di�erent contingent claims

in the Black-Scholes model due to anticipating future events. The

method we propose to use is an extension of the classical Vega in-

dex, i.e. the price derivative with respect to the constant volatility,

in the sense that we perturb the volatility in di�erent directions.

This directional derivative, which we denote the local Vega index,

will serve as the main object in the paper and one of the purposes

is to relate it to the classical Vega index. We show that for all

contingent claims studied in this paper the local Vega index can

be expressed as a weighted average of the perturbation in volatil-

ity. In the particular case where the interest rate and the volatility

are constant and the perturbation is deterministic, the local Vega

index is an average of this perturbation multiplied by the classical

Vega index. We also study the well-known goal problem of maxi-

mizing the probability of a perfect hedge and show that the speed

of convergence is in fact dependent of the local Vega index.
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1 Introduction

In this paper we will analyze a sensitivity problem with respect to variations in parameters

arising in risk management. However, to keep things simple we will place ourselves in the well-

known Black-Scholes model. In order to �x our terminology we consider a �nite time interval

[0; T �] and assume that the basic market consists of two assets: one locally risk free asset of

price B (�) and one stock of price S (�). The interpretation of the locally risk free asset is as

usual that of a bank account where money grows at the short interest rate r. The asset prices

are modelled by the (stochastic) di�erential equations(
dB (t) = rB (t)dt

B (0) = 1
(1.1)

(
dS (t) = �S (t)dt + �S (t) dW (t)

S (0) = S0
(1.2)

where we assume that the coe�cients r; �; S0 and � are strictly positive constants. Here we

let fW (t) : 0 � t � T �g denote a Brownian motion de�ned on the complete probability space

(
;F ; P ) and we let F = fFt : 0 � t � T �g denote the natural �ltration generated by the �-

�elds (W (s) : 0 � s � t) and completed by the P -null sets of F . It is well known that the basic

market is free of arbitrage opportunities and complete, see e.g. the classical article by Harrison

and Pliska (1981). Hence, for any su�ciently integrable FT -measurable contingent claim G, we

can de�ne the corresponding price process � (�) according to:

� (t) = B (t)B (T )�1EQ [G jFt ] ;(1.3)

where Q is the unique equivalent martingale measure under which the process V (�) := W (�)�R �
0

�
r��
�

�
ds is a Brownian motion. Consequently, prices are to be computed given the dynamics(

dS (t) = rS (t) dt+ �S (t)dV (t)

S (0) = S0
(1.4)

of the stock. For technical convenience, we will assume from now on that the contingent claims

to be studied are square integrable, i.e. belong to the space L2 (
;F ; Q). Note also that the

maturity of a contingent claim T is an arbitrary value in the interval [0; T �].

Of course, the Black-Scholes model is a simpli�ed model of reality. This is seen, for example,

by taking the prices of traded options as well as the interest rate as given and thereafter solving

backwards for the implied volatility, see e.g. Dupire (1994) for further details. As a result

one normally �nds that the implied volatilities are not constant over time, which contradicts

the speci�cation of the stock price in (1.4). However, taking into account the simplicity of the

Black-Scholes model it is an outstanding benchmark. The only parameter to be estimated is the

volatility �, and thereafter closed form solutions for most contingent claims can quite easily be
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obtained. Hence, the derived contingent claim prices will depend upon the estimated volatility,

and therefore it is of course of great interest to know how sensitive the derived prices are to

mis-speci�cations of �. Clearly, the natural way to carry out this sensitivity analysis is to study

the derivative of the contingent claim prices with respect to the volatility, i.e. @�
@�

(�) which in

the �nancial �eld is known as the Vega index of the contingent claim. However, as we will show

in this paper, there are other ways as well. To see this, consider a generalized version of the

Black-Scholes model where the dynamics of the stock price are given by:

dS (t) = r (t)S (t) dt+ � (t)S (t)dV (t) ;

where r (�) and � (�) are strictly positive deterministic functions. The advantage of the general-

ized version is of course that we now can, more or less, calibrate the volatility structure to the

implied volatilities obtained from the prices of the traded options at the market. However, this

procedure gives us a set of implied volatilities for di�erent points in time, to which we have to �t

the continuous volatility function � (�), hence again we are interested in some kind of sensitivity

analysis. This time, though, things are not as obvious as before since we now would like to

take the derivative of the contingent claim prices with respect to the deterministic volatility

function. Clearly, this cannot be done so instead we have to consider directional derivatives.

However, depending upon in which direction we perturb the volatility function, we get di�erent

directional derivatives. Although the increasing complexity makes it harder to use the result

for classical sensitivity analysis, it gives us the possibility to address very speci�c questions like:

what happens to the contingent claim prices if the next two weeks will be a very unstable period,

or what happens to the contingent claim prices if the volatility will drop in a month as predicted

by a time series analysis. Of course, such questions are of great interest and arises naturally in

�nancial risk management. Hence, the conclusion to be drawn is that the commonly used Vega

index is not the only candidate for studying price variations due to changes in volatility.

The quantity we will propose to study is therefore the local Vega index:

@�"

@"
(0)

����
"=0

=
@

@"
B (T )�1EQ [G"]

����
"=0

;(1.5)

where now B (�) := exp
�R �

0
r (s) ds

�
. The contingent claim G" has the same form as G except

that the underlying security S (�) is replaced by the perturbed stock price S" (�) de�ned as the

solution to the stochastic di�erential equation:(
dS" (t) = r (t)S" (t)dt+ �" (t; S

" (t))dV (t)

S" (0) = S0
(1.6)

where �" (�; �) is a deterministic function such that the above equation has a unique a.s. strictly

positive pathwise solution. For technical convenience we assume throughout this paper that "

belongs to the compact set [0; �"] for some �" � 1, and that the following assumption, which we

will refer to as assumption A1, is satis�ed.
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Assumption (A1) The volatility �" (t; x) := � (t) x+"�̂ (t; x) � 0; satis�es 0 < �min � � (t) �
�max for all t 2 [0; T �], x � 0, and " � �". Furthermore, we assume that �̂ (t; x) is in�nitely

di�erentiable in x with bounded partial derivatives of any order uniformly in t, and that �" (t; x)

is bounded away from zero in a neighborhood of (0; S0) uniformly in ". The short interest rate

r (�) and �̂ (�; 0) are bounded functions.

Note that under A1 we allow the perturbations to be random. From a practical point of view

this may be interesting since it gives us the possibility to study di�erent scenarios. For instance

we could model an increase in anticipated volatility when the stock price reaches some threshold

level. Hence, assumption A1 is indeed very general, and in fact for some of the contingent claims

that are to be studied it is too general. We will therefore, sometimes, use the following stronger

conditions, which we will refer to as assumption A2.

Assumption (A2) r (t) = r, � (t) = �, and �̂ (t; x) = �̂ (t)x for all t 2 [0; T �] and x�0.
The deterministic measurable function �+ "�̂ (�) is strictly positive and bounded for all ". More

precisely we assume without loss of generality that 0 < �min � � + "�̂ (t) � �max for all "; t.

Note that under A2, we can intuitively relate the local Vega index to the usual Vega index

since the stock price S (�) according to (1.4) then corresponds to the case where " = 0 in (1.6).

For the sake of simplicity we will in this case denote S0 (�) simply by S (�) ; and we will use this

kind of convention for any quantity that depends on " when we are working under A2. However,

note that whenever we consider the operator @
@�
, as in the case of the Vega index, we assume

that the stock price is de�ned by (1.4).

The main question of interest is to study the new concept of local Vega index in (1.5) and

compute it when possible. Under A2, we will also study its relationship with the Vega index
@�
@�

(�) and give conditions on the deterministic function �̂ (�) for the two sensitivity indices to

coincide.

To motivate the study we consider a �nancial manager who is responsible for the trading

activity at some company. The manager is aware of the fact that mis-speci�cations or changes

of the volatility can drastically alter the balance of the trading activity. Therefore, the manager

may impose the restriction to the traders that together they must be more or less �Vega neutral�,

i.e.
P

i
@�i

@�
(�) � 0 where the sum is taken over every contingent claim traded by the company.

Hence, by following this strategy the manager is on average protected from volatility changes.

Now, let us suppose that one day the manager poses the question: what will happen to our

balance if the volatility will rise in two months due to a political meeting that will take place

just before. To answer such speci�c questions, we already know that we have to use directional

derivatives, hence in this case the manager should use a strategy setting
P

i

@�"
i

@"
(�)
���
"=0

� 0 and

set the local volatility function �̂ (�; �) according to previous analyses or beliefs. Consequently, it
is of course interesting to see if this new strategy will produce other results than the well-known
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Vega neutrality concept. The conclusion we will reach is that in some particular cases these two

strategies will give the same conclusions.

The relationship between the two approaches comes out rather straightforward if it is possible

to obtain a closed form solution for the expectation EQ [G"], however as we will see in the next

sections even if this is not the case we will still be able to compute the local Vega index and

relate it to the classical Vega index. Nevertheless, in order to start our analysis let us consider

an example where this relationship can be deduced easily.

Example 1.1 Let us consider a standard call option with payo� G" = max (S" (T )�K; 0) for

some constant strike price K and assume A2. It is easily veri�ed that at time 0 the price is

given by

�" (0) = S0N (d"1)� e�rTKN
�
d"1 �

p
�"
�
;

where N (�) denotes the cumulative distribution function of a standard normal random variable,

and d"1 is de�ned by

d"1 =
ln (S0=K) + rT + 1

2
�"

p
�"

; �" =

Z T

0

(� + "�̂ (t))2dt:

Straightforward calculations then gives, denoting ' (�) = dN
dx

(�), that

@�"

@"
(0)

����
"=0

= S0'
�
d01
� 1p

T

Z T

0

�̂ (t) dt ;
@�0

@�
(0) = S0'

�
d01
�p

T:

Finally, since @�
@� (0) = @�0

@� (0), we get the relationship

@�"

@"
(0)

����
"=0

=
1

T

Z T

0

�̂ (t) dt
@�

@�
(0) :

In fact there are a lot of interesting results that are worth to be pointed out in this very

simple example. First we see that the two approaches are identical if
R T
0
�̂ (t) dt = T for any

maturity T 2 [0; T �]. This implies that for standard call options the usual derivative @�
@�

(�) is
identical to the directional derivative with an uniform perturbation, i.e. �̂ (�) = 1 a.e.-� where

from now on � denotes the Lebesgue measure. In fact, as we will show in the forthcoming

sections, this is a result that is true in general and not only for standard options. Moreover, for

standard options the manager's personal belief about the future market behavior is irrelevant

as long as
R T
0
�̂ (t)dt = T . Hence, if the manager anticipates that the volatility will �rst drop

and then rise symmetrically around the uniform level �̂ (�) = 1, the result will be identical to

the converse scenario with a initial rise followed by a drop. This result, however, is not true for

other type of options as we will see later on. If on the other hand, the manager believes that

there will be signi�cant changes in the volatility, the two approaches can give quite di�erent

results.
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For all the options studied in this paper, the local Vega index can be expressed as a weighted

average of the perturbation in volatility. Under A2, the local Vega index is an average of this

perturbation multiplied by the classical Vega index. In particular, we will conclude that for

path-dependent options the change in option prices due to a perturbation of volatility decreases

in importance as maturity is approached. This is natural since the payo� of a path-dependent

option depends on the whole path of the stock price. Hence, a change of volatility at the

beginning of the time to maturity will a�ect almost the whole path of the underlying security,

while a change of volatility at the end of the time to maturity will only a�ect a small part of the

path of the stock price. In the case of the lookback option, we �nd in comparison to example

1.1, that not only the average of change in volatility is an important quantity that determines

the change in price, but also the modulus of continuity plays a role in the sensitivity analysis.

The type of results that we exposed here are also quite related with concepts of risk man-

agement for portfolios. In order to see this, let us consider the case where we can calculate

explicitly EQ [G] but not the perturbed expected value EQ [G"]. Under assumption A2 we show,

for example, that for all the options studied in this paper a local volatility change of the form

�̂ (�) � 0 implies the inequality � (0) � �" (0), see El Karoui et al. (1998) and Hobson (1997)

for related results. Consequently, if we use the lower bound � (0) as the initial amount of money

we can never obtain a perfect hedge of the contingent claim G". Therefore we study the problem

of maximizing a perfect hedge and we show that the local Vega index is an important quantity

in determining the speed at which the probability of maximizing a perfect hedge goes to one as

" goes to zero.

Since, the local Vega index measures the local change in prices due to a perturbation in

volatility in a quantitative manner, we can properly call it an index. Hence, a big value for this

index corresponds to a big change in the option price. This contrasts with the qualitative results

of El Karoui et al. (1998) and Hobson (1997).

To carry out the analysis in a general way we cannot assume that there exists a closed form

solution to the expected value EQ [G"]. Instead we will use the natural approach of derivation on

Wiener space. For this reason we introduce Malliavin calculus and in particular the integration

by parts formula in the next section. Malliavin calculus is a natural tool to use in �nance as

it gives information about hedging portfolios through the concept of stochastic derivation, see

e.g. Bermin (1998a), (1998b), and Karatzas and Ocone (1991). Recently, Malliavin calculus has

been applied in other areas through the integration by parts formula which allows for analysis

of non-smooth functions of smooth random variables, see e.g. Fournié et al. (1997) who used

this technique to study the numerical simulation of greeks.

It is a natural extension to obtain the formulas that we give in the next sections in a general

framework of underlying stock prices modelled by multi dimensional di�usion processes that

satisfy some type of Hörmander condition. As our interest, though, is to show that the concept

of sensitivity can be developed and computed explicitly we have decided to leave the extensions
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to another publication. The techniques to study higher order derivatives of option prices are of

course similar to the ones we use throughout the paper.

We start in Section 2 with some basic properties of Malliavin Calculus and stochastic �ows.

In Section 3.1 we consider so called simple options, i.e. European type options based on the

terminal value of the underlying security. In Section 3.2 we study the case of Asian type options

in order to show that the technique used in Section 3.1 can be extended to any path-dependent

option as long as the smoothness of the random variables involved is preserved. In Section 3.3 we

deal with a case where the random variables are not smooth. In particular we consider lookback

options that depend on the supremum of the path. We believe that the analysis for other path-

dependent options that are dependent on max-min values should be similar. In Section 4 we

try to �nd a further interpretation of the local Vega index. We investigate the probability of

perfect hedging in the case where a perfect hedge cannot be achieved. We prove that the rate of

convergence of such a probability, as the information on the volatility becomes revealed, is also

determined by the local Vega index. Finally we close with some conclusions and two Appendices.

2 Stochastic �ows and Malliavin calculus

In this section we give a brief account of some elementary properties of stochastic �ows and

Malliavin calculus. For far more general results see for instance Protter (1990) and Nualart

(1995) respectively. It is well-known that the unperturbed stock price S0 (�), according to (1.6),
admits the unique solution

S0 (t) = S0 exp

�Z t

0

�
r (s)� 1

2
� (s)2

�
ds+

Z t

0

� (s)dV (s)

�
; 0 � t � T �:

Since S0 (�) coincide with S (�) under A2, we see that S (t) = S0 exp
��
r � 1

2
�2
�
t+ �V (t)

�
and

consequently we can without ambiguity, for all t 2 [0; T �], de�ne the derivative processes:

dS

dS0
(t) = S (t) =S0 and

dS

d�
(t) = � [�t � V (t)]S (t) :(2.1)

In order to de�ne the derivative process of S" (�) with respect to ", we �rst use theorem 39

in Protter (1990) to ensure that we can always choose versions of fS" (t) : 0 � t � T �g which

are continuously di�erentiable with respect to " for each (t; !) 2 [0; T �] � 
. Now, we let the

stochastic process fZ" (t) : 0 � t � T �g denote the derivative process of S" (�) with respect to ",

de�ned as the solution to the stochastic di�erential equation:(
dZ" (t) = r(t)Z" (t)dt + �0"(t; S

" (t))Z" (t) dV (t) + �̂(t; S" (t))dV (t)

Z" (0) = 0
(2.2)

where �0" denotes the derivative with respect to the space variable.
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Lemma 2.1 The solution to the stochastic di�erential equation (2:2) is given by

Z" (t) = �
�Z t

0

E" (s)�1 �0" (s; S" (t)) �̂ (s; S" (s))ds�
Z t

0

E" (s)�1 �̂ (s; S" (s))dV (s)

�
E" (t) ;

where E" (t) := exp
�R t

0

�
r (s)� 1

2
�0" (s; S

" (s))2
�
ds+

R t
0
�0" (s; S

" (s))dV (s)
�
. Note especially

that

E0 (t) = exp

�Z t

0

�
r (s)� 1

2
� (s)2

�
ds+

Z t

0

� (s) dV (s)

�
=: S0 (t) =S0;

and in particular under A2:

Z0 (t) = �
�
�

Z t

0

�̂ (s) ds�
Z t

0

�̂ (s) dV (s)

�
S (t) :

Proof. The solution is constructed using theorem 52 in Protter (1990). However, the proof

can also be obtained directly from the Itô formula.

For the sake of simplicity we will from now on use the short hand notation Z (�) for Z0 (�)
just as for the stock prices whenever we are working under A2.

Remark 2.1 If we assume A2, and combine lemma 2:1 with (2:1), we see that a.s. for all

t 2 [0; T �], dS
d�

(t) = Z (t) if and only if
�
�
R t
0
�̂ (s) ds� R t

0
�̂ (s)dV (s)

�
= (�t � V (t)). This will

of course be the case only when �̂ (�) = 1. Hence, we recover the same result as we found in the

introductory example for standard options.

Now we introduce some concepts of Malliavin calculus. Note that under assumption A2, we

can work directly on the probability space (
;F ; Q) since the Brownian motions W (�) and V (�)
generate the same �ltration, see Karatzas and Ocone (1991) for details. In general though, this

does not have to be the case. However, since we will only deal with quantities in expectation

and all our stochastic di�erential equations have strong solutions, we can always change the

underlying probability space accordingly so that the concepts of Malliavin Calculus can be

applied there. We will do this if necessary without further mentioning.

We will use the following version of the integration by parts formula. Let the stochastic

variable F 2 D 1;2 (for de�nitions, see Nualart (1995)) and the stochastic process u (�) 2 dom(�),

then

EQ [F� (u)] = EQ

"Z T �

0

u (t)DtFdt

#
:

Here �(u) denotes the Skorohod integral of u (�) which coincides with the usual stochastic integral
if u (�) is adapted, while D� denotes the Malliavin derivative de�ned in D1;2 . We remind the

reader that Dt

R T �

0
g (s)dV (s) = g (t) for deterministic functions g (�) 2 L2 ([0; T �]), and that
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the usual chain rule applies in the sense that if  (�) is a deterministic Lipschitz function and F

is a stochastic variable in D 1;2 , having a density, then  (F ) 2 D 1;2 with

Dt (F ) =
d 

dx
(F )DtF:

In particular, it follows that DtS
0 (s) = �(t)S0 (s) 1t�s. Finally, we state the Clark-Ocone

formula which says that any FT -measurable stochastic variable F 2 D 1;2 has the representation

F = EQ [F ] +

Z T

0

EQ [DtF j Ft]dV (t) :

For more details about these concepts we refer the reader to Nualart (1995).

Remark 2.2 The space D 1;2 is a dense subspace of L2 (
;F ; Q) and therefore it is possible to

extend the Clark-Ocone formula. However, for F 2 L2 (
;F ; Q) we generally have to consider

D�F in the distributional sense, see e.g. Üstünel (1997) and Bermin (1998a).

3 The e�ect of local volatility changes

In this section we will start by proving a slight generalization of Example 1 using the tools

of derivation of stochastic �ows and the integration by parts formula of Malliavin calculus. In

particular, we analyze the change in prices due to anticipated volatility changes for di�erent kinds

of European contingent claims. The purpose is to compute the local Vega index @�"

@"
(0)
��
"=0

;

and under assumption A2 derive relations between the local Vega index and the classical Vega

index @�
@� (0). It will be shown that these relations depend very much on the speci�c contingent

claims that are treated. In order to de�ne di�erent kinds of contingent claims we need the

concept of a payo� function and here we follow El Karoui et al. (1998).

De�nition 3.1 A payo� function is a convex function � (�), de�ned on (0;1) and having

bounded one-sided derivatives, that is���0 (x�)
�� � C ; 8x;

for a positive constant C.

We recall that for any convex function � (�) : R+! R, there is a countable set N � R+ such

that � (�) is di�erentiable on R+nN and

�0 (x) = D+� (x) = D�� (x) ; x 2 R+nN;

where D+� (�) (respectively, D�� (�)) denotes the derivative of � (�) taken from the right (re-

spectively, from the left). The second derivative �00 (�) may not exist so we de�ne the second

derivative measure & (�) on (R;B (R)) by

& ([a; b)) = D�� (b)�D�� (a) ; �1 < a < b < +1;
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such that & (�) is positive and & (dx) = �00 (x) dx if �00 (�) exists. In general, & (dx) = �00 (x)dx+

m (dx), where m (�) is a positive measure which is singular with respect to the Lebesgue measure

and �00 (�) is de�ned as the second derivative of � (�) whenever it exists and zero otherwise. From
now on, though, we will use the second derivative in a formal sense and interpret expressions

like EQ [�00 (F )] with F being a random variable having a smooth density fF (�), by

EQ

�
�00 (F )

�
:=

Z 1

0

fF (x) & (dx) =

Z 1

0

fF (x)�00 (x)dx+

Z 1

0

fF (x)m (dx) :(3.1)

In general, our assertions do hold under greater generality for the behavior at in�nity of � (�)
but we will only remark this on each respective section.

3.1 Simple options

We say that a simple option is a contingent claim G" in the form � (S" (T )). Recall that in

example 1.1, �(x) = max(x � K; 0): If we for the moment assume that the payo� function is

su�ciently smooth then formal calculations yield:

@�"

@"
(0)

����
"=0

= B (T )�1EQ

�
�0
�
S0 (T )

�
Z0 (T )

�
;(3.2)

and

@�

@�
(0) = B (T )�1EQ

�
�0 (S (T ))

@S

@�
(T )

�
:

Hence, due to remark 2.1 we see that we only have to consider @�"

@" (0)
��
"=0

, since @�
@� (0) can

be obtained under A2 by just setting �̂ (�) = 1 in (3.2), i.e. under assumption A2, @�
@� (0) =

@�"

@"
(0)
��
"=0;�̂(�)=1

. An extension of this argument now gives us the following proposition, which

generalizes the results in example 1.1.

Proposition 3.1 For simple options, i.e. contingent claims with payo� � (S" (T )), we have

that

@�"

@"
(0)

����
"=0

=

Z T

0

EQ

�
�(s; T )�̂(s; S0(s))

�
�(s)ds;(3.3)

where � (�; T ) is a positive adapted process that is independent of �̂ (�; �) but depends on S0(�),
� (�) and its derivatives.

If we further assume A2 we have

@�"

@"
(0)

����
"=0

=
1

T

Z T

0

�̂ (t)dt
@�

@�
(0) .

11



Note that although the two formulas in the above proposition look somewhat di�erent, it is

straightforward to rewrite the second formula in the general form of (3.3).

Proof. Let us start by considering the case where the payo� function � (�) is in�nitely

continuously di�erentiable with bounded derivative. Using lemma 2.1 and the integration by

parts formula we have from (3.2) that

@�"

@"
(0)

����
"=0

= �B (T )�1EQ

�
�0
�
S0 (T )

�E0(T ) Z T

0

E0(s)�1�̂ �s; S0(s)
�
�(s)ds

�
Z T

0

E0(s)�1�̂ �s; S0(s)
�
dV (s)

�

= �B (T )�1EQ

�Z T

0

�0
�
S0 (T )

�E0(T )E0(s)�1�̂ �s; S0(s)
�
�(s)ds

�

+B (T )�1EQ

�Z T

0

Ds

�
�0
�
S0 (T )

�E0(T )�E0(s)�1�̂ �s; S0(s)
�
ds

�
:

Moreover, from the identity E0 (�) = S0 (�) =S0, the chain rule, and the fact that DtS
0 (s) =

�(t)S0 (s) 1t�s, we also see that

Ds

�
�0
�
S0 (T )

�E0(T )� = E0(T )Ds�
0
�
S0 (T )

�
+ �0

�
S0 (T )

�
DsE0(T )

= E0 (T )�00
�
S0 (T )

�
�(s)S0 (T ) + �0

�
S0 (T )

�
�(s)E0(T ):

Hence,

@�"

@"
(0)

����
"=0

= B (T )�1
Z T

0

EQ

�
S0 (T )�00

�
S0 (T )

�E0(T )E0(s)�1�(s)�̂ �s; S0(s)
��
ds;(3.4)

and consequently, it follows that

�(s; T ) = B (T )�1EQ

h
S0 (T )2�00

�
S0 (T )

� jFs

i
S0(s)�1:

In the case that where we assume A2 we have

@�"

@"
(0)

����
"=0

= B (T )�1EQ

h
S (T )2�00 (S (T ))

i
�

Z T

0

�̂ (s)ds;

and in particular

@�

@�
(0) =

@�"

@"
(0)

����
"=0;�̂(�)=1

= B (T )�1EQ

h
S (T )2�00 (S (T ))

i
�T;

from which the relationship between the local Vega index and the classical Vega index is obtained.

Finally, we need to verify that (3.4) remain true for general payo� functions as in de�nition

3.1. It is a standard result, see e.g. Rudin (1976) theorem 7.17, that if there exists a sequence of

functions f�"
n (0)g di�erentiable with respect to " such that �0

n (0) ! �0 (0) and the sequence

of derivatives
n
@�"

n

@"
(0)
o
converges uniformly in ", then @�"

@"
(0) = limn!1

@�"
n

@"
(0).
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We de�ne �"
n (0) = B (T )�1EQ [�n (S

" (T ))], where we let f�n (�)g be a sequence of in�nitely
continuously di�erentiable functions with bounded derivatives, i.e. in C1

b . Given assumption

A1, the payo� � (S" (T )) is square integrable for any ", which is identical to saying that the

payo� function � (�) is in L2 (�") where �" is the measure de�ned by �" (A) = Q (S" (T ) 2 A).
Furthermore, the corresponding density function, denoted f " (�), exists and is smooth, and one

obtains (after a slight modi�cation of the proof of Theorem 3.1 in Taniguchi (1985)) that if we

de�ne the function

~f (x) =

(
C exp

�
�C [ln (x)]2

�
; x > x0

C1 ; x � x0

then there exist constants C;C1; and x0 independent of " such that f " (�) � ~f (�) for all ". Now,
de�ning the measure ~� by ~� (A) =

R
A
~f (x)dx we see that � (�) 2 L2 (~�) ) � (�) 2 L2 (�").

Consequently, since the space C1
b is a dense subspace of L2 (~�) we can always chose a sequence

�n (�)! � (�) in L2 (~�) (and therefore also in L2 (�") for any "). Trivially, we have that

lim
n!1

���0
n (0)� �0 (0)

�� � lim
n!1

B (T )�1
�Z 1

0

(�n (x)� � (x))2 f0 (x)dx

� 1

2

� B (T )�1 lim
n!1

�Z 1

0

(�n (x)� � (x))2 ~f (x)dx

� 1

2

= 0:

By using the integration by parts on (3.2) we have that

@�"
n

@"
(0) = B (T )�1EQ

�
�0
n (S

" (T ))Z" (T )
�
= B (T )�1EQ [�n (S

" (T ))H" (T )] ;

for some random variable H" (T ) 2 Lp (
;F ; Q) uniformly in " and for all p > 1. Consequently,

with k�k2 denoting the norm in L2 (
;F ; Q) we get

lim
n!1

sup
"

����@�"
n

@"
(0)�B (T )�1EQ [� (S" (T ))H" (T )]

����
� lim

n!1
sup
"
B (T )�1

�Z 1

0

(�n (x)� � (x))2 f " (x)dx

� 1

2

kH" (T )k2

� B (T )�1 lim
n!1

�Z 1

0

(�n (x)� � (x))2 ~f (x)dx

� 1

2

sup
"
kH" (T )k2

= 0:

This proves that the expression @�"

@"
(0)
��
"=0

is well de�ned and that in the particular case where

we assume A2, we get: @�"

@" (0)
��
"=0

= limn!1
@�"

n

@" (0)
���
"=0

= limn!1
1
T

R T
0
�̂ (t)dt@�n

@� (0) =

1
T

R T
0
�̂ (t) dt@�@� (0). To �nish the proof in the general case we need to de�ne the adapted process
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� (�; T ) and show that it is a.s. positive. For this let us write (3.4) as:

@�"
n

@"
(0)

����
"=0

= B (T )�1
Z T

0

EQ

h
EQ

h
S0 (T )2 �00

n

�
S0 (T )

� ��S0 (s)
i
S0(s)�1�̂

�
s; S0(s)

�i
�(s)ds:

We need to show that EQ

h
S0 (T )2 �00

n

�
S0 (T )

� ��S0 (s)
i
:=
R1
0
y2�00

n (y) pT
�
y
��S0 (s)

�
dy con-

verges to a positive adapted process. Here we let pT
�
y
��S0 (s)

�
denote the conditional density

of S0 (T ) given S0 (s). Using integration by parts and then passing to the limit we obtainZ 1

0

y2�00
n (y) pT

�
y
��S0 (s)

�
dy !

Z 1

0

y2pT
�
y
��S0 (s)

�
d& (y) Q-a.s.

The right hand side is positive and equal to EQ

h
S0 (T )2�00

�
S0 (T )

� ��S0 (s)
i
in the formal sense

of (3.1). Therefore the positive adapted process � (�; T ) is de�ned just as before.

Remark 3.1 Note that the above formulas are satis�ed in greater generality. Under the as-

sumption A2 we only need � (�) to be an element of L2(#) where # is a measure dominating

all the measures �". In particular, if � (�) is any measurable function with polynomial growth at

in�nity, the relationship between the local Vega and the classical Vega index is maintained. In

the general case one could also allow some �exibility for � (�) but then the expression of the local

Vega index starts to depend on the derivatives of �̂ (t; �).

By considering the general case, assumption A1, we obtain a little bit more information

about the local volatility �̂ (�; �) than what could be extracted from example 1.1. For instance,

the expression (3.3) also says that there is a trade-o� between the size of volatility and the

permissible amount of mis-speci�cation of it. In other words, the local Vega index will be the

same in the following two cases: First, one allows �̂ (�; �) to be big when � (�) is small and second

one allows � (�) to be big when �̂ (�; �) is small.

A natural question to pose is whether the local Vega index is positive or negative. For the

sake of simplicity let us assume A2. It is easily veri�ed that for simple options @�
@�

(0) � 0, and

therefore a su�cient condition for @�"

@"
(0)
��
"=0

� 0 is that
R T
0
�̂ (t)dt � 0. Furthermore, this also

implies that �" (0) � � (0) for " small enough.

Now, let us try to answer the following question: when is the price �1 (0) greater or equal than

� (0). Note that the �rst price corresponds to the case where the stock has the volatility �+�̂ (�),
while the second price corresponds to the case where the stock has the volatility �. As shown

in El Karoui et al. (1998) a condition for �1 (0) � � (0) is that 0 � R T
0

h
2��̂ (t) + �̂ (t)2

i
dt. We

will hint that this is only a su�cient condition and present an equivalent condition by using the

concept of the local Vega index.

Following the proof of proposition 3.1 we easily �nd that

@�"

@"
(0) = C"

Z T

0

[� + "�̂ (t)] �̂ (t) dt:
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where the positive constant C" = B (T )�1EQ

h
�00 (S" (T ))S" (T )2

i
. Moreover, it follows from

the Fubini theorem that

�1 (0)�� (0) =

Z 1

0

@�"

@"
(0)d"

=

Z 1

0

C"d"

�Z T

0

�
� + �C�̂ (t)

�
�̂ (t)dt

�
;

where �C =
R 1
0
"C"d"=

R 1
0
C"d". Hence, we see that 0 � R T

0

h
��̂ (t) + �C�̂ (t)2

i
dt if and only if

�1 (0) � � (0).

3.2 Asian options

We say that an Asian option is a contingent claim G" in the form �
�R T

0
w(t)S" (t) dt

�
. Here w (�)

is a bounded measurable positive weight function, such that w (t) � w0 > 0 in a neighborhood

around zero. Note that in this case there exists no closed solution for the price of the option and

therefore there is no straightforward way of computing the sensibility indices we are interested

in.

Just as in the previous example we will start by assuming that � (�) is in�nitely continuously

di�erentiable with bounded derivatives. The general case will then be obtained by density argu-

ments. Moreover, it is straightforward to show that we can interchange the order of integration

and derivation since all the operators involved are linear. Hence, formal calculations yield:

@�"

@"
(0)

����
"=0

= B (T )�1EQ

�
�0

�Z T

0

w(t)S0 (t) dt

�Z T

0

w(t)Z0 (v)dv

�
;

and

@�

@�
(0) = B (T )�1EQ

�
�0

�Z T

0

w(t)S (t) dt

�Z T

0

w(v)
@S

@�
(v)dv

�
:

Again we see that we only have to consider @�"

@"
(0)
��
"=0

, since @�
@�

(0) can be obtained by assuming

A2 and setting �̂ (�) = 1, i.e. under A2, @�
@� (0) = @�"

@" (0)
��
"=0;�̂(�)=1

.

Proposition 3.2 For Asian options, i.e. contingent claims with payo� �
�R T

0
w(t)S" (t) dt

�
,

we have that

@�"

@"
(0)

����
"=0

=

Z T

0

E
�
�(s; T )�̂(s; S0(s))

�
�(s)ds;

where � (�; T ) is a positive adapted process that is independent of �̂ (�; �) but depends on � (�) and
its derivatives, and on the past of S0 (�) and w (�).
Furthermore, if one assumes A2 then

@�"

@"
(0)

����
"=0

=

Z T

0

��(s; T )�̂ (s) ds
@�

@�
(0) ;
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where

��(s; T ) =

EQ

�
�00
�R T

0
w(t)S (t)dt

��R T
s
w(t)S (t) dt

�2�
R T
0
EQ

�
�00
�R T

0
w(t)S (t) dt

��R T
s
w(t)S (t) dt

�2�
ds

;

and ��(�; T ) is a decreasing density function such that lim
s!T

��(s; T ) = 0. 1

It can be shown that the pair
�R T

0
w(t)S (t)dt;

R T
s w(t)S (t) dt

�
has a smooth joint density

for all s 2 [0; T ] and therefore the function �� (�; T ) is well de�ned in the formal sense of (3.1).

Proof. We start by considering the case where the payo� function � (�) is in�nitely continuously
di�erentiable with bounded derivatives. First note that

@�"

@"
(0)

����
"=0

= B (T )�1
Z T

0

EQ

�
�0

�Z T

0

w(t)S0 (t) dt

�
w(s)Z0 (s)

�
ds

= �B (T )�1
Z T

0

EQ

�
�0

�Z T

0

w(t)S0 (t) dt

��Z s

0

E0 (u)�1 �(u)�̂ �u; S0 (u)
�
du

�
Z s

0

E0 (u)�1 �̂ �u; S0 (u)
�
dV (u)

�
E0 (s)

�
w(s)ds

= B (T )�1
Z T

0

Z s

0

EQ

�
�00

�Z T

0

w(t)S0 (t) dt

�Z T

u

w(v)�(u)S0(v)dvE0 (s) �

�E0(u)�1�̂ �u; S0 (u)
��
duw(s)ds:

The last equality follows from the fact that by using the integration by parts formula, we see

that

EQ

�
�0

�Z T

0

w(t)S0 (t)dt

�
E0 (s)

Z s

0

E0(u)�1�̂ �u; S0 (u)
�
dV (u)

�
;

is equal to

EQ

�Z s

0

Du

�
�0

�Z T

0

w(t)S0 (t)dt

�
E0 (s)

�
E0(u)�1�̂ �u; S0 (u)

�
du

�
;

where in addition

Du

�
�0

�Z T

0

w(t)S0 (t) dt

�
E0(s)

�
= �0

�Z T

0

w(t)S0 (t) dt

�
DuE0(s)

+E0(s)Du�
0

�Z T

0

w(t)S0 (t) dt

�

= �0

�Z T

0

w(t)S0 (t) dt

�
�(u)E0(s)1u�s

+E0(s)�00

�Z T

0

w(t)S0 (t) dt

�
�(u)

Z T

u

w(t)S0 (t) dt;

1From here and on we interpret 0

0
= 0 for all the density functions.
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as Du

R T
0
w(t)S0 (t) dt =

R T
0
w(t)DuS

0 (t) dt =
R T
0
w(t)�(u)S0 (t)1u�tdt = �(u)

R T
u
w(t)S0 (t)dt.

Now, by changing the order of integration we get the representation

@�"

@"
(0)

����
"=0

= B (T )�1
Z T

0

EQ

�
�00

�Z T

0

w(t)S0 (t)dt

�
�(u)E0(u)�1�̂ �u; S0 (u)

� �
�
Z T

u

w(v)S0(v)dv

Z T

u

E0 (s)w(s)ds
�
du.

This equation shows that the adapted positive process � (�; T ) should be de�ned as

�(u; T ) = B (T )�1 S0(u)�1EQ

"
�00

�Z T

0

w(t)S0 (t) dt

��Z T

u

w(v)S0(v)dv

�2
jFu

#
,

since by de�nition E0 (�) = S0 (�) =S0.
In order to show that the expression for @�"

@"
(0)
��
"=0

remains true for general payo� functions

as in de�nition 3.1, one proceeds as in the proof of proposition 3.1. The properties needed are

proved in Appendix B.

Finally, by assuming A2, one proves as before the relationship between the classical and local

Vega index.

We observe that the relations are qualitatively similar to the ones in Proposition 3.1. There-

fore similar remarks as those already made are valid for this case too. In particular, under

assumption A2 one �nds similar to the previous section that there exists a positive decreasing

density function ��" (�; T ) such that

�1 (0)�� (0) =

Z 1

0

Z T

0

��" (s; T ) �̂ (s) (� + "�̂ (s))dsd"

=

Z T

0

C (s) �̂ (s) � + �C (s) �̂ (s)2 ds

for certain positive deterministic functions C (�) and �C (�). In Appendix A we show in particular

that �1 (0) � � (0) if �̂ (�) � 0.

By choosing particular forms for the weight function w (�) one can study properties of other

Asian type options such as, for instance, discretely monitored Asian options. Needless to say,

this is of great importance since every Asian option traded at the market is discretely monitored,

i.e. in the form � (
Pn

i=1 h(ti)S
" (ti)) rather than �

�R T
0
w(t)S" (t) dt

�
. Note also that the weight

function is easily extended to the multi dimensional case.

3.3 Lookback options

So far, we have treated somewhat smooth functionals of the underlying asset. Now we concen-

trate on the case of an option based on an irregular functional such as the maximum process.

As a consequence, the techniques used in the previous section cannot be used in this case due to
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the lack of smoothness of the maximum process. In order to solve this problem without having

to worry about other technicalities, we assume A2 throughout this section.

We say that a lookback option is a contingent claim whose payo� function G" is in the form

�
�
sup0�t�T S

" (t)
�
for some payo� function. (Actually it is also possible to de�ne lookback op-

tions as contingent claims in the formG" = � (inf0�t�T S
" (t)), however, for notational simplicity

we do not consider this case). This time, though, it is not obvious that we can interchange the

order of integration and derivation since the running maximum process is highly path-dependent

and non-smooth. Moreover, the problem is that we do not have a closed form expression for the

derivative with respect to " of the running maximum process and therefore we cannot simply

use formal calculations to obtain a relationship between the two approaches. However, as shown

in Appendix A, we still have the inequality �" (0) � � (0) if the local volatility change is of the

form �̂ (�) � 0 and �0 (0) � 0.

Proposition 3.3 For lookback options, i.e. contingent claims with payo� �
�
sup0�t�T S

" (t)
�
,

we have that

@�

@�
(0) =

@�"

@"
(0)

����
"=0;�̂(�)=1

@�"

@"
(0)

����
"=0

=

Z T

0

��(s; T )�̂ (s)ds
@�

@�
(0)

where the density function ��(�; T ) is given by

��(s; T ) =
EQ

�
�0
�
sup0�t�T S (t)

�
sup0�t�T S (t)

�
2r
� 1s�� +X

��
R T
0
EQ

�
�0
�
sup0�t�T S (t)

�
sup0�t�T S (t)

�
2r
�
1s�� +X

��
ds
:

The random time � is implicitly de�ned by the relation sup0�t�T S (t) = S (�) and X is an

appropriate random variable that belongs to Lp (
;F ; Q) for any p. Furthermore, if � (�) is

monotone then �(�; T ) is decreasing and if �0 (0) � 0 then lims!T � (s; T ) � 0.

Before giving the proof we present an auxiliary lemma. For the proof, see Seshadri (1988).

Lemma 3.4 Let a and c be real numbers. Suppose that W (�) is a Brownian motion and let the

process X (�) be de�ned by:

X (t) = sup
0�s�t

(aW (s) + cs) :

Let U be a centered Gaussian stochastic variable with variance t, and let F be an exponential

stochastic variable with parameter (2t)�1 independent of U . Put

Y =
1

2

�
aU + ct+

q
a2F + (aU + ct)2

�
:

Then the pairs (W (t) ; X (t)) and (U; Y ) have identical distributions
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Now we are ready to do the proof of proposition 3.3.

Proof. In the proof we will assume directly that the payo� function � (�) is in the form of

de�nition 3.1. Let us start by de�ning the stochastic integral M " (�) :=
R �
0
(� + "�̂ (s))dV (s)

and the quadratic variation process hM "i� =
R �
0
(� + "�̂ (s))2 ds. It follows from (1:6) that

sup
0�t�T

S" (t) = S0 exp

 
sup

0�t�T
A" (t)

!
;

with A" (t) = rt � 1
2
hM "it + M " (t). Moreover, since t =

R hM"i�1t

0
(� + "�̂ (s))2 ds implicit

derivation with respect to t yields that
dhM"i�1t

dt
=
�
� + "�̂(hM "i�1t )

��2
. Consequently we have

A"
�hM "i�1t

�
=

Z t

0

r�
� + "�̂(hM "i�1s )

�2ds� 1

2
t+M "(hM "i�1t )

=

Z t

0

h" (s)ds+

�
r

�2
� 1

2

�
t+ �B (t) ;

where by de�nition �B(t) =M "(hM "i�1t ) and h"(s) = � r"�̂(hM"i�1s )(2�+"�̂(hM"i�1s ))

�2(�+��̂(hM"i�1s ))
2 . In particular,

note that �B (�) is a Q-Brownian motion, see e.g. Karatzas and Shreve (1988) page 174. Therefore

the problem is reduced to �nding the derivative with respect to " of

�" (0) = B (T )�1EQ

"
�

 
sup

0�t�T
S" (t)

!#

= B (T )�1EQ

"
�

 
S0 exp

 
sup

0�t�T

Z hM"it

0

h" (s)ds+ chM "it + �B (hM "it)
!!#

= B (T )�1EQ

"
�

 
S0 exp

 
sup

0�t�hM"iT

Z t

0

h" (s) ds+ ct + �B (t)

!!#
;

where we have set c = r
�2
� 1

2
. Now using the Girsanov theorem we see that the expectation in

the above expression is equal to

EQ"

"
dQ

dQ"
�

 
S0 exp

 
sup

0�t�hM"iT

ct+ V " (t)

!!#
;(3.5)

where V " (�) := R �
0
h" (s) ds+ �B (�) is a Q"-Brownian motion and

dQ

dQ"
= exp

 
�1

2

Z hM"iT

0

h"(t)2dt�
Z hM"iT

0

h"(t)dV " (t)

!
:

Hence, in order to �nd the derivative of (3.5) we have to compute the limit when "! 0 of:

"�1

 
EQ"

"
dQ

dQ"
�

 
S0 exp

 
sup

0�t�hM"iT

ct+ V " (t)

!!#
�EQ

"
�

 
sup

0�t�T
S (t)

!#!
:

19



By construction V " (�) will remain a Q"-Brownian motion for all values of ", and therefore we

may just as well consider

"�1

 
E

"
exp

 
�1

2

Z hM"iT

0

h"(t)2dt �
Z hM"iT

0

h"(t)dW (t)

!
� (Z")

#
� E

�
�
�
Z0
��!

;

where Z" := S0 exp
�
sup0�t�hM"iT

ct+W (t)
�
and W (�) is a canonical Brownian motion in-

dependent of V (�) ; V " (�), and �B (�). Note that it follows from a change of variables that

Z0 L
= sup0�t�T S (t). Now, we rewrite the above expression as

"�1E

" 
exp

 
�1

2

Z hM"iT

0

h"(t)2dt�
Z hM"iT

0

h"(t)dW (t)

!
� 1

!
� (Z")

#

+"�1
�
E [� (Z")]� E

�
�
�
Z0
���

;(3.6)

where as before c = r
�2
� 1

2
. According to lemma 3.4, we have for all " the alternative charac-

terization:

Z" L
= S0 exp

�
1

2

�
U " + chM "iT +

q
F " + (U " + chM "iT )2

��
=: Y ";(3.7)

where U " =
p
hM "iT �A with A s N (0; 1), and F " = 2hM "iT �B with B s exp (1). From this

representation though one easily obtains that the second limit exists and is given by the usual

derivative

@

@"
E [� (Z")]

����
"=0

=
@

@"
E [� (Y ")]

����
"=0

:

Now, we would like to interchange order of derivation and integration and to justify this we

recall that a convex function (our payo� function) is almost everywhere di�erentiable. Moreover,

according to (3.7) the argument of � (�) has a density and therefore the above derivative is given

by:

E

"
�0
�
Y 0
�
Y 01

2

Z T

0

�̂ (s)ds

(
T�

1

2A+ 2�c+

�
2�2TB +

�
�
p
TA+ c�2T

�2�� 1

2

�

�
�
2�B +

�
�
p
TA+ c�2T

��
T�

1

2A+ 2�c
��oi

;

which can be written as E
h
X̂�0

�
Y 0
�
Y 0
i R T

0
�̂ (s) ds; for some appropriate random variable X̂

that does not depend on �̂ (�). Finally, by using (3.7) and the relation Z0 L
= sup0�t�T S (t), we

conclude that the second limit is given by

EQ

"
X�0

 
sup

0�t�T
S (t)

!
sup

0�t�T
S (t)

#Z T

0

�̂ (s) ds;

where X is an appropriate copy of X̂ in the space (
;F ; Q).
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The limit of the �rst term in (3:6) exists and is equal to

E

"Z �2T

0

2r�̂
�
s=�2

�
�3

dW (s)�
�
Z0
�#
:(3.8)

The way to obtain the result is to use the relation ex� 1 = x+ ex0x2=2 for some x0 2 [0; x], and

noting that "�1
R hM"iT
0

h"(t)2dt ! 0 and � (Z") ! �
�
Z0
�
when " ! 0. Here the convergence

is in the sense of almost surely, and also in L2 (
). Therefore, we only have to verify that�����"�1 R hM"iT
0

h"(t)dW (t)� R �2T
0

2r�̂(s=�2)
�3

dW (s)

���� ! 0 a.s. when " ! 0, since higher order

terms vanishes. Inserting the expression for h"(�) and doing some algebra we �nd that

�"�1
Z hM"iT

0

h"(t)dW (t)�
Z �2T

0

2r�̂
�
s=�2

�
�3

dW (s) ;

equals

Z hM"iT

0

2r
�
�̂
�hM "i�1s

�� �̂ �s=�2��
�
�
� + "�̂

�hM "i�1s
��2 dW (s) � "�1

Z hM"iT

�2T

h" (s)dW (s) +O (") :

This expression though, goes to zero almost surely if �̂ (�) is a continuous function since hM "i�1s !
s=�2. Now, consider the case where �̂ (�) 2 L2 ([0; T �]). It is easily shown that (3.8) is true if we

can prove that lim "!0

R hM"iT
0

�
�̂
�hM "i�1s

�� �̂ �s=�2��2 ds = 0. First, note that we can always

�nd a sequence of continuously di�erentiable functions ff� (�)g such that
R T
0
[�̂ (s)� f� (s)]

2 ds �
� for any �. Therefore

Z hM"iT

0

�
�̂
�hM "i�1s

�� �̂
�
s=�2

��2
ds � C

 Z hM"iT

0

�
�̂
�hM "i�1s

�� f�
�hM "i�1s

��2
ds

+

Z hM"iT

0

�
f�
�
s=�2

�� f� �hM "i�1s
��2

ds

+

Z hM"iT

0

�
f�
�
s=�2

�� �̂ �s=�2��2 ds
!

� C

 
2�+

Z hM"iT

0

�
f�
�
s=�2

�� f� �hM "i�1s
��2

ds

!
;

for some constant C, from which (3.8) follows.

Finally, we want to rewrite (3.8) using the integration by parts formula in order to identify

a density function just like in the case of the previous studied contingent claims. However, note

that after a time change and a change of probability space we can express (3.8) as

EQ

"Z T

0

2r�̂ (u)

�
dV (u)�

 
sup

0�s�T
S (s)

!#
:
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Since � (�) is a convex function with bounded derivatives it is also a Lipschitz function. Moreover,

the maximum of the stock price has a density and belongs to the space D 1;2 . Consequently,

�
�
sup0�s�T S (s)

� 2 D
1;2 , see Nualart (1995) for details, and the usual chain rule applies.

Hence, we can rewrite (3.8) as

2r

�
EQ

"Z T

0

�̂ (u)�0

 
sup

0�s�T
S (s)

!
Du sup

0�s�T
S (s)du

#
:(3.9)

The Malliavin derivative Du sup0�s�T S (s) = � sup0�s�T S (s) 1u�� where � is the random time

where the maximum is achieved, see for instance Bermin (1998a). Hence, we get the expression

@�"

@"
(0)

����
"=0

= B (T )�1
Z T

0

EQ

"
�0

 
sup

0�t�T
S (t)

!
sup

0�t�T
S (t)

�
2r

�
1u�� +X

�#
�̂ (u)du:

Now, if we repeat the above calculations for the case of the derivative @�
@�

(0), we �nd that

@�

@�
(0) =

@�"

@"
(0)

����
"=0;�̂(�)=1

from which we conclude that there exists a density function �� (�; T ) as stated in the proposition.

In order to verify the decreasing property of �� (�; T ) whenever � (�) is monotone, we start

by considering the case where the payo� function � (�) is increasing. The �rst derivative, which
exists almost everywhere, then is non-negative. Consequently,

EQ

"
�0

 
sup

0�t�T
S (t)

!
sup

0�t�T
S (t)

2r

�
1s��

#

is decreasing since the set over which we integrate, i.e. fs � �g, is decreasing. For the case

where the payo� function � (�) is decreasing we note that ��0 (�) is non-negative and the same

arguments apply thanks to the denominator in the expression for �� (�; T ). Moreover, if we

consider a local volatility change �̂ (�) � 0, then according to Appendix A, @�"

@"
(0)
��
"=0

and

consequently also @�
@�

(0), are non-negative. As a conclusion we �nd that the density function

�� (�; T ) is non-negative as well.
To get a little bit more intuition of the way the local Vega index and the classical Vega index

are related one to the other, we present the following result.

Corollary 3.5 For lookback options we have the alternative characterization

@�"

@"
(0)

����
"=0

=
1

T

Z T

0

�̂ (t) dt
@�

@�
(0) +

2r

�2
e�rT �

�EQ

"
�

 
sup

0�s�T
S (s)

!�Z T

0

�̂ (t) dV (t)� V (T )
1

T

Z T

0

�̂ (t)dt

�#
:
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In particular if �̂ (�) is di�erentiable, then

@�"

@"
(0)

����
"=0

=
1

T

Z T

0

�̂ (t)dt
@�

@�
(0) +

2r

�2
e�rT �

�EQ

"
�

 
sup

0�s�T
S (s)

!�
V (T )

1

T

Z T

0

(�̂ (T )� �̂ (t))dt�
Z T

0

d�̂

dt
(t)V (t) dt

�#
:

Proof. From the previous proof we have that

@�"

@"
(0)

����
"=0

= B (T )�1EQ

"Z T

0

2r�̂ (s)

�2
dV (s) �

 
sup

0�t�T
S (t)

!#

+

Z T

0

E

"
X�0

 
sup

0�t�T
S (t)

!
sup

0�t�T
S (t)

#
�̂ (s) ds;

which together with the property @�
@�

(0) = @�"

@"
(0)
��
"=0;�̂(�)=1

yield the �rst part of the proof.

The second part then follows by using the integration by parts formula for stochastic integrals.

Note that this last statement shows the dependence on the way the anticipated volatility

structure changes. For example if one considers �̂ (t) = �11(t � T=2)+ �21(t > T=2), one �nds

that the local Vega index is given by

@�"

@"
(0)

����
"=0

=
�2 + �1

2

@�

@�
(0) +

re�rT

�2
(�1 � �2)EQ

"
�

 
sup

0�s�T
S (s)

!�
V

�
T

2

�
� V (T )

2

�#
:

The second term could be positive or negative according to what the values for �1 and �2 are,

which shows a clear dependence of the behavior of the price on the modulus of continuity of

the local change in volatility. Note that if we assume �0 (0) � 0 then according to Appendix

A, �" (0) � � (0) and consequently the local Vega index and the Vega index are both positive.

Moreover, by using the integration by parts formula and setting MS
T := sup0�s�T S (s) for

notational simplicity, we �nd that the above expectation equals:

�

2

Z T=2

0

EQ

�
�0
�
MS

T

�
MS

T 1t��

�
dt� �

2

Z T

T=2

EQ

�
�0
�
MS

T

�
MS

T 1t��

�
dt:

This expression is positive since the integrand EQ

�
�0
�
sup0�s�T S (s)

�
sup0�s�T S (s)1t��

�
is a

decreasing function as shown in the �nal part of the proof of proposition 3.3. Hence, this little

toy example clearly shows that a perturbation of volatility close to maturity (take for instance

�1 = 0 and �2 = 1) has less e�ect on the option prices than a similar perturbation at the

beginning of the time interval (�1 = 1 and �2 = 0).
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4 Extensions on hedging of European options

There are two aspects regarding the hedging problems that one may think of after the local

change in volatility has been studied. One is how much more money is needed to put into the

hedging strategy2 in order to cover for the change in volatility. This question is answered by

analyzing the quantity @2�"

@"@S0
(0)
���
"=0

, which of course can be carried out using similar calculations

as the ones showed in the previous sections. The other question, though, is known as the goal

problem and in our study it takes the form: given that we cannot or are not willing to add more

money into the hedging portfolio what is the strategy to follow so that the chances of being

able to cover the option are the highest? This question has been partly answered, although in

a somewhat di�erent setting, by Kulldor� (1993). Here, we brie�y extend the results to time

dependent volatility. The following analysis will be carried out under assumption A2 since the

general case does not seem to lead to a tractable problem. We assume that the contingent claims

to be studied are square integrable.

4.1 The goal problem

Let us start by giving a short resumé and a little extension of the goal problem. We refer to

Karatzas (1996) for details and further references. Let us recall that the discounted value process

of a self �nancing portfolio is given by the expression

B (�)�1Xx0;� (�) = x0 +

Z �

0

B (s)�1 � (s)� (s) dV (s) ; � (t) := � + "�̂ (t) :(4.1)

Here x0 is the initial wealth in our portfolio, i.e. x0 = Xx0;� (0), and the strategy � (�) represents
the amount of money that is invested in the stock at each point in time. Of course we require � (�)
to be an F-adapted process. According to the extended Clark-Ocone formula any FT -measurable

contingent claim G" 2 L2 (
;F ; Q) can be expressed as

B (T )�1G" = B (T )�1EQ [G"] +

Z T

0

B (s)�1 �� (s) � (s)dV (s) ;

where �� (t) = � (t)�1B (t)B (T )�1EQ [DtG
"j Ft] a.s. for all t 2 [0; T ]. Hence, starting with the

initial wealth u0 := �" (0) = B (T )�1EQ [G"] and using the strategy �� (�) we will at maturity

obtain a perfect hedge, i.e. Xu0;�� (T ) = G" almost surely. Moreover, in this case B (�)�1Xu0;�� (�)
is a Q-martingale and consequently the fair price ofG", i.e. the price consistent with no arbitrage

opportunities, is given by Xu0;�� (t) := B (t)B (T )�1EQ [G"j Ft].

Now, suppose that our initial wealth x0 is less than the money required to obtain a perfect

hedge, i.e. we assume 0 < x0 � u0, then as we can no longer obtain a perfect hedge we will

2Note that when hedging a contingent claim, the number of units to be held in the underlying asset at each

point in time, is given by the derivative of the option price with respect to the stock price.
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instead try to maximize the probability of a perfect hedge:

p (") := sup
�(�) tame

Xx0+u0 ;�(T )�G"
a.s.

P
�
Xx0;� (T ) � G"

�
:

Note that in the case of a perfect hedge Xu0;�� (T ) = G" 2 L2 (
;F ; Q), which implied that

B (�)�1Xu0;�� (�) was a Q-martingale. However, in this situation we do not have a terminal value

for Xx0;� (�) and therefore we have to impose the condition that � (�) is a tame strategy meaning

that the process
R �
0
B (s)�1 � (s) � (s)dV (s) is a.s. uniformly bounded from below by some real

constant. By using Fatou's lemma we see that the discounted value process B (�)�1Xx0;� (�) is
a Q-supermartingale whenever the portfolio � (�) is tame, and in this case we also have that

P
�
Xx0;� (T ) � G"

�
= P

�
B (T )�1Xx;� (T ) � 1

�
;

where x = x0=u0 2 [0; 1] and � (�) = [� (�)� �� (�)] =u0, such that � (�) as well is a tame strategy.

Moreover, it follows that the inequalities Xx0+u0 ;� (T ) � G" a.s. and Xx;� (T ) � 0 a.s. are

equivalent. Therefore the above stated problem is identical to solving

G0 (x) := sup
�(�) tame

Xx;�(T )�0 a.s.

P
�
B (T )�1Xx;� (T ) � 1

�
:(4.2)

Proposition 4.1 The maximal probability of obtaining a perfect hedge is given by

p (") = N

0
@N�1

�
x0

u0

�
+ j�� rj

sZ T

0

[� + "�̂ (t)]�2 dt

1
A ;

with u0 := �" (0) = e�rTEQ [G"]. Moreover, the optimal strategy is given by the expression:

�� (t) = �� (t) + u0�
� (t) ;

where

�� (t) = � (t)�1B (t)B (T )�1EQ [DtG
"j Ft] ;

and

�� (t) = ert'

0
B@
R t
0
� (s)�1 dV (s) +N�1

�
x0
u0

�qR T
0
� (s)�2 dsqR T

t
� (s)�2 ds

1
CA � (t)�2qR T

t
� (s)�2 ds

= ert'
�
N�1

�
B (T )�1Xx;�̂ (t)

�� � (t)�2qR T
t
� (s)�2 ds

:

Here, we have used the notation � (t) := � + "�̂ (t), and let ' (�) denote the derivative of N (�).
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It is interesting to see that the expressions for the optimal strategies (��; ��) do not depend

on the stock appreciation rate �. This, however, ceases to be the case whenever the risk premium

j�� rj is time dependent. Note that although the strategy �� (�) satis�es the requirements in the

original problem, it is never optimal.

Proof. In order to solve problem (4.2), we will start by showing that G0 (x) = G (x) = G� (x)

for x 2 [0; 1], where

G (x) : = sup
�(�)2H(x)

P
�
B (T )�1Xx;� (T ) = 1

�
G� (x) : = sup

B2FT , Q(B)�x

P (B)

and

H (x) =

�
� : [0; T ]� 
! R

����
Z T

0

�2 (t) dt <1, and 0 � B (t)�1Xx;� (t) � 1 a.s. for all t

�
:

We get immediately that G (x) � G0 (x) and G (x) � G� (x). Moreover, for any � (�) tame with

Xx;� (T ) � 0 a.s., we have

Q
�
B (T )�1Xx;� (T ) � 1

�
= EQ

h
1

n
B (T )�1Xx;� (T ) � 1

oi
� EQ

h
B (T )�1Xx;� (T )

i
� x;

since the discounted value process is a Q-supermartingale for � (�) tame, which gives G0 (x) �
G� (x). Summing up we have G (x) � G0 (x) � G� (x) : We therefore only have to establish the

equality G� (x) = G (x). However, in order to do this we will �rst start by characterizing G� (x).

According to the Newman-Pearson lemma it follows that if we can �nd a number k = k (x) > 0

for which the event

Bk :=

�
dP

dQ
� k

�
has Q (Bk) = x;

then G� (x) = P (Bk). We de�ne the risk premium � (t) = [� � r] =� (t), such that

dP

dQ
= exp

�Z T

0

� (t) dW (t) +
1

2

Z T

0

� (t)2 dt

�
= exp

�Z T

0

� (t) dV (t)� 1

2

Z T

0

� (t)2 dt

�
;

and

Q (Bk) = N

0
@� 1

2

R T
0
� (t)2 dt+ ln kqR T
0
� (t)2 dt

1
A ;
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where as usual N (�) denotes the cumulative distribution function of a standard normal random

variable. Setting Q (Bk) = x, we get that

ln k = �N�1 (x)

sZ T

0

� (t)2 dt� 1

2

Z T

0

� (t)2 dt;(4.3)

and consequently

G� (x) = P (Bk) = N

0
@N�1 (x) +

sZ T

0

� (t)2 dt

1
A :

Now, we try to �nd a portfolio �� (�) 2 H (x) such that
n
B (T )�1Xx;�� (T ) = 1

o
= Bk a.s.,

since it then follows that G (x) = G� (x). We de�ne X̂ (�) = EQ [1 fBkg jF� ] = Q (Bk jF� ).
Hence, X̂ (�) is a Q-martingale taking values in [0; 1] ; with X̂ (0) = Q (Bk) = x and X̂ (T ) =

EQ [1 fBkg jFT ] = 1 fBkg. From the Clark-Ocone formula and the martingale property we

have the representation X̂ (�) = x+
R �
0
EQ

h
DsX̂ (T ) jFs

i
dV (s), and the integrability conditionR T

0
EQ

��
EQ

h
DsX̂ (T ) jFs

i�2�
ds < +1. Now, de�ning

�� (�) = B (�)EQ

h
D�X̂ (T ) jF�

i
� (�)�1 ;

we have according to (4.1) that B (�)�1Xx;�� (�) = X̂ (�) and consequently �� (�) 2 H (x). This

also shows that G (x) = G� (x) concluding the �rst part of the proof.

In order to obtain a representation for the optimal portfolio we interchange the order of

Malliavin derivation and conditional expectation, see Bermin (1998b), and use the martingale

property of X̂ (�)

EQ

h
DsX̂ (T ) jFs

i
= DsEQ

h
X̂ (T ) jFs

i
= DsX̂ (s) = DsQ (Bk jFs ) :

The conditional probability Q (Bk jFs ) can be calculated explicitly:

Q (Bk jFs ) = N

0
@R s0 � (t) dV (t)� 1

2

R T
0
� (t)2 dt� ln kqR T

s
� (t)2 dt

1
A :

Finally, by using the chain rule and the relation Ds

R s
0
� (t) dV (t) = � (s), we get that

EQ

h
DsX̂ (T ) jFs

i
= '

0
@R s0 � (t) dV (t) +N�1 (x)

qR T
0
� (t)2 dtqR T

s
� (t)2 dt

1
A � (s)qR T

s
� (t)2 dt

;

where we have used the optimal expression for ln k, i.e. equation (4.3), and introduced the

function ' (�) = dN
dx

(�). In fact we can express �� (�) by a feed-back representation. In order to
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see this, note that

B (s)�1Xx;�� (s) = Q (Bk jFs ) = N

0
@R s0 � (t)�1 dV (t) +N�1 (x)

qR T
0
� (t)�2 dtqR T

s
� (t)�2 dt

1
A :

Hence

Z s

0

� (t)�1 dV (t) = N�1
�
B (s)�1Xx;�� (s)

�sZ T

s

� (t)�2 dt�N�1 (x)

sZ T

0

� (t)�2 dt;

from which the proof follows.

One undesirable feature of the optimization problem considered in this proposition is that

the set of admissible strategies cannot be chosen arbitrarily, i.e. we have to consider strategies

such that � (�) is tame and Xx0+u0;� (T ) � G" almost surely. Without this restriction one could

not obtain the sequence of equivalences between the optimal problems stated at the beginning

of the proof. To some extent thus, the problem is somewhat arti�cial since the class of strategies

for which Xx0+u0;� (T ) � G a.s. is indeed very large. Furthermore, there is not a completely

obvious economic interpretation for why we should seek the optimal strategy within this class.

Nevertheless, we �nd that the local Vega index is an important quantity in determining how

fast perfect hedging is achieved. This is the topic of the next subsection.

4.2 The speed of convergence

We consider the situation were the time 0 price of a contingent claim G in the classical Black-

Scholes model is given by the quantity x0 := � (0) = e�rTEQ [G], whereas in the perturbed

model the corresponding contingent claim is worth the amount u0 := �" (0) = e�rTEQ [G"].

Now, let us suppose that we cannot or are not willing to put more money into the hedging

strategy than x0 where it is assumed that x0 � u0. Alternatively, suppose that we don't know

how to explicitly calculate the quantity u0 although we have managed to show the inequality

x0 � u0, see for instance Appendix A. In both situations though, we can no longer obtain a

perfect hedge and therefore we will instead try to maximize the probability of a perfect hedge

as in proposition 4.1:

p (") = N

0
@N�1

�
� (0)

�" (0)

�
+ j�� rj

sZ T

0

[� + "�̂ (t)]�2 dt

1
A :(4.4)

Now, letting "! 0 we see that p (")! 1 according to the assumption �+ "�̂ (t) � �min for all "

and t 2 [0; T �]. Hence, in the limit we will obtain a perfect hedge. So, the question is: how fast

will p (") converges to one? As we will see, the quantity that determines the speed is the ratio
@�"

@"
(0)
��
"=0

=� (0). This gives another motivation for the importance of studying the local Vega

index. Throughout this subsection we will make the following assumption:
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Assumption The perturbed price �" (0) has a Taylor expansion of order 2 around " = 0, in

the sense that

�" (0) = � (0) +
@�"

@"
(0)

����
"=0

" +G (") "2;

where G (�) is di�erentiable around 0, and jG (")j � C1 for " � �".

By using the same techniques as in the previous sections where we have computed the local

Vega indices for di�erent options it can be proved that these prices satisfy the above assumption.

Proposition 4.2 The maximal probability of obtaining a perfect hedge in (4:4) has the property

lim
"!0

1� p (")

" exp (�cN�1 (1� "))
= exp

��c2=2� @�"

@"
(0)

����
"=0

=� (0) ;

where c =
j��rj
�

p
T .

Note that N�1 (1� ") � p� ln ", hence exp
��cN�1 (1� ")

�
goes to zero slower than any

polynomial.

Proof. We start by expanding the perturbed price �" (0) around " = 0. Consequently,
�(0)

�"(0)
= 1� �"(0)��(0)

�"(0)
is given by

1�
@�"

@"
(0)
��
"=0

" +G (") "2

� (0) + @�"

@"
(0)
��
"=0

"+ G (") "2
= 1�

@�"

@"
(0)
��
"=0

� (0)
"+ F (") "2;

where we now have that jF (")j � C2 for " � �". In order to simplify the notations we de�ne

a := @�"

@"
(0)
��
"=0

=� (0) and c" := j�� rj
qR T

0
[� + "�̂ (t)]�2 dt, with c := lim"!0 c" =

j��rj
�

p
T .

Let f (") := 1� p (") such that f (0) = 0 and

df

d"
(") =

'
�
N�1

�
1� a"+ F (") "2

�
+ c"

�
' (N�1 (1� a"+ F (") "2))

�
a� 2"F (")� dF

d"
(") "2

�

�' �N�1
�
1� a" + F (") "2

�
+ c"

� dc"
d"
:

Note that the last expression follows from the identity
�(0)

�"(0)
= 1�a"+F (") "2, and the derivation

rule for inverse functions. Now, we set L = lim"!0
f(")

" exp(�cN�1(1�")) and according to L'Hopital's

rule we �nd that

L = lim
"!0

df
d" (")

exp (�cN�1 (1� "))
�
1 + "c [' (1� ")]�1

� :
Without too much problem we see that lim"!0 "c [' (1� ")]�1 = 0, hence we conclude that

L = lim
"!0

df
d" (")

exp (�cN�1 (1� "))
:
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The derivative df
d"
(") consists of two terms where the second term will actually not contribute.

Hence, after several applications of L'Hopital's rule and somewhat messy algebra we �nd that

lim
"!0

'
�
N�1

�
1� a"+ F (") "2

�
+ c"

�
dc"
d"

exp (�cN�1 (1� ")) = 0;

leaving us with the expression

L = lim
"!0

'
�
N�1

�
1� a"+ F (") "2

�
+ c"

� �
a� 2"F (")� dF

d"
(") "2

�
' (N�1 (1� a" + F (") "2)) exp (�cN�1 (1� ")) :

To evaluate this expression we will introduce some auxiliary variables. De�ne

M = lim
"!0

exp
��c"N�1

�
1� a" + F (") "2

��
exp (�cN�1 (1� ")) ;

M1 = lim
"!0

exp
��N�1

�
1� a" + F (") "2

��
exp (�N�1 (1� ")) :

Now as ' (x+ y) =' (x) = exp
��y2=2� exp (�xy), we get that

L :=M lim
"!0

exp
��c2"=2� lim

"!0

�
a� 2"F (")� dF

d"
(") "2

�
=M exp

��c2=2�a:
We will evaluate M in a sequence of steps. However, �rst we notice that we can rewrite

M :=M c
1 lim
"!0

exp
�
(c� c")N

�1
�
1� a" + F (") "2

��
=M c

1 :(4.5)

To verify that (c� c")N�1
�
1� a"+ F (") "2

�! 0, note that for N�1
�
1� a" + F (") "2

� � ��1

we have

a"� F (") "2 :=

Z 1

N�1(1�a"+F (")"2)

' (y)dy � �p
2�

exp

�
�1

2

�
N�1

�
1� a"+ F (") "2

��2�
:(4.6)

Hence, N�1
�
1� a"+ F (") "2

�
is of order

p� ln " for " small. However, (c� c") is of order "
and (4.5) follows. To evaluate M1 = lim"!0 exp

�� �N�1
�
1� a"+ F (") "2

��N�1 (1� ")�� we
start by using the mean value theorem

"� a"+ F (") "2 =

Z N�1(1�a"+F (")"2)

N�1(1�")

' (y)dy

=
1p
2�

exp
��y2 (") =2� �N�1

�
1� a"+ F (") "2

��N�1 (1� ")� ;
for some y (") 2 �N�1 (1� ") ; N�1

�
1� a"+ F (") "2

��
. Intuitively, M1 should be equal to one

and this is what we want to show. It is su�cient though to show that N�1
�
1� a"+ F (") "2

��
N�1 (1� ")! 0 or rather that " exp

�
y2 (") =2

�! 0. Hence, we are left to verify:

lim
"!0

" exp
��
N�1 (1� ") _N�1

�
1� a"+ F (") "2

��2
=2
�
= 0:(4.7)
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First we assume that N�1
�
1� a" + F (") "2

�
> N�1 (1� ") : From (4.6) it then follows that for

N�1
�
1� a"+ F (") "2

� � ��1, and some constant C > 1, we have that

lim
"!0

" exp
��
N�1

�
1� a"+ F (") "2

��2
=2
�

� lim
"!0

C=
p
2�

N�1 (1� a"+ F (") "2)
lim
"!0

1

(a� F (") ")

= 0:

The other case, i.e. N�1 (1� ") � N�1
�
1� a" + F (") "2

�
, can be treated similarly which proves

(4.7). Therefore, M1 =M = 1 and L = exp
��c2=2�a.

5 Practical use and summary

In this section, let us assume A2 in order to simplify the discussion. At a �rst sight, the

implementation of the local Vega index @�"

@"
(0)
��
"=0

might seem a little strange due to the fact

that the local volatility, i.e. "�̂ (�), is over speci�ed. Hence, suppose that the manager believes

that the future volatility over the time period [0; T ] will be given by the deterministic function

� (�). He then solves backwards for "�̂ (�) = � (�)� �. Now, depending on what value of " that

is �xed at the beginning the manager will obtain di�erent functions �̂ (�). To be precise we see

that the function �̂ (�) is uniquely de�ned up to a multiplicative constant. This is of course a

problem as we found that for all the options studied in this paper we had the relationship

@�"

@"
(0)

����
"=0

=

Z T

0

��(s; T )�̂ (s) ds
@�

@�
(0) ;

where ��(�; T ) was a density function independent of " and �̂ (�). Therefore the local Vega index
@�"

@"
(0)
��
"=0

is unique up to a multiplicative constant as well. It follows that the quantity of

interest for practical situations is " @�"

@"
(0)
��
"=0

and not the local Vega index by itself. Hence,

the local Vega neutrality approach used by a �nancial manager should actually be written as

X
i

"
@�"

i

@"
(0)

����
"=0

:=
X
i

@�i

@�
(0)

�Z Ti

0

��i(s; Ti)� (s)ds� �

�
� 0;

where the sum, as before, is taken over every contingent claim traded by the company. Note

that for a portfolio composed of simple contingent claims with a �xed maturity T , one has

��i(�; T ) = 1
T and the local Vega neutrality concept corresponds exactly to the classical Vega

neutrality approach
P

i
@�i

@� (0) � 0. However, for all other cases these two criteria do not

coincide.

In order to study the price variations we use the integral formula:

�1 (0)��0 (0) =

Z 1

0

@�"

@"
(0)d" � @�"

@"
(0)

����
"=0

;
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where the price �1 (0) corresponds to the case where the stock has the volatility �+ �̂ (�). This
analysis can of course also be related to the classical Vega index in the sense that

�0
�1

(0)� �0 (0) =

Z �1

�

@�0
v

@�
(0)dv � @�0

�

@�
(0) � (�1 � �) ;

where we let �0
�1

(�) denote the price given that the volatility is constant and equal to �1. Note

that these are just �rst order approximations. By including higher order terms more accuracy

can be gained, however this would of course be more complicated. Another possibility is to use

Riemann sum approximations.

In order to show the basic idea we take the �rst order approximations above, and estimate

the yield volatility, i.e. the constant volatility �1 that makes �1 (0) � �0
�1

(0), by setting

�1 =
R T
0
��(s; T )� (s)ds. This may be of interest since there exists no closed form solution for

the price of most exotic options whenever the volatility is time dependent. In order to see how

the method works, we consider the following example:

Example 5.1 Let us again consider the standard call option with payo� G = max (S (T )�K; 0)
for some constant strike price K, and assume that the dynamics of the stock price are given by

dS (t) = rS (t)dt+ � (t)S (t) dV (t) ;

for some strictly positive deterministic function � (�) in L2 ([0; T ]). By using the results in

example 1:1, the time 0 price of the option is given by

� (0) = S0N (d1)� e�rTKN
�
d1 �

p
�
�
;

and d1 is de�ned by

d1 =
ln (S0=K) + rT + 1

2
�p

�
; � =

Z T

0

� (t)2 dt:

The approximate option price, denoted ~� (0), is given by the Black-Scholes formula evaluated at

the yield volatility �1 =
1
T

R T
0
� (s)ds, that is

~� (0) = S0N
�
~d1

�
� e�rTKN

�
~d1 � �1

p
T
�

; d1 =
ln (S0=K) + rT + 1

2
�21T

�1
p
T

:

However, since �21T = 1
T

�R T
0
� (s)ds

�2
� R T

0
� (s)2 ds; it follows from El Karoui et al. (1998)

that ~� (0) � � (0), where we have equality if and only if � (�) is constant. Hence, to improve the

approximation it may be necessary to use a quadratic Taylor expansion for the classical Vega

index and Riemann sums for the local Vega index. It would be interesting to use these ideas to

price path-dependent options.

To sum up, we have in this paper addressed a problem arising naturally in risk management:

how can a �nancial manager protect the company's position once the manager has a personal

32



belief about the future development of the market. Typical questions that can be studied are

for instance what happens to the option prices if the next two weeks will be a very unstable

period, or what happens to the option prices if the volatility will drop in a month as predicted

by a time series analysis.

The local Vega index introduced here should be helpful to answer these and other related

questions. For example, what is the relationship between this index and presence of asymmetric

information and particularly existence of inside information. Another interesting question is:

what is the amount of rebalancing needed in order to keep a portfolio stable with respect to

the local Vega index? We believe that this amount is smaller than the amount needed when

using the classical Vega neutrality concept since the local Vega index incorporates anticipated

time dependent volatility structures. We leave it as open questions to see if our results might

be useful in order to detect such phenomena.

The local Vega index is a natural extension of the classical Vega index, i.e. the price derivative

with respect to the constant volatility, in the sense that we perturb the volatility in di�erent

directions. For all the contingent claims studied in this paper, we show that the local Vega index

can be expressed as a weighted average of the perturbation in volatility. In the case that one

assumes that the volatility and the rate of interest are constant and the perturbation in volatility

only depends on time then this average is multiplied by the classical Vega index, giving a clear

relationship between the classical Vega index and the local one de�ned here. Moreover, in the

case of path-dependent options these weighted averages have in general the property of putting

less and less weight to events in the future. Hence, a �nancial manager should according to this

result think in short terms and do not worry (that much) about the future.

As an application of the results we show how to derive approximate prices of options for

which no closed form solution exists in the case where the volatility is time dependent. This is

done by means of a constant yield volatility under the assumption that a closed form solution

indeed exists whenever the underlying security has a constant volatility.

We also study the well-known goal problem of maximizing the probability of a perfect hedge

and show that the speed of convergence depends on the local Vega index.
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Appendix A

Theorem A.1 Assume A2 and that the local volatility perturbation �̂ (�) � 0. Then for Asian

options we have that �" (�) � � (�) for all ". Furthermore, if we assume that the payo� function

�0 (0) � 0 then for lookback options we have that �" (�) � � (�) for all ".

Proof. Let us introduce the stochastic processes (state variables) Y "
1 (�) = R �

0
w (u)S" (u)du

and Y "
2 (�) = sup0�u�� S

" (u). Thanks to the Markov property, the price of a Asian or a Lookback

option can always be written in the form �"
i (t) = �"i (t; S

" (t) ; Y "
i (t)), where the deterministic

function �"i (�) is de�ned by

�"i (t; x; y) = e�r(T�t)EQ [G"
i jS" (t) = x; Y "

i (t) = y ] ; i = 1; 2:

Here G"
i denotes the payo� at maturity of the di�erent contingent claims, i.e. G"

i = � (Y "
i (T )).

The deterministic function �"i (�) satis�es the following boundary problem:

�@�
"
i

@t
(t; x; y) + r�"i (t; x; y) = A"

i;t�
"
i (t; x; y)

1 fi = 2g @�
"
i

@y
(t; x; x) = 0

�"i (T; x; y) = � (y) ;

where A"
i;t denotes the in�nitesimal generator of the pair (S" (t) ; Y "

i (t)). It can be shown that

in our case we have

A"
1;t = rx

@

@x
+ w (t) x

@

@y
+

1

2
(� + "�̂ (t))x2

@2

@x2

A"
2;t = rx

@

@x
+

1

2
(� + "�̂ (t))x2

@2

@x2
;

see e.g. Peskir (1998) for the last identity. Note that when specifying the partial di�erential

equations we have for simplicity been rather sloppy in specifying the domains. For the Asian op-

tions (x; y) 2 R2
+, while for the lookback options (x; y) 2

�
(a; b) 2 R2

+ ja < b
	
. Now, considering

the di�erence ui (�) :=
�
�"i � �0i

�
(�), we have

�@ui
@t

(t; x; y) + rui (t; x; y) = A0
i;tui (t; x; y) + gi (t; x; y)

1 fi = 2g @ui
@y

(t; x; x) = 0

ui (T; x; y) = 0;

with gi (t; x; y) =
1
2

�
2"�̂ (t) + "2�̂ (t)2

�
@2�"i
@x2

(t; x; y). According to Karatzas and Shreve (1988)

page 369, the solution is given by

�
�"i � �0i

�
(t; x; y) = ui (t; x; y) =

Z T

t

Z
R
2
+

G (t; x; y; �; �; ') gi (� ; �; ')d�d'd�;
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where G (�) is a density function, i.e. non-negative, and called the fundamental solution or the

Green's function. Consequently, a su�cient condition for
�
�"i � �0i

�
(�) � 0 is that gi (�) � 0 or

rather that
@2�"

i

@x2
(�) � 0. Note that we only consider the case where �̂ (�) � 0. Now, using the

notation J" (u) := S" (u) =S" (t), we get that

�"1 (t; x; y) = e�r(T�t)EQ

�
�

�
y + x

Z T

t

w (u) J" (u)du

�����S" (t) = x;

Z t

0

w (u)S" (u)du = y

�

�"2 (t; x; y) = e�r(T�t)EQ

"
�

 
y _ x sup

t�u�T
J" (u)

!�����S" (t) = x; sup
0�u�t

S" (u) = y

#
:

Explicit calculations now yield

@2�"1
@x2

(t; x; y) = e�r(T�t)EQ

"
�00

�
y + x

Z T

t

w (u)J" (u) du

��Z T

t

w (u) J" (u)du

�2

����S" (t) = x;

Z t

0

w (u)S" (u)du = y

�

@2�"2
@x2

(t; x; y) = e�r(T�t)EQ

2
4�00

 
x sup
t�u�T

J" (u)

! 
sup

t�u�T
J" (u)

!2

�

�1
(
x sup
t�u�T

J" (u) � y

)����S" (t) = x; sup
0�u�t

S" (u) = y

#

+e�r(T�t)
y2

x3
�0 (y) p

�y
x

�
;

where p (�) denotes the density function of the random variable supt�u�T J
" (u). Note that the

density exists according to lemma 3.4. The result
@2�"i
@x2

(�) � 0 then follows since � (�) is assumed,

according to de�nition 3.1, to be a convex function and therefore the second derivative (or more

correctly the second derivative measure) is non-negative and the �rst derivative is increasing.

Remark A.1 If we consider lookback options in the form � (inf0�t�T S
" (t)), then by repeating

the arguments we �nd that �" (�) � � (�) if �̂ (�) � 0 and the �rst derivative of the payo� function

�0 (0) � 0.

Appendix B

In this Appendix we prove the smoothness of the density of the processes associated with the

Asian option, and derive an upper bound for this density. Throughout this section we assume

A1 and that the positive bounded weight function w (�) is uniformly bounded away from zero

in a neighborhood of zero. In the proof we will make use of the space D1 , see Nualart (1995)

for the precise de�nition. However, we may think of D1 as the space containing all random

variables H , such that H and


Dk

� H



L2([0;T ]k) belong to Lp (
; F; Q) for any p; k � 1. Hence,
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the random variables in D
1 are smooth in the sense that they and their iterated stochastic

derivatives have moments of all orders.

Theorem B.1 Under the above conditions Y "
1 (T ) :=

R T
0
w(s)S"(s)ds 2 D

1 . The Malliavin

covariance �Z T

0

(DtY
"
1 (T ))2 dt

��1
2 \p>1Lp(
;F ; Q);

uniformly in ". Therefore the density of Y "
1 (T ) exists and is in�nitely di�erentiable. Further-

more, this density satis�es for all integers k � 0 and y � y0 > 0 the inequality���� @k@yk p"(y)
���� � C exp(�C ln(y)2),

where the constants C and y0 are independent of ".

Proof. We will do the proof under A1 and the assumption that w(t) � w0 > 0 in a neighbor-

hood of 0. First, let us recall that S" (�) is de�ned as the solution to the stochastic di�erential

equation (
dS"(t) = r(t)S"(t)dt+ �"(t; S

"(t))dV (t)

S" (0) = S0
:

According to theorem 2.2.2 in Nualart (1995), the solution S" (t) 2 D
1 for all t 2 [0; T �].

Therefore, the Malliavin derivatives of any order exist, and are well de�ned by

DuS
"(t) =

Z t

u

r(s)DuS
"(s)ds+ �"(u; S

"(u)) +

Z t

u

�0" (s; S
" (s))DuS

" (s)dV (s);

see theorem 2.2.1 in Nualart (1995). This stochastic di�erential equation is linear in DuS
"(t),

hence the solution is given by

DuS
"(t) = �" (u; S

" (u)) exp

�Z t

u

�
r(s)� 1

2
�0" (s; S

" (s))2
�
ds+

Z t

u

�0" (s; S
" (s))dV (s)

�
= �" (u; S

" (u))E" (t)E" (u)�1 ;

where we have used the same notation as in lemma 3. Since the positive weight function w (�) is
bounded and DuY

"
1 (T ) =

R T
u
w(s)DuS

"(s)ds, we immediately see that Y "
1 (T ) too is a smooth

random variable in D1 .

Now, let � > 0 denote the biggest value such that for all " the following conditions are

satis�ed

�"(u; x) � �min > 0 ; w(u) � w0 > 0;
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for all u � � and jx� S0j � �. Hence for u � � " := inf
�
u � �; jS"(u)� S0j � �

2

	
, the Malliavin

derivative is bounded from below:

DuY
"
1 (T ) = �" (u; S

" (u))E" (u)�1
Z T

u

w(s)E" (s)ds

� �minw0E" (u)�1
Z �"

u

E" (s) ds.

Therefore, we get the estimate

Z T

0

(DuY
"
1 (T ))2 du �

Z �"

0

(DuY
"
1 (T ))2 du � �2minw

2
0

�
inf

0�u�T
E" (u)

��2 �
inf

0�u�T
E" (u)

�2
�3"
3
.

In order to show that the Malliavin covariance
hR T

0
(DtY

"
1 (T ))2 dt

i�1
2 Lp(
;F ; Q) for all

p > 1 uniformly in ", we use the Hölder inequality to conclude that it is su�cient to prove that

sup"EQ

�
(inf0�u�T E" (u))�p

�
< +1 and sup"EQ

h
�
�q
"

i
< +1 for any p 2 R and q > 0.

In order to show that sup"EQ

�
(inf0�u�T E" (u))�p

�
< +1 for any p 2 R, note that

r (�) is a bounded function and that �0"(t; x) is uniformly bounded in t and ". Therefore

sup"EQ

�
(inf0�u�T E" (u))�p

� � C sup"EQ

�
exp

�
c1 sup0�u�T

R u
0
�0"(s; S

" (s))dV (s)
��

for some

constants c1; C. Since any stochastic integral with bounded quadratic variation is a time changed

Brownian motion it is enough to verify that EQ

�
exp

�
c1 sup0�u�c2T

�B (u)
��

< +1, for any

c1 2 R and c2 > 0. This property follows from the re�ection principle for the supremum of the

Q-Brownian motion �B (�).
Next we show that sup"EQ

h
�
�q
"

i
< +1, for any q > 0. Note that since Q(� " < x) �

Q
�
sup0�u�x jS"(u)� S0j � �

2

�
, we can use Chebychev's inequality and then Burkholder's in-

equality to get:

Q(�" < �) � CkEQ

"
sup

0�u��

jS"(u)� S0jk
#
� Ck�

k
2 for any k 2 N.

Here Ck is a constant that does not depend on ". Finally, since EQ

h
�
�q
"

i
=
R1
0
Q(��q" > x)dx =R1

0
Q(� " � x

� 1

q )dx we obtain

EQ

�
��q"
�

= C +

Z 1

C

Q(� " � x
� 1

q )dx

� C +

Z 1

C

Ckx
� k
2q dx:

The last quantity, which does not depend on ", is bounded if k is chosen big enough.

Hence, the Malliavin covariance
hR T

0
(DtY

"
1 (T ))2 dt

i�1
2 Lp(
;F ; Q) for all p > 1 uniformly

in " and therefore, according to corollary 2.1.2 in Nualart (1995), the density of Y "
1 (T ) exists

and is in�nitely di�erentiable. In order to prove the tail bound for the derivatives of the density

38



of Y "
1 (T ) we only need to apply Theorem 1.31 in Kusuoka and Stroock (1984). We follow their

notation and observe that in our case it is enough to use 	 as a localization of the random

variable Y "
1 (T ). That is, 	 =  (Y "

1 (T )), where  (�) is an in�nitely di�erentiable function

with bounded derivatives such that its value is 0 in [0; y] and 1 outside of [0; 2y]. After a

careful analysis of their inequality (1.33) one sees that the proof �nishes if one estimates the

probability Q(Y "
1 (T ) > y). The estimation of this quantity is done as follows for y � y0 > 0.

First note that Q (Y "
1 (T ) > y) := Q

�R T
0
w(s)S"(s)ds > y

�
� Q

�
sup0�u�T S

"(u) � 1
TC y

�
for

C = sup0�u�T w (u). Therefore there exist constants ci such that:

Q(Y "
1 (T ) > y) � Q

 
sup

0�u�T
ln(1 + S"(u)) > c1 + ln y

!

� Q( sup
0�u�c2T

�B(u) > c3 + ln y)

� c4 exp(�c4(ln y)2).

The second inequality above follows from the Itô formula applied to ln(1 + S"(u)):

d ln(1 + S"(u)) = r(u)
S"(u)

1 + S"(u)
du� �"(u; S

"(u))2

2(1 + S"(u))2
du+

�"(u; S
"(u))

1 + S"(u)
dV (u):

Note that the drift term is bounded, i.e. sup" sup0�t�T

���R t0 r(u) S"(u)

1+S"(u)
� �0"(u;S

"(u))2

2(1+S"(u))2
du
��� < +1,

and that the quadratic variation satis�es sup" sup0�t�T
R t
0

�
�"(u;S

"(u))
1+S"(u)

�2
du < +1; since the

volatility �"(t; �) has at most linear growth uniformly in t according to assumption A1. Therefore,

we can as before replace the stochastic integral by a time changed Q-Brownian motion �B (�).
Finally, by using the well-known distribution of the supremum of a Brownian motion, we obtain

the last inequality and the proof concludes.
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