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 Abstract

The objective of this paper is to compare the performance of two predictive radiological

models, logistic regression (LR) and neural network (NN), with five different resampling

methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known

disease were enrolled. Clinical and CT data were used for LR and NN models. Both models

were developed with cross validation, leave-one-out and three different bootstrap algorithms.

The final results of each model were compared with error rate and the area under receiver

operating characteristic curves (Az). The neural network obtained statistically higher Az than

LR with cross validation. The remaining resampling validation methods did not reveal

statistically significant differences between LR and NN rules. The neural network classifier

performs better than the one based on logistic regression. This advantage is well detected by

three-fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms

are used.

KEY WORDS: Skull, neoplasms; Statistics, logistic regression; Neural networks; receiver

operating characteristic curve; Statistics, resampling.
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Introduction

Predictive models have been extensively studied as supporting diagnostic aids to radiology on a

variety of diseases (1). Among these methods, neural networks are developed for radiological

purposes. They are based on a parallel architecture with several layers. Each layer receives input

only from the directly preceding one and adjacent layers are fully connected. The utility and

flexibility of neural networks arises from the application of learning algorithms that allow the

network to construct the correct weights and, hence, the desired function, for a given set of

observations. Although several algorithms have been discussed in the literature, the most

commonly employed is the backpropagation of errors algorithm.

Logistic regression is a nonlinear regression technique that has proven to be very robust in a

number of medical domains and is acknowledged as the statistical analysis of choice for

predicting dichotomous outcomes (2).

A standard procedure for evaluating the performance of a model would be to split the data into

a training set, a cross-validation set (used to determine the stopping point to avoid over-fitting,

and/or used to set additional parameters, such as weight-elimination), and a test set. The test set

is a set of examples, not previously shown to the neural network, and only used to assess the

performance (generalization) of a fully-specified classifier. Regression models should generally

use a training and a test set as well (3). In medical settings, frequently due to the small amount

of data available for training these models, new cases are rarely found to be tested. For these

reasons, validation procedures with resampling techniques are usually employed. These

techniques use part of the data set to train and to validate these models. Recent radiological

papers dealing with neural networks have discussed these issues. However, many researchers are

using such models without validating the necessary assumptions (4). Models developed this way

are unlikely to stand the test validation on a separate patient sample (3). The main NN

drawbacks are that usually they are not matched with statistical techniques of reference and they

are used in small samples (2). The associated risk of over-fitting on noisy data is of major

concern in neural network design (5), although logistic regression methods can suffer from the

same problems as neural networks (2).

Calvarial lesions are often found during CT imaging of the brain with no specific symptoms. The

signs for their characterization are based on imaging studies, specially CT. A diagnostic model

could help the radiologist with these uncommon lesions (6). The purpose of this work was to

study the ability of five resampling methods, leave-one-out and bootstrap, for validating logistic

regression and neural network models to classify calvarial lesions and compare their results.
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Material and methods

Population

A complete discussion of the population and methodology has been previously presented (6). As

part of our review, 167 patients with calvarial focal bone lesions were reviewed for a four-year-

period from 4,012 head CT scans. The lesions were analyzed in detail and reviewed by two of

us by consensus (EA and LM-B). All patients were examined with at least two plain

radiographic projections and CT. CT sections were obtained with the window width and level

settings that best allowed evaluation of soft-tissue structures and bones. The setting on each

scanner was individualized for every patient.

There were 74 men (44.6%) and 93 women (55.4%) with an age range of 0.5 to 81 years (31.1

± 25.5 years, mean ± SD). The total number of benign lesions was 122 (73.1%), with an age

range from five to 80 years (26.1 ± 22.9). There were 45 malignant ones (27.0%) with an age

range from 0.5 to 84 years (55.7 ± 18.6).

Explanatory diagnostic variables

Nineteen morphological imaging characteristics as well as anatomic and demographic data were

evaluated without knowledge of the final diagnosis (Table 1). All findings were recorded for all

patients in a spreadsheet and used for both the LR model and the NN analysis. When a single

feature had two or more findings in the same lesion, the most severe form was the one recorded.

There was no missing data. Lesions were divided into benign (0) and malignant (1). Out of the

19 explanatory variables, three were continuous (1,4,8), one was quantitative discrete (5), two

were ordinal (11,12) and the rest were qualitative. For these latter, we used a 1-out-of C code

where a variable with C categories is converted in C Boolean inputs, each of which is high for a

certain category; eventually 43 explanatory variables were used.

Logistic regression

Logistic regression equation assumes that the expected probability of a dichotomous outcome is

P
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where the Xi are variables with numeric values (if dichotomous, they are, for example, 0 for

false and 1 for true) and the βi are the regression coefficients which quantify their contribution

to the probability. Logistic regression has proven to be an effective way of estimating

probabilities for dichotomous variables, in this case the probability of benign (0) or malignant

(1).

We fit the logistic regression model by a Newton-Raphson type iterative algorithm implemented

in MATLAB 4.0 (MathWorks, Inc.; Natick, MA). The nineteen explanatory variables listed in

Table 1 were re-codified as 43 input variable and all of them used in the βi parameters fitting.

The estimation procedure also provides an measurement of the estimated coefficients standard

errors. This allows defining confidence intervals (CI) for the coefficients and quantifying if they

are significantly different from zero. The value of a standardized coefficient is an indication of

the relevance of the corresponding explanatory variable. The usual output of a logistic

regression estimation is the odd-ratios list (i.e., the values e iβ ) and the CI for them, derived

from the coefficients CI (also by using the exponential function).

Neural network

The developed NN had three layers, with a feed-forward architecture, being trained by the back-

propagation algorithm with the sigmoid activation function (7). The structure of the NN

included 43 input units, which were the same as in the LR model. No well-established

theoretical method exists for designing an ideal NN, and the optimal number of hidden nodes

and iterations is unknown (7,8). The number of hidden neurons was chosen among those with a

satisfactory adjustment of the NN. The number of tested hidden neurons ranged from 10 to 30

and a satisfactory trade-off between low miss-classification rate and complex design was

obtained with 15 hidden neurons. Two stopping rules were implemented, one based on the

number of iterations (the maximum allowed number was 500) and the other based on a lower

bound for the mean squared error (MSE) that indicates how well the outputs are calibrated to

their targets (this bound was equal to 0.03). In fact, the effective stopping rule was always the

first one in all the training procedure run. The main drawback of these stopping criteria is the

possibility to find a local optimum instead of the global optimum value. This is a common

problem for a wide variety of multivariate optimization procedures. Some techniques including

random perturbations of intermediate solutions (as simulated annealing; see for instance Ripley
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(9)) are specially designed to lead to a global optimum. We limit ourselves to standard

implemented training processes in the neural network MATLAB toolbox.

The main concern in a design with an excessive number of hidden nodes is over-fitting.

The number of hidden nodes determines the complexity of the functions represented by a NN:

as this number increases, the function is more complex. If a net contains too many hidden nodes,

this net can learn the training set so perfectly that even a zero training error could be achieved

(then we say that the net over-fits the training set), but this net will usually have a big

generalization error in independent test sets. This situation will appear because, at least in

theory, we take the best function among too many flexible classes of functions. In practice, only

one function is taken when a NN is trained: the optimization procedure is limited by the specific

training algorithm and stopping rules implemented (number of iterations, required level of

precision, etc.). So, not only the number of hidden nodes determines the complexity of the NN,

but also the training algorithm. In our case, we only use 500 iterations in the training procedure.

Since not every function with 15 nodes can be learned in 500 iterations, the class of actual

possibly learned functions is not so big and, as a consequence, over-fitting problems may not

appear.

Comparison and performance

One of performance measures of a classification rule is the probability of miss-classifying a new

observation, assuming that a case is assigned to a class if the classification rule gives it a

probability higher than 0.5 to belong to that class. A naive estimator of this probability is the

apparent classification error or error rate, defined as the number of incorrectly classified cases in

both classes divided by the number of total cases. This estimator is optimistically biased because

the same cases are used to fit the classifier and to compute the error rate.

Another measure of performance is the area (Az) under the receiver operating characteristic

curve (ROC). The continuum output given by LR and NN was compared with their correct

values to obtain the ROC curves. ROC curves measure predictive utility by showing the trade-

off between the true-positive rate (sensitivity, probability of correctly classification a positive

case) and the false-positive rate (1-specificity, probability of incorrect classification for a

negative case) inherent in selecting specific thresholds on which predictions might be based. The

area under this curve represents the probability that, given a positive case and a negative one,

the classifier rule output will be higher for the positive case and it is not dependent on the choice
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of decision threshold. This way is less dependent on the frequency of malignancy in the

population, and allows considering the sensitivity and specificity of the model at various

probability levels. In this study, the area under the ROC curve was obtained by plotting

sensitivity versus 1-specificity for each possible predictive score cut-point, and summing the

areas of the created trapezoids. Statistical differences and confidence intervals between the NN

and LR outputs were compared with a two-tailed, nonparametric approach according to the

method described by Hanley and McNeil (10,11).

Validation

Pure naive validation methods use all the cases to build the models and also to validate them. As

the estimated model has been fitted to the idiosyncrasies in the training sample, the validation

based on the same sample tends to under-estimate the probability of misclassification. To

estimate the performance of a classifier, a validation method with lower bias is preferred. For

these reasons resampling methods are used to depict its future prediction accuracy, but also for

choosing a classifier from a given set (model selection), or combining classifiers.

Cross-validation with random sub-sampling

In k-fold cross-validation, the data set is randomly split into k mutually exclusive subsets (the

folds) D1,D2,...,Dk of approximately equal size. The classifier-rule is trained and tested k times.

The cross-validation estimation of accuracy is the overall number of correct classifications,

divided by the number of instances in the data set. As we have a moderate size sample (n=167),

we developed a cross validation with k=3. For each division of the sample, a model is developed

with n1=112 and tested in the rest n2=55. This way, we are in the ideal situation of having an

independent sample to test the model. This process is repeated 20 times, with randomly chosen

training and testing sets giving up 60 unbiased estimates of discriminant ability. As the test

samples are independent of the training data, the results derived from this 3-fold cross-validation

are reliable. The drawback for obtaining this reliability is that a third of the data in the model

estimation phase is lost. Error rates are the average of the 20 resampling process.

Leave-one-out

Several validation methods are available if one cannot afford loosing a significant part of the

sample in the estimation step. One of them is the leave-one-out and others are based on

bootstrap principles. In a sample of size n, leave-one-out is n-fold cross-validation. According
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to this method, all the database (n=167) but one patient are used to develop the classifiying

models. Then the LR or NN model is tested on the case that is left out. The same process is

repeated so that every pattern of the data is left out once.

Bootstrap

According to the bootstrap method, training set (a bootstrap sample) is generated by sampling

with replacement n times from the available n cases. A diagnostic model is trained on the

bootstrap model and then tested on both the bootstrap and the original set and accuracy is

measured twice. The difference between both rates of misclassifications reflects the optimism of

the naive apparent error rate. The same process is repeated B times and the average of those

differences is taken as a global measure of the optimism. The estimations developed also

included two different bootstrap algorithms as described in (12):

- apparent error rate + optimism (bootstrap-1).

- error rate 0.632 bootstrap (bootstrap-2).

- error rate 0.632+ bootstrap. This combines the “leave-one-out bootstrap” with a measure of

over-fitting  (bootstrap-3).

The number of B sub-samples generated was 100 and results were obtained with the bootpred

routine written in S-plus and described by Efron and Tibshirani (13).

Results

Logistic regression and neural network fit

Only some numerical results from the estimation phase are reported here because our main

objectives were the comparison among different resampling procedures. Table 2 shows the most

relevant variables in the logistic model fit, sorted by the standardized coefficient values. Odds

ratios and 95% CI for them are shown. It should be noticed that only the first two variables

(Age and Mixed blastic permeative character appearance) have CI for odds ratios without

including the value one. The results obtained in the NN and LR fitting, which are listed below,

allowed us to state that the designed NN (with 15 hidden nodes and 500 iterations) does not

over-fit the data, because logistic regression (LR) presents a lower training error than NN fit,

but LR has greater generalization error.

Pure naive models
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The apparent error rates for LR model was 0.0240, with an Az 0.9993 ± 0.0036. The NN

showed an error rate of 0.0599 with an Az 0.9505 ± 0.0285. These results reveal the over-

fitting of the models without resampling methods.

Cross-validation with random sub-sampling

ROC Az with their confidence interval (95%) for the different resampling methods are showed

in Figure 1 and Table 3. Both models, particularly NN, obtained the smallest variances among

the other resampling methods (Fig.1). The logit model performed poorer than NN with higher

error rates of 0.1916 versus 0.1377 (p<0.0001), with Az 0.8103 versus 0.8854 (p<0.001) (Fig.

2). The p-values reveal larger differences when error rates are compared instead of Az .

Leave one out

The LR using the leave-one-out method performed significantly better than the cross-validation

in terms of error rate (p<0.01). Although, the NN obtained higher Az and lower overall error

rates than the logit model, there were no statistical differences. (Table 3). Areas under ROC

curves presented markedly larger variances than cross validation, although smaller than seen

with bootstrap (Fig.1).

Bootstrap

There were no statistical differences between the LR and NN models validated with the three

bootstrap algorithms either in error rates or in Az’s. The third bootstrap approach (.632+

bootstrap) gives similar results to 3-fold cross-validation (Fig. 3). The opposite happens when

results from bootstrap-1 are examined (it shows that RL performs marginally better than NN)

and bootstrap-2 indicates advantages for NN in terms of the global measure Az, but not in terms

of error rate (Table 3).  Variance of Az estimations was progressively greater in every bootstrap

algorithm showing profound differences with cross-validation algorithms (Fig. 1).

Discussion

There is a great interest in comparing neural networks and classifier rules in medical

applications. Ideally, we would train the NN and LR models with a larger data set and apply the

trained models to an entirely different data set to evaluate its performance. However, we were

not able to split our database into completely separate training and testing data sets because the

number of confirmed lesions is currently small, although, to our knowledge, it is the largest

series in the literature. Future research is needed to compare trained models on completely
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separate data sets. Although some theories have been presented on sampling methods, these are

still in their infancy (14).

The objectives of these studies on predictive models should be clarified because the

approaches are different if we want to find the “gold standard predictive” model, or a model

whose prediction error is the lowest. The classification performance of stochastic models, such

as LR and NN, however, depends on the estimation techniques. Thus, error rate is optimistically

biased and Az is not. This may be responsible of the greater differences between LR and NN

when they are compared in terms of error rates.

In the medical practice, data set size is always finite and usually smaller than desired.

The main drawback of k-fold cross-validation is that it makes inefficient use of the data: a third

of the data set is not used to train the classifier rule. Previous studies on this method have

shown that, as the training sample size increased, so did the NNs predictive accuracy (15). One

may expect that these error rates would decrease and, respectively Az’s would increase, when

the whole sample is used to estimated both RL and NN. To extrapolate these results from our

sample size of 112 to 167, the relevance of the numerical values is more qualitative (NN clearly

surpass RL) than quantitative. So, the error rates obtained may be far from the reliability with

larger samples.

According our results, leave-one-out has been described as an almost unbiased method

but with high variance (16). Leave-one-out gave similar variance to the other resampling

methods but cross-validation. The leave-one-out procedure assures that, regardless of the

sample size, the relevant observation would not be in the pseudo-optimal solutions more than

once (14). This resampling technique can easily produce significantly different results in NN

settings, depending on the training-stopping criterion (15). A theoretical study suggested that

cross-validation and leave-one-out do not offer significant improvement over the apparent error,

whereas the improvement given by bootstrap is substantial (17). Nevertheless, these

comparisons were carried out using simulated data and the root mean squared error for

performance measuring, instead of real data and ROC analysis. Cross-validation can be very

sensitive to the specific sample splitting. Furthermore, if the specific test set is given and the

data is sparse and noisy (as in medical settings), test of predictive reliability may not reflect a

good picture of sample variability, or potential changes in model specification (18).

Neural networks validated with cross-validation in radiological diagnoses have shown

protean features. Theory has been corroborated with real data as the training sample size

increased, so did the network’s predictive accuracy, e.g. in ventilation-perfusion imaging
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(15,19). However, in other fields as focal bone lesions, the performance appeared to be more

strongly related to how radiographically distinctive each pathologic type is rather than the

number of cases available (20). So, simulation studies concluded that cross-validation gives a

nearly unbiased estimate of error, but often with unacceptably high variability, particularly if the

database is small (21). In contrast, our results showed that cross-validation obtained the smallest

variance among the different algorithms. The reason for our small variance compared with

Tourassi et al (15) and Efron (21) is that we randomly repeated 20 times the 3-fold cross-

validation procedure obtaining 60 observations of cross-validation error to be averaged, further

more than they did. Efron (21) suggested that different resampling methods applied to practical

situations could give different answers. However, in more recent papers comparing resampling

methods on radiological data, Tourassi (15) and current work, the results were very similar

among them.

Bootstrap techniques in radiological diagnosis have only been described in this latter

work (15). In 1997, Efron & Tibishirani (12) proposed the “.632+” estimator, which combines

the “leave-one-out bootstrap” with a measure of over-fitting. In extensive simulations it has

shown to be the best-performing bootstrap and offer some gains over cross-validation. Similar

results appear in our study: “.632+” was the only bootstrap based procedure indicating similar

results as those obtained by 3-fold cross validation. The available asymptotic results show its

validity for a large number of linear, nonlinear and even nonparametric regression problems. In

contrast to the Bayesian approach, no distributional assumptions (e.g., normal errors) have to be

specified. For a large sample size and a small B value, bootstrap does not ensure that all the

relevant observations will be deleted at least once. The advantage is that in small size samples

and with a relatively large B value, bootstrap algorithms may capture variability of sample data

better than the leave-one-out procedure (14). Particularly in NN settings, bootstrap yields rather

reliable estimates of the variance even in small sample situations, models where the distribution

of residual depends on the input and, in addition, it is more robust if the selected model is

incorrect (13). Therefore, it does not need to assume normality or symmetry in the data.

A more practical question, which should be considered as well, is whether the bootstrap

is worth the extra computer time required. It is important to keep in mind that each bootstrap

iteration requires a run of the algorithm, and it seems unlikely that this can be improved upon. In

our work, all bootstrap routines (with B=100) were the second longest after leave-one-out

(n=167) with the NN (overall duration, respectively, 115’41’’ and 180’10’’). This is just a
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manifestation of ‘Occam’s razor’ which states that complex models should not be preferred to

simpler ones (22).

We agree with a previous paper dealing with the uncertainty of choosing resampling

methods on neural network’s design (15). Although they argued that if the estimates of

resampling methods is very similar, we can be confident about the classifier rule performance.

However, other types of neural networks may show different performances due to the many

parameters involved in neural network development, i.e., the leave-one-out and the training-

stopping criteria. Frequent training problems exist and may be difficult to address even with

state-of-the-art resampling methods. The required number of training cases clearly depends on

the difficulty of the decision task, the number of input, hidden and output nodes (and also the

number of weights).Thus, the information provided to the network is crucial. Reinus et al. (20)

have proven improved performance of their NN’s design using a greater number of input units.

This means that the imaging parameters were most explicitly defined than in other neural

networks with less input features.

Nevertheless, one work which evaluated forecast on financial data found that the

variation due to different resampling (i.e., splits between training, cross-validation, and test sets)

is significantly larger than the variation due to different network conditions (such as architecture

and initial weights) (18).

Summarizing the conclusions, neural network classification rule is preferred to logistic

regression in the diagnosis of focal calvarial lesions. This advantage is well detected by three-

fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms are

used. However, both leave-one-out and “.632+” bootstrap slightly indicate the superiority of

NN over LR.
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Variables Values

1 Age Years

2 Gender Male, female

3 First symptom noticed Tumour, pain, headache, incidental finding, others

4 Symptoms length Months

5 Number of lesions Number

6 Bone Frontal, parietal, occipital, sutures or fontanels

7 Centricity Outer table, diploe, inner table, intracranial, extracranial

8 Maximal diameter In millimeters

9 Shape Circular, ovoid (image in plane of greatest diameter)

10 Character-appearance Lytic permeative, lytic moth-eaten, lytic geographic, blastic,

Mixed blastic permeative, mixed blastic moth-eaten, mixed blastic geographic

11 Expansivity No, mild, moderate, severe

12 Edge definition Poor, moderate, well

13 Lobularity Lobular, smooth

14 Marginal sclerosis No, partial, rind (<2 mm), band (>2 mm), no applicable

15 Periosteal reaction No, yes (any form)

16 Matrix None, ground glass, calcified, ossified and sequestration

17 Cortical involvement Diploe, internal, external, both corticals

18 Form of cortical

involvement

None, thickened, thinned, broken

19 Swell/mass None, intracranial, subgaleal, both

Table 1. Variables recorded and their description.
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Variable     Odds ratio    CI 95%
Age 1,117 1,036-1,203
Character-appearance

Mix. blastic permeative 0,004 0,000-0,903
Periosteal reaction 0,041 0,001-1,250
Symptoms length 0,949 0,894-1,006
First symptom noticed

  Tumour 34,917   0,495-2464,392
Character-appearance

Mix. blastic moth-eaten 0,009 0,000-2,770
Centricity

Outer table 16,555 0,544-503,762
M          M           M          M
Table 2. Most relevant variables included for the logistic regression model, p<0.05.

CI: confidence interval.
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Algorithm Logistic regression Neural network

Error rate (CI 95%) ROC Az (CI 95%) Error rate (CI 95%) ROC Az (CI 95%)

Cross validation 0.1916 (0.1810,0.2080) 0.8103  (0.7883,0.8323) 0.1377 (0.1240,0.1476) 0.8854 (0.8674,0.9034)

Leave one out 0.1377 (0.0854,0.1899) 0.8711 (0.7854,0.9567) 0.1198 (0.0705,0.1690) 0.8736 (0.7887, 0.9584)

Bootstrap-1 0.0958 (0.0539,0.1446) 0.8819 (0.7994,0.9644) 0.1737, (0.1162,0.2311) 0.8508 (0.7600, 0.9415)

Bootstrap-2 0.1377 (0.0840,0.1880) 0.8303 (0.7350, 0.9256) 0.1676, (0.1128,0.2267) 0.8351 (0.7408, 0.9294)

Bootstrap-3 0.1736 (0.1169,0.2321) 0.7809 (0.6766, 0.8852) 0.1676, (0.1128, 0.2267) 0.8361 (0.7420, 0.9302)

Table 3. Results of the logistic regression and neural network models with the different resampling methods in terms of overall error rate and area

under the ROC curve (Az). CI: Confidence interval.
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Figures

Figure 1. ROC Az with their confidence interval (95%) for the different resampling

methods. Cross: cross-validation, LOO: leave-one-out, Boot-1: bootstrap-1, Boot-2:

bootstrap-2, Boot-3: bootstrap-3.

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

Cro
ss 

LR

Cro
ss 

NN

LOO L
R

LOO N
N

Boo
t-1

 L
R

Boo
t-1

 N
N

Boo
t-2

 L
R

Boo
t-2

 N
N

Boo
t-3

 L
R

Boo
t-3

 N
N

Az



19

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1-specificity

se
ns
iti
vit
y

NN

LR

Figure 2: ROC curves for LR and NN based on 3-fold cross-validation. The reported

curves are the average of the curves obtained in the 20 resampling processes.
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Figure 3: ROC curves for LR and NN based on .632+ bootstrap.


