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Abstract

We analyze which normal form solution concepts capture the notion of forward

induction, as de�ned by van Damme (JET, 1989) in the class of generic two player

normal form games preceded by an outside option. We �nd that none of the

known strategic stability concepts (including Mertens stable sets and hyperstable

sets) captures this form of forward induction. On the other hand, we show that

the evolutionary concept of EES set (Swinkels, JET, 1992) is always consistent

with forward induction.
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1 Introduction

The purpose of this paper is to analyze which normal form solution concepts capture

the extensive form notion of forward induction, as de�ned by van Damme (1989), in

the class of generic two player normal form games preceded by an outside option. In

this class of games player 1 �rst decides between `In' and `Out'. If he chooses `Out' he

receives his outside option and the game ends. If he chooses `In' both players engage in

a simultaneous move game. We restrict ourselves to those games for which the subgame

has several Nash equilibria but only one of them yields player 1 a higher payo� than his

outside option. Clearly, any game in this class has two Nash equilibrium components

or outcomes: One component consists of those strategy pro�les where player 1 chooses

`Out' and player 2 chooses any (mixed) strategy that makes player 1's choice optimal.

The second component is a singleton that corresponds to player 1 choosing `In' and both

players continue in the subgame with the equilibrium preferred by player 1. Van Damme

(1989) has argued that rational players would only play the second component using the

following forward induction argument: When player 1 chooses to enter the subgame and

thereby foregoes his sure outside option, player 2 should realize that a rational player

1 will: (1) play a Nash equilibrium in the subgame and (2) only enter the subgame

if he expects to obtain a higher payo� than his outside option. Hence, the fact that

the subgame has been entered unambiguously signals that play should continue with

the equilibrium preferred by player 1. Consequently, player 1 will decide to enter the

subgame. We will, henceforth, call player 1's preferred equilibrium the forward induction

equilibrium.

Clearly, this forward induction logic is an extensive form argument. Several authors,

and in particular Kohlberg and Mertens (1986), have forcefully argued that games should

be analyzed in the normal form since the normal form represents all the strategically

relevant information. In their seminal paper Kohlberg and Mertens list several desirable

properties a good normal form solution concept should have and de�ne three notions of

stability (KM stability, full stability and hyperstability) that satisfy some, but not all, of

those properties. One of those properties, which is satis�ed by all three stability notions,
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is motivated by an extensive form argument similar to van Damme's forward induction

logic, as they write:

\A subgame should not be treated as a separate game, because it was pre-

ceded by a very speci�c form of preplay communication - the play leading to

the subgame." (Kohlberg and Mertens, 1986, p. 1013.)

They call this argument, as well as the property it motivates, \forward induction"

but we prefer to call their mathematical formulation of the (normal form) property the

never-weak-best-reply property (NWBR). It says that if S is a stable set and strategy sj

is never a weak best reply against S, then S should contain a stable set of the reduced

game where sj has been deleted.

In many outside option games stable sets (or any other solution concepts satisfying

NWBR) do select the forward induction equilibrium. Consider for example the game in

Fig. 1.

(1; 1)

Out In

1

T

B

L R

3 , 2

2 , 0 �2 , 2

�3 , 0

Fig. 1: NWBR selects the Forward Induction Equilibrium.
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Consider the equilibria in the outside option component. In those equilibria player

1 chooses `Out' and player 2 chooses L with probability of at most 2

3
. Against this

component the strategy B is never a weak best response. (It yields at most 2

3
.) When

we delete this strategy from the game, however, the only reasonable solution is of course

(T;L), which is not contained in the outside option component. The outside option

component is therefore not stable. Hence, stability (or NWBR) selects the forward

induction equilibrium in the example of Fig. 1.

Unfortunately, NWBR does not select the forward induction equilibrium in all outside

option games. In fact, van Damme (1989) showed that the outside option outcome can

be KM stable. We replicate his example in Fig. 2 below.

(2; 2)

Out In

1

T

B

L C R

3; 3

0; 0 3; 2

0; 2 3; 0

0; 3

Fig. 2: Not every Stable Outcome is Consistent with Forward Induction.

The subgame has three Nash equilibria, one of which yields player 1 a payo� of

3, while the other equilibria yield a payo� strictly less than 2. Hence, the forward

induction equilibrium is to enter the game and to play (T,L). This equilibrium is in-

deed stable. However, as van Damme (1989) shows, there exist two KM stable sets

in which the outside option is chosen, namely f(Out; (2
3
; 1
3
; 0)); (Out; (1

3
; 2
3
; 0))g and

f(Out; (0; 1
3
; 2
3
)); (Out; (0; 2

3
; 1
3
))g.1

1A KM stable set is a minimal set of Nash equilibria such that for any strategy perturbation of the

game, there exists an equilibrium close to the set. In this case, the �rst (second) element of the set
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As van Damme already pointed out, these sets are neither fully nor hyperstable.

Whether the latter stability notions always do select the forward induction equilibrium

remained an open question. We show, by means of a generic example in Section 3, that

the outside option outcome may be hyperstable (and, therefore, also fully stable).2 This

is our main negative result.

More recently Mertens (1989, 1991) and Hillas (1990) introduced new stability con-

cepts that satisfy all of the desirable properties listed by Kohlberg and Mertens.3 Van

Damme (1994) suggested, in a chapter prepared for the Handbook of Game Theory with

Economic Applications, that perhaps Mertens stability implies forward induction. How-

ever, Hillas and Kohlberg (1996), in a di�erent chapter of the same Handbook, showed

this conjecture to be false. As a matter of fact, they used van Damme's game from Fig. 2

as their counterexample: The outside option component contains two Mertens stable sets,

namely
n�
Out; (q; 1� q; 0) j 1

3
� q � 2

3

�o
and

n�
Out; (0; q; 1� q) j 1

3
� q � 2

3

�o
. These

Mertens stable sets are the convex hulls of the KM stable sets.4 Since Mertens stable

sets are known to contain Hillas stable sets (see e.g. Hillas et al. (1999)), the same

negative result holds for Hillas stable sets.

The above results, together with the known relationships between all existing stability

notions (including homotopy stable sets and Q-stable sets, see Hillas et al. (1999)), imply

that none of the existing strategic stability notions uniquely selects the forward induction

equilibrium. Given that the forward induction argument seems to require a high degree

of sophistication from the players (players should play a Nash equilibrium and expect

others to do likewise), strategic stability concepts presented themselves as prominent

candidate solutions to capture this logic, but they fail to do so. Surprisingly, we do �nd

corresponds to strategy perturbations that put relatively high probability on `T' (`B').
2Hyperstable sets are de�ned with respect to payo� perturbation, whereas fully stable sets are de�ned

with respect to strategy perturbations. Kohlberg and Mertens (1986) showed that any hyperstable set

contains a fully stable set, which in turn contains a KM stable set.
3Mertens stability is, like KM stability, de�ned with respect to strategy perturbations. Instead,

Hillas stability is de�ned with respect to perturbations of the best response correspondence.
4This re
ects the desirable connectedness property from Kohlberg and Mertens. The equilibria of the

outside option component that are not contained in any of the above sets are not normal form perfect,

and can therefore not be contained in any Mertens stable set.
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an evolutionary solution concept that is always consistent with the forward induction

logic, namely equilibrium evolutionarily stable sets (EES sets, Swinkels (1992)). This is

the main positive result of the paper.

The remainder of the paper is set up as follows. In Section 2 we recall van Damme's

de�nition of forward induction and argue that for a small subclass of outside option

games the forward induction argument is not fully compelling. This subclass consists of

those outside option games in which the preferred equilibrium is in mixed strategies and

not all of player 2's best replies yield player 1 a payo� higher than the outside option. We

introduce notation and derive some preliminary results relating to index theory that will

prove to be helpful in the remainder of the paper. In Section 3 we present our negative

results by means of two examples. The example that shows that the outside option

outcome may be hyperstable has a forward induction equilibrium in mixed strategies.

We provide a second example to show that even if the forward induction equilibrium

is strict, the outside option outcome may be essential.5 Section 4 contains the positive

result that EES sets are always consistent with forward induction. Section 5 discusses

the relation of forward induction and some adjustment dynamics and concludes.

2 Preliminaries

2.1 Forward Induction

Let g = (E;F; u1; u2) be a generic 2-person game with pure strategy sets E =

fe1; : : : ; emg and F = ff1; : : : ; fng and payo� functions ui : E�F ! IR. Let s� be player

1's preferred Nash equilibrium in g and let x be a number such that u1(s
�) > x > u1(s)

for any equilibrium s 6= s�. Let gout denote the reduced normal form of the game where

player 1 decides between an outside option, yielding him a payo� of x, or to enter the

subgame g. We denote the class of these outside option games by �. Van Damme (1989)

argues that any solution concept that is consistent with forward induction should at least

5Essentiality is, like hyperstability, de�ned with respect to payo� perturbations, but, unlike hyper-

stability, need not be invariant. Whether the outside option outcome can be hyperstable when the

forward induction equilibrium is strict remains an open question.
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satisfy the following property (see also Fudenberg and Tirole, 1993, Def. 11.8, p. 464):

Property 1 For any outside option game gout 2 � for which s� is \viable", only the

outcome in which player 1 chooses to enter the subgame g and s� is played in g is

plausible.

Which equilibria are viable depends on the theory of rationality that we are consid-

ering. E.g. if we believe players adhere to a theory that says that (weakly) dominated

strategies are irrational, s� is only viable if it does not use (weakly) dominated strategies.

Similarly, if we use stability as a selection criterion s� is only viable if it is itself stable.

We believe that van Damme's argument is very compelling. However, he de�ned

property 1 for a slightly too large class of outside option games: the intuitive argument

for forward induction does not work for all gout 2 �. To illustrate this point, consider

the outside option game in Fig. 3.

(371
2
; 0)

Out In

1

Fig. 3: Outside Option Game.

C

20 , 6

32 , 12

16 , 8

T

M

B

L R

25 , 2 68 , 4

33 , 20 48 , 17

17 , 4 80 , 5

The subgame g has three equilibria, namely s1 = ((1
3
; 1
3
; 1
3
); (1

3
; 1
3
; 1
3
)), yielding (113

3
; 26
3
),

s2 = ((3
5
; 2
5
; 0); (5

7
; 0; 2

7
)) yielding (261

7
; 46
5
) and s3 = ((0; 1; 0); (1; 0; 0)) yielding (33; 20).

Since 113
3

> 37:5 > 261
7

> 33, player 1 prefers s1. According to van Damme's notion

of forward induction player 1, by entering the subgame, unambiguously signals that he

will continue with the only equilibrium that yields more than the outside option, that

is, with s11, and that player 2 should play his part of the equilibrium, s12.

It is true that player 1, by entering the subgame, unambiguously signals his intention

to play his part of the preferred equilibrium. But, since that equilibrium is in mixed

6



strategies, player 2 has multiple pure best replies. Even if player 2 is convinced, by

observing that player 1 entered the subgame, that player 1 will play his part of the pre-

ferred equilibrium, it is not at all obvious that player 2 will respond with his equilibrium

strategies or any other mixed best reply that yields player 1 a high payo�. Since some of

the alternative best replies of the game in Fig. 3 yield player 1 a payo� lower than the

outside option, player 1 should not enter. The intuitive argument for forward induction

fails here. However, if all best replies of player 2 yielded player 1 a payo� higher than

the outside options, the intuitive argument for forward induction would be restored.

The example of Fig. 3 suggests that the class of games � should be restricted to those

outside option games for which any mixed best reply of player 2 against s� yields player

1 a higher payo� than the outside option. We denote this restricted class by ��.

2.2 Index theory

To prove some of our results in Sections 3 and 4 we will make use of index theory. Shapley

(1974) introduced the index for isolated Nash equilibria and Ritzberger (1994) de�ned

an index for Nash equilibrium components. We will rely on recent advancements by

Govindan and Wilson (1996, 1997a,b) on the relation between the index and the degree

of an equilibrium component. We here summarize the relevant results and explain how

we will make use of them in the next sections.

With each component of Nash equilibria of a game are associated its index and its

degree. The degree of a component is the local degree of the projection map from the

Nash graph to the space of games.6 The index of an equilibrium component is de�ned

for a given map from the strategy space to itself whose �xed points are the equilibria

of the game. The index does not depend on the particular �xed point map.7 Moreover,

the index and the degree of a component agree and depend only on the reduced normal

form of the game (Govindan and Wilson, 1997a).

6Loosely speaking, the local degree counts the number of cycles around the original game traversed

by the image of a cycle in the graph around the component. The degree is negative if the cycles have

reversed orientations.
7Govindan and Wilson (1997b) proved this for two person games while DeMichelis and Germano

(1998) did so for n player games.
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The index can be calculated as follows: The index of an isolated equilibrium is the sign

of an associated jacobian. It follows straightforwardly that any strict Nash equilibrium

has index +1. The index of a component is the sum of the indexes of the nearby equilibria

of any generic nearby game (measured in distance between payo� vectors). In particular,

if for some nearby generic game there are no equilibria nearby the component, the index

of the component is zero. That is, any inessential component has index zero and any

component with non-zero index is essential. Since the index of a component is invariant,

it follows that components with non-zero index are essential in any equivalent game, and

thus contain a hyperstable set. Govindan and Wilson (1996, 1997a,b) conjecture that

a component is essential if and only if it has non-zero index. One of the examples in

Section 3 shows that this is false: essential components may have index zero. However,

this component is not essential in every equivalent game. It remains an open question

whether components that are essential in every equivalent game can have zero index.8

An important and very useful property of the indexes of the equilibrium components

of a game is that they must sum to +1. This is a consequence of the Poincar�e-Hopf

theorem. We will use this property repeatedly in the next sections. The class of outside

option games under consideration in this paper has two equilibrium components: the

outside option component and the forward induction equilibrium s�. If s� is strict it has

index +1 and, by the property mentioned above, the outside option component must

have index zero. When s� is in mixed strategies its index may be either +1 or �1. In

the latter case the outside option component must have index +2. (In particular, the

outside option component will then be essential and contain a hyperstable set.)

3 Essential and hyperstable sets

In this section we will prove our negative results: we �rst provide an example in which

the forward induction equilibrium is strict but the set of equilibria that are consistent

with the outside option outcome is shown to be essential but not hyperstable since it

8It turns out that this open question is closely related to the open question posed in Section 3 whether

the outside option outcome can be hyperstable when the forward induction equilibrium is strict.
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is not robust to payo� perturbations of all equivalent games. We then show that the

outside option can be hyperstable: this example has a forward induction equilibrium in

mixed strategies.

Wilson (1997) argued that the unintuitive result in van Damme's (1989) example (see

Fig. 2) is due to the fact that the outside option component is not essential. In Wilson's

point of view KM stability has the drawback to insist on admissibility above essentiality.

Wilson argues that admissibility should not be invoked when selecting an equilibrium

component, although it may be useful to select among some of the equilibria within the

selected (essential) component. Indeed, in many examples where KM stability yields

unintuitive results, intuition is restored when only essential components are considered.9

In particular, the outside option component in Van Damme's game (Fig. 2) is not

essential. Hence, if we insist on essentiality, the outside option component will not be

selected. However, as we will show now, essentiality is not restrictive enough either to

always select the forward induction equilibrium.

3.1 Essential sets

In this subsection we will show that the outside option component can be essential. We

�rst de�ne the notion of an essential set.

De�nition 1 A closed set of Nash equilibria S is essential if for any small payo� per-

turbation of the normal form, there exists a Nash equilibrium close to S. (Jiang Jia-he,

1963).

Consider the (generic) game in Fig. 4a. The subgame has 5 equilibria: the 2 pure

equilibria are s1 = ((1; 0; 0); (1; 0; 0)) yielding (5; 4) and s2 = ((0; 1; 0); (0; 1; 0)) yielding

(�1; 8). There is one completely mixed equilibrium s3 = ((1
3
; 1
3
; 1
3
); (1

3
; 1
3
; 1
3
)), yielding

9Related results are obtained by Govindan (1995) and Govindan and Robson (1998). Govindan

(1995) shows that in the chain store paradox of Kreps and Wilson (1982) the unique Mertens stable

outcome is the \intuitive" one, while KM stable sets may contain \unintuitive" outcomes. Govindan

and Robson (1998) show that admissibility restores the forward induction logic in an example discussed

by Gul and Pearce (1996), who argued that forward induction loses its power when continuous public

signals are added to the game.
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(�7; 2) and two other mixed equilibria s4 = ((2
3
; 1
3
; 0); (1

3
; 2
3
; 0)) yielding (�25

3
; 8
3
) and

s5 = ((1
3
; 0; 2

3
); (2

3
; 0; 1

3
)) yielding (�1

3
; 8
3
).

(0; 0)

Out In

1

Fig. 4a: Outside Option Game in Extensive Form.

C

�15 , 0

�1 , 8

�21,�2

T

M

B

L R

5 , 4 �11 , 2

�23 , 0 3 , 1

�1 , 2 1 , 3

C

�15 , 0

�1 , 8

�21,�2

T

M

B

L R

5 , 4 �11 , 2

�23 , 0 3 , 1

�1 , 2 1 , 3

Out 0 , "1 0 , "2 0 , "3

Fig. 4b: Perturbed Normal Form.

Obviously, s1 is strict and it is the only equilibrium that gives a positive payo�, i.e. a

payo� higher than the outside option. Clearly, since s1 is strict it constitutes a singleton

stable set, for any notion of stability. However, we shall show that this game admits an

essential set in which the outside option is chosen.

Let �2 be the set of mixed strategies for player 2 against which the best reply for

player 1 is his outside option. This set is illustrated in Fig. 5. Only the 6 extreme

points of this set are possible candidates for members of a minimal essential set in which

the outside option is chosen. We shall refer to these extreme points as P1 through P6

in accordance to Fig. 5. Namely, P1 and P2 are the extreme points that make player 1

indi�erent between T and Out. At P3 player 1 is indi�erent between B and Out. At P4

player 1 is indi�erent between M , B, and Out. At P5 player 1 is indi�erent between M

and Out. At P6 player 1 strictly prefers Out.
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R = 1

L = 1 C = 1

Fig. 5.

�2

u1(M;�2) = 0

u1(B; �2) = 0

u1(T; �2) = 0
P5 = (0; 3

4
; 1
4
)

P1 = (3
4
; 1
4
; 0)

P2 = (11
16
; 0; 5

16
)

P4 = ( 31

282
; 10

282
; 241
282

)

P3 = (1
2
; 0; 1

2
)

s

s

s

s

s

s

P6 = (0; 1; 0)

In order to check whether these extreme points can be part of an essential set, we

need to check if there exist equilibria close to those extreme points in the game where

players' payo�s are perturbed slightly. Because of the genericity of the game, the only

payo� perturbations that matter are those that a�ect the payo� of player 2 when player

1 chooses Out. (See Fig. 4b.)

Proposition 1 The outside option component of the game de�ned in Fig. 4 is essential.

Proof: The following table lists all equilibria near the (extreme points of the) outside

option component for all relevant perturbations:
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perturbations equilibrium

"2 � "1

"2 � 2"3 � "1

9>=
>; =)

�
"2�"1

4+"2�"1
T + 4

4+"2�"1
Out; P1

�

"2 � 2"3 � "1

"3 � "1

9>=
>; =)

�
"3�"1

2+"3�"1
T + 2

2+"3�"1
Out; P2

�

"3 � "1

5"1 � 4"3 + "2

9>=
>; =)

�
"1�"3

1+"1�"3
B + 1

1+"1�"3
Out; P3

�

5"1 � 4"3 + "2

7"1 � 8"3 � "2

9>=
>; =)

�
5"1�"2�4"3
12(1+"1�"3)

M + 7"1+"2�8"3
12(1+"1�"3)

B + 1

1+"1�"3
Out; P4

�

7"1 � 8"3 � "2

"3 � "2

9>=
>; =)

�
"3�"2

7+"3�"2
M + 7

7+"3�"2
Out; P5

�

"3 � "2

"2 � "1

9>=
>; =) (Out; P6)

Fig. 6 illustrates the conditions for the di�erent extreme points to be equilibrium

strategies. In this �gure we take "2 = 0. This is without loss of generality since only

relative perturbations matter.
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"1

"3 =
1
2
"1

Fig. 6a: Equilibria close to P1

O

"1

"3 =
1
2
"1

"3 = "1

Fig. 6b: Equilibria close to P2

j

"3

"1

"3 = "1

Fig. 6c: Equilibria close to P3

"3 =
5
4
"1

i

"3

"1

Fig. 6d: Equilibria close to P4

"3 =
5
4
"1

"3 =
7
8
"1

]

"3

"1

Fig. 6e: Equilibria close to P5

"3 =
7
8
"1

�

"3

"1

Fig. 6f: Equilibria close to P6

-
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From Fig. 6 it is easy to see that each of fP1; P2; P3g, fP2; P3; P6g, fP3; P5; P6g and

fP4; P5; P6g cover all possible perturbations. Thus the sets X1 = fOutg � fP1; P2; P3g,

X2 = fOutg � fP2; P3; P6g, X3 = fOutg � fP3; P5; P6g and X4 = fOutg � fP4; P5; P6g

are (minimal) essential.

3.2 Hyperstable sets

In the example above the set of equilibria supporting the outside option is essential, and

contains many minimal essential sets, but it does not contain any hyperstable set. Some

authors have mistakenly claimed that any essential set must contain a hyperstable set

(e.g. Ritzberger and Weibull, 1995, Prop. 4b and Coroll. 4). However, hyperstability

also requires an invariance property. In particular, every equivalent game, obtained by

adding a mixed strategy as an additional pure strategy, should have the same solution.

Formally,

De�nition 2 S is hyperstable in a game G if it is minimal with respect to the following

property: S is a closed set of Nash equilibria of G such that, for any equivalent game

G0 and for any small payo� perturbation of the normal form of G0, there exists a Nash

equilibrium close to S. (Kohlberg and Mertens, 1986).

We will now show that there is a game equivalent to the one in Fig. 4, in which the

outside option component is not essential.

Let z = 61

81
L + 20

81
C. We add the mixed strategy z as an additional pure strategy for

player 2 to the game. When we now perturb the payo�s of the game slightly, we obtain

the 4 � 4 normal form game indicated in Fig. 7 where " > 0. (We only perturb player

2's payo� after (Out; z) into ".)
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C

�15 , 0

�1 , 8

�21,�2

T

M

B

L R

5 , 4 �11 , 2

�23 , 0 3 , 1

�1 , 2 1 , 3

Out 0 , 0 0 , 0 0 , 0

Fig. 7: Perturbed Equivalent Game.

z

5
81

, 244
81

�

1423
81

, 160
81

�

481
81

, 82
81

0 , "

The unique Nash equilibrium of this game is (T;L). To see why, consider �rst some

Nash equilibrium that does not use R. Then neitherM nor B can be used since they are

dominated by Out. Hence, only L and z can be used in the equilibrium. That, however,

implies that T is the unique best reply for player 1 so that any equilibrium that does

not use R is (T;L).

Next consider a Nash equilibrium in which R is used. Then also Out must be used,

since any equilibrium di�erent from (T;L) that does not use Out yields a negative payo�

to player 1. Hence, the equilibrium must yield zero to player 1. If T were used in this

equilibrium, then the mixed strategy of player 2 (seen as distribution over L, C, and R)

must be on the line piece between P1 and P2. (See Fig. 5.) Since both M and B yield

negative payo�s to any of those points, they cannot be used in the equilibrium. But this

means that R will not be used either, a contradiction.

Hence, T is not used. This implies that L is not used either (since some mixtures

between R and z do better than L). Suppose that C is not used. Let � 2 (0; 1) be

such that �R + (1 � �)z is on the line piece between P4 and P5. Then M yields zero

against this strategy while B yields a negative payo�. Hence, player 1 uses M and Out

only. But then some mixtures of C and z do strictly better than R, so that R cannot be

used, another contradiction. So C and R must be used, which implies that both M and

B must be used. Hence, the mixed strategy employed by player 2 (seen as distribution
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over L, C, and R) must be P4. However, no convex combination of C, R, and z yields

the same distribution as P4.

This establishes that the outside option component of the game in Fig. 4 does not

contain a hyperstable set. Hence, hyperstability uniquely selects the forward induction

equilibrium in the game of Fig. 4. However, our next example shows that this is not

always the case and that the outside option outcome can be hyperstable.

Consider the game with outside option in Fig. 8. The subgame has three Nash

equilibria: s1 = (1=2; 1=2; 0); (1=2; 1=2; 0)) yielding player 1 a payo� of 4, s2 =

(1=3; 1=3; 1=3); (1=3; 1=3; 1=3)) yielding player 1 a payo� of 8/3, and s3 = (B;R) yielding

player 1 a payo� of 1. Hence, s1 is the only equilibrium yielding player 1 more than the

outside option of 3. Moreover, if player 2 is convinced that player 1 plays his �rst two

strategies with equal probability, any best reply of player 2, i.e. any mixture between L

and R will yield player 1 a payo� of 4.

Proposition 2 In the game of Fig. 8 both the forward induction equilibrium and the

outside option outcome are hyperstable.

Proof. Govindan and Wilson (1996,1997a) showed that an equilibrium component with

non-zero index is essential in all equivalent games, and thus contains a hyperstable set.

It is easily veri�ed that the index of the forward induction equilibrium is �1. Since

the sum of indexes of all components must equal +1, this means that the component

of equilibria supporting the outside option has index +2. Hence, in the game of Fig. 8

both equilibrium outcomes are hyperstable. 2
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(3; 0)

Out In

1

Fig. 8: Hyperstability does not satisfy Forward Induction.

C

2 , 2

6 , 6

7 , 0

T

M

B

L R

6 , 6 0 , 7

2 , 2 0 , 0

0 , 0 1 , 1

3.3 Discussion

Note that if the forward induction equilibrium is strict it has index +1, so that the outside

option component must have index zero. Govindan and Wilson's su�cient condition for

equilibrium components to be essential and invariant is violated. For this reason we

had to give a constructive proof of the essentiality of the outside option component

in the game of Fig. 4. The example shows that essential components may have zero

index. This partially resolves an open question posed by Govindan and Wilson. It

remains an open question whether components that are essential in every equivalent

game (and therefore contain a hyperstable set) can have zero index. This question would

be answered a�rmatively if one would �nd an example of an outside option game with a

strict forward induction equilibrium in which the outside option outcome is hyperstable.

Govindan and Wilson's (1996) original su�cient condition for an essential component

to be invariant is that the local degree of the projection map from the Nash graph to the

space of payo� perturbations be non-zero. In the example of Fig. 4 this degree is zero,

as can be most easily seen from Fig. 6: A cycle in the Nash graph around the outside

option component, (P1|P2|P3|P4|P5|P6) corresponds to the following path in the
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perturbation space: �rst (more than) a full turn clockwise (Figs. 6a,b,c) and then a

(more than) full turn counter-clockwise (Figs. 6d,e,f). The projection of the cycle P1|

P6 consists of two paths with opposite orientations so that they cancel each other out.

The local degree of the projection is thus zero.

Govindan and Wilson's condition of a non-zero degree is similar to the one used

by Mertens (1989, 1991) to de�ne Mertens stability. However, Mertens considers the

projection map from the Nash graph to the space of strategy perturbations. From van

Damme's example in Fig. 2 it is clear that the distinction between payo� and strategy

perturbations matters, since the outside option outcome is Mertens stable but not hy-

perstable. (However, for the game of Fig. 4 one can check, by explicitly calculating the

Nash graph for the relevant small strategy perturbations, that this degree is also zero.)

By incorporating the non-zero degree condition into the de�nition of Mertens stable sets,

these sets are guaranteed to have certain desirable properties but the proof of existence

becomes very hard. We believe, however, that his proof can be readily adapted to show

the following conjecture.

Conjecture. Every game has a Mertens stable set that lies within a component with

positive index.

If this Conjecture is true, it follows that every game has a Mertens stable set that

lies within an essential component. Let us call such sets essential Mertens stable sets.

As we wrote at the beginning of this section, Wilson (1997) argued that one should �rst

restrict attention to essential components and only then make a further selection using

admissibility or other stability criteria. The essential Mertens stable set seems to be as

much as one can do in this respect. However, even this very strong notion of strategic

stability is not restrictive enough to uniquely select the forward induction equilibrium

in the game of Fig. 8. Namely, the outside option component has index +2 and is thus

essential. It must contain a Mertens stable set since it is the only component with a

positive index. Note that the forward induction equilibrium is \viable" (see Property 1)

since it forms an essential Mertens stable set.
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4 Evolutionary Stability

Swinkels (1992) introduced the notion of an equilibrium evolutionarily stable set (EES

set). An EES set is a closed and non-empty set of Nash equilibria that is stable under

a dynamic evolutionary process. The evolutionary process is not modeled explicitly. In-

stead, the stability requirement is described by an entry condition for mutants. Roughly

speaking, this entry condition says that a small portion of mutants can enter (and `sur-

vive') if the strategy they play is a best response to the strategy of the post-entry

population.

Let � = �1��2 denote the set of mixed strategy pro�les and let B(s) = B1(s)�B2(s)

denote the set of best replies against s.

De�nition 3 � � � is an equilibrium evolutionarily stable set (EES set) if it is a

minimal closed and non-empty set of Nash equilibria that satis�es

(S) there exists �0 > 0 such that for all � 2 (0; �0); for all s 2 � and for all s0 2 �1��2

s0 2 B((1� �)s+ �s0) ) (1� �)s+ �s0 2 �:

Swinkels (1992, Fig. 10, p. 330-331) noted that an EES set need not contain an

element consistent with forward induction. However, his example is not really adequate

to test forward induction, since the subgame has a continuum of equilibria and there

does not exist a number x such that u1(s
�) > x > u1(s), for all equilibria s di�erent

from the preferred equilibrium s�. The example can be corrected. Namely, consider the

game gout from Fig. 9.

L C R

T 0,8 15,0 0,15

M 0,7 0,15 15,0

B 5,5 7,1 8,0

Out 6,6 6,6 6,6

Fig. 9: Outside Option Game in Normal Form.
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The subgame g has two equilibria, which demonstrates the nongenericity of the ex-

ample: s = (B;L) and s� = (1
2
T + 1

2
M; 1

2
C + 1

2
R). The latter equilibrium yields 7.5 and

is the only one that yields a payo� higher than the outside option. It is easily veri�ed

that fs�g is not an EES set since s could enter that set. The set of all Nash equilibria

in which player 1 plays his outside option is an EES set.10

At �rst sight this example seems to show that EES sets are not consistent with

forward induction. However, the example is problematic for several reasons. First, it is

nongeneric and it does not belong to the subclass ��.11 Second, the preferred equilibrium

itself is not evolutionarily stable in the subgame. Hence, we may argue that s� is not

viable (when EES set is the solution concept employed) so that the forward induction

argument does not apply. In order to investigate whether EES sets capture the notion of

forward induction we should therefore only consider those outside option games gout 2 ��

for which the preferred equilibrium s� constitutes an EES set in the subgame g. For such

games it is straightforward to show that fs�g is then also an EES set of gout.12 Hence,

in order to see that EES sets uniquely select the forward induction equilibrium (in this

subclass of outside option games), we need to show that gout has no other EES sets.

Since EES sets are maximal connected sets of Nash equilibria and since gout has only

two equilibriumcomponents, this amounts to showing that the outside option component

is not an EES set. That is what we do in this section.

We will proceed as follows. We start by assuming that there exists an outside option

game gout 2 �� for which both equilibrium components are EES sets. We will derive

a contradiction in a number of steps. First we construct a new game ~gout by adding

certain strategies for player 1. We show that the additional strategies are such that the

outside option component remains an equilibriumcomponent while the forward induction

equilibrium is destroyed and no new equilibria appear (Lemma 1). Hence, ~gout has only

10This is due to the fact that at no strategy of the outside option component both T and M are

(simultaneous) best replies.
11When player 1 plays his part of the preferred equilibrium, s�

1
, and player 2 best responds by choosing

L, 1's payo� is less than the outside option.
12EES sets are invariant w.r.t addition and deletion of NWBR strategies. See Swinkels (1992, Thm.

6).
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one equilibrium component and its index must be +1. We then argue that the index of

the outside option component in the original game must also be +1 (Lemma 2). On the

other hand, if the preferred equilibrium itself constitutes an EES set, it must have index

+1 (Lemma 3), which implies that the outside option component in the original game

must have zero index (Corollary 1). The contradiction between Lemma 2 and Corollary

1 thus shows that our hypothesis was wrong: the outside option component cannot be

an EES set. Thus we then have shown

Proposition 3 Let gout 2 �� and suppose the forward induction equilibrium s� constitutes

a singleton EES set. Then it is the unique EES set so that the outside option outcome

is not equilibrium evolutionarily stable.

Without loss of generality we will assume that the outside option yields player 1 a

payo� of 0 so that u1(s
�) > 0 > u1(s) for any Nash equilibrium of the subgame s di�erent

from s�. We introduce some notation. Let X denote the outside option component of

gout, i.e.

X = fOutg �X2 = fOutg � f�2 2 �2 : u1(ei; �2) � 0 8ei 2 Eg:

Let E0 denote the set of pure strategies of player 1 that correspond to the binding

constraints in the de�nition of X2, i.e.

E0 = fei 2 E : 9�2 2 �2 s.t. u1(ei; �2) = 0 = max
ek2E

u1(ek; �2)g:

Finally, let I 0 = fi0 : ei0 2 E0g.

Construction of ~gout

Note that s�2 62 X2. Hence, there exists i0 2 I 0 such that u1(ei0; s
�
2) > 0. Let " 2

(0; u1(ei0; s
�
2)) be small. Note that u1(s

�) > " > 0 and thus, by assumption, g does not

have any Nash equilibrium yielding a payo� of ".

We will construct ~gout from gout by adding extra strategies for player 1 only. For every

i0 2 I 0 we add a pure strategy ~ei0 for player 1. Let ~E = f~ei0 : i0 2 I 0g denote the set of

those additional strategies. Let K > 1. The payo�s in ~gout = (E [ ~E [ fOutg; F; ~u1; ~u2)
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are given by

~uk(ei; fj) = uk(ei; fj) (ei 2 E [ fOutg; k = 1; 2)

~u1(~ei0; fj) = K i0 (u1(ei0; fj)� ") (~ei0 2 ~E)

~u2(~ei0; fj) = u2(ei0; fj) (~ei0 2 ~E)

The idea behind this construction is as follows. Consider the \in
ated" set

X"
2 = f�2 2 �2 : u1(ei0; �2) � " 8ei0 2 E0g:

Clearly, X2 � X"
2 . Note that all additional strategies yield negative payo�s to player

1 when playing against a strategy in the interior of this in
ated set, while at least one

additional strategy will yield a positive payo� against strategies outside this in
ated set.

In particular, for large values of K player 1's best reply against a strategy outside the

in
ated set must be one of his additional strategies. Since s�2 is outside the in
ated set,

the forward induction equilibrium of gout will not be an equilibrium in ~gout. Lemma 1

characterizes the equilibria of the newly constructed game for large values of K.

Lemma 1 For large K, ~gout has a unique equilibrium component, namely

~X = fOutg � ~X2 = fOutg � f�2 2 �2 : u1(ei; �2) � 0 8ei 2 Eg;

Proof. Note that for all strategies s2 2 �2

ei0 2 E0 and u1(ei0; s2) � 0) ~u1(~ei0; s2) � �"K i0 < 0:

Hence, it is clear that the set ~X is a component of equilibria in ~gout for any K > 0.

Suppose now, on the contrary, that for all large K there is some equilibrium sK 62 ~X .

Without loss of generality (by taking a convergent subsequence) we may assume that

the sequence fsKgK converges to some strategy pro�le s. We may also assume that the

support of sK is constant, although of course the support of s may be a strict subset of

the support of sK. We will show (in Claim 2 below) that we can construct a strategy ŝ1

such that (ŝ1; s2) is an equilibrium in gout which yields player 1 a payo� of ", contradicting

the assumption that the only equilibrium with positive payo�s in that game is s� while

u1(s
�) > ".
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We �rst determine the best replies for player 1 in ~gout against the limit strategy s2.

Claim 1:

(i) maxe
i0
2E0 ~u1(ei0; s2) = ".

(ii) maxei2EnE0 ~u1(ei; s2) < ".

(iii) If ~ei0 is in the support of s1, then ~u1(ei0; s2) = ":

Proof. (i) By contradiction. Suppose �rst that there is ei0 2 E0 with ~u1(ei0; s2) =

u1(ei0; s2) > ". Of all such strategies take the one that has the highest index i0. Suppose

it is ei0. Then

~u1(~ei0; s2) = K i0 (u1(ei0; s2)� ")!1 as K !1:

For �K large enough, we have for all K > �K, B1(s2) = f~ei0g. That is, for large K there

is a unique best reply against s2. But then, for large enough K, we must also have that

B1(s
K
2 ) = f~ei0g. Let ffjg = B2(~ei0) = B2(ei0). Then sK = (~ei0; fj) = s. However, then

(ei0; fj) is a mutant strategy that could enter X (in gout), and since u1(ei0; fj) > " > 0 it

would actually take the population out of the set X, which contradicts the assumption

that X is an EES set.13 Hence, u1(ei0; s2) � " for all ei0 2 E0.

Suppose now that ~u1(ei0; s2) < " for all ei0 2 E0. Then ~u1(~ei0; s2)! �1 and thus ~ei0

is not in the support of sK1 for any i0 2 I 0 when K is large. But that means that sK = s

(viewed as strategy in gout) is an equilibrium of gout which yields player 1 a positive

payo�. Hence, s = s�. However, recall from the remark before the construction of ~gout

that there exists some i0 2 I 0 such that u1(ei0; s
�
2) > " > u1(ei0; s2) which contradicts our

previous conclusion that s = s�. Hence, ~u1(ei0; s2) = " for some ei0 2 E0. 2

(ii) We conclude from (i) that s2 must be very close to (but outside of) X2 so that no

strategy ei 2 E n E0 will be a best reply to s2. 2

(iii) It follows from (i) that all additional strategies ~ei0 yield player 1 a payo� of at

most zero. Moreover, ~ei0 is not in the support of sK1 (and, hence, not in the support of

s1) if it yields player 1 a strictly negative payo� against s2. 2

13The mutant strategy could enter when the population is at some state (Out; �2) where �2 is such

that u1(ei0 ; �2) = 0 > u1(ei; �2) for all ei 6= ei0 .
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Let I = fi : ~u1(ei; s2) = "g. From (i) and (ii) of Claim 1 we know that I 6= ; and that

I � I 0. Hence, if ei is in the support of s1 then i 2 I. Similarly, from Claim 1(iii) we

know that if ~ei is in the support of s1 then i 2 I. Hence, there are nonnegative numbers

�i; �i (i 2 I) such that

s1 =
X
i2I

�i~ei +
X
i2I

�iei:

De�ne

ŝ1 =
X
i2I

(�i + �i)ei:

Claim 2: (ŝ1; s2) is an equilibrium of gout yielding player 1 a payo� of " > 0.

Proof. Each pure strategy in the support of s2 is a best reply (in ~gout) against sK1 for

all K, and by continuity it must also be a best reply against s1. But since ~u2(~ei; fj) =

~u2(ei; fj) = u2(ei; fj), we must also have that each pure strategy in the support of s2 is

a best reply against ŝ1 (in gout), hence that s2 2 B2(ŝ1).

Every pure strategy ei0 2 E0 in the support of s1 is a best reply against sK2 , and by

continuity also against s2. For every pure strategy ~ei0 in the support of s1 we know by

Claim 1(iii) that ~u1(ei0; s2) = ". Hence, for every ~ei0 in the support of s1, ei0 is a best

reply against s2. This implies that ŝ1 2 B1(s2). 2

This concludes the proof of Lemma 1. 2

Lemma 2 index( ~X) = index(X) = +1:

Proof. Since ~X is the unique equilibrium component of ~gout its index must be +1. (See

Section 2.2.)

In order to show that the index of X and ~X must be equal we use a result by Govindan

and Wilson (1997) that explains how to calculate the index of a component. The index

of the component can be calculated as follows: Perturb the payo�s of the normal form

of the game slightly in a generic way. Compute all equilibria of the perturbed game

that are nearby the component. Calculate the index of each of those equilibria and sum

them. The resulting sum is the index of the component.

Since the added strategies ~ei 2 ~E are not best replies against the component, they

will not be used in equilibria of the perturbed game that are nearby the component when
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the payo� perturbations are small enough. That means that when using the same payo�

perturbation in gout and ~gout, the set of nearby equilibria of the perturbed games will be

identical, and also the indices of each of those nearby equilibria will be the same (since

those only depend on the payo� matrix restricted to the strategies actually used with

positive probability). Therefore, the index of X and the index of ~X must coincide. 2

On the other hand, we have

Lemma 3 Let fs0g be an EES set of a two person game. Then index(s0) = +1.

Proof. Namely, consider the game where players are restricted to use only strategies

from B(s0). This game must have s0 as the unique Nash equilibrium since any other

Nash equilibrium would be able to enter. (See condition (S) in the de�nition of an EES

set.) The index of the unique equilibrium of a game must always equal +1, since the

sum of the indexes over all equilibrium components equals +1. Hence, the index of s0

in the restricted game is +1. But then the index of s0 in the original game is also equal

to +1. (This follows from the fact that the index of an equilibrium can be calculated

from the payo� matrices restricted to the support of the equilibrium. See Govindan and

Wilson, 1997b.) 2

Corollary 1 index(X) = 0.

Proof. From Lemma 3 we know that index(s�) = +1. Again using the argument that

the sum of indexes over all equilibrium components must equal +1 implies then that the

only other component, X, must have zero index. 2

Clearly, Lemma 2 and Corollary 1 contradict each other. They were derived under

the hypothesis that X is an EES set. (This was used in the proof of Lemma 1, which

in turn was used to prove Lemma 2.) Hence, X is not an EES set and the proof of

Proposition 3 is complete: EES sets uniquely select the forward induction equilibrium.

5 Conclusion

When introducing a new equilibrium re�nement, various authors have checked that their

new re�nement satis�es some form of forward induction. (Eg. Matsui (1992).) However,

they usually chose an outside option game in which repeated elimination of dominated
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strategies already uniquely selects the forward induction equilibrium. In this paper

we have asked ourselves which solution concepts satisfy the stronger notion of forward

induction proposed by van Damme (de�ned in Section 2) in the class of generic 2-person

normal form games preceded by an outside option. This notion of forward induction

requires more rationality on the part of the players than just playing rationalizable

strategies. It basically requires players to play a Nash equilibrium and to expect others

to play a Nash equilibrium.

Because of this required level of sophistication, it seemed obvious to examine solution

concepts that are characterized by strong rationality assumptions, like the strategic

stability concepts. Van Damme had already shown that KM stability is not restrictive

enough to capture forward induction but suggested that perhaps some stronger forms of

stability would satisfy forward induction. However, we have seen that neither Mertens

stability (and thus neither Hillas stability) nor hyperstability (or essentiality) always

capture forward induction. Even combining Mertens stability with essentiality does not

seem to yield the forward induction equilibrium.

Surprisingly, we found that an evolutionary concept, EES set, does satisfy forward

induction: if the preferred equilibrium in the subgame is a singleton EES set, then it is the

unique EES set of the outside option game. In other words, choosing the outside option

is not evolutionarily stable. This result is perhaps not completely satisfactory since EES

sets may fail to exist, even in generic games. However, if the preferred equilibrium itself

is not a singleton EES set, we may argue that it is not \viable" (see Property 1) so that

we should not expect it to be the plausible solution.

Given the level of sophistication required for the forward induction argument, it is

surprising that deductive solution concepts (like stability) do not uniquely select the

forward induction equilibrium whereas an eductive solution concept does. It seems to

suggest that learning and/or adjustment dynamics might lead to the forward induction

equilibrium. We should be cautious in reaching this conclusion. Although EES sets

certainly have an evolutionary 
avor, they are de�ned bymeans of a static entry condition

for mutants. This static entry condition requires some rationality on part of the mutants:

they have to be equilibrium entrants. This seems to be the key why EES sets select
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the forward induction equilibrium, since forward induction also requires deviations to

be interpreted as equilibrium play. Usually, rationality requirements of evolutionary

or learning dynamics are less stringent than the requirement of equilibrium entrants.

Indeed, no dynamics is known to yield EES sets as dynamically stable sets.

Several authors have examined the forward induction property by directly consider-

ing certain dynamics. N�oldeke and Samuelson (1993) consider a dynamics driven by

stochastic learning and rare mutations. They get some support for forward induction of

the limiting distribution of such dynamics. However, they only consider games in which

the preferred equilibrium is strict.14 Ritzberger and Weibull (1995) examine which sets

of strategies are asymptotically stable under the wide class of so called sign-preserving

selection dynamics. They �nd that the only asymptotically stable sets are (entire) faces

of the strategy space that are curb, i.e. closed under rational behavior.15 A product

set of mixed strategies is curb when for every strategy pro�le in this set, all best replies

against it are also contained in the set. (See Basu and Weibull (1991) for details.) It is

easily veri�ed that in the case of an outside option game where the preferred equilibrium

is strict, the only minimal curb set is the singleton containing that equilibrium. However,

when the preferred equilibrium is in mixed strategies, the only curb set may contain all

strategy pro�les.

Ritzberger (1994) takes a di�erentiable viewpoint of normal form games by consider-

ing dynamics given by the so called Nash �eld (vaguely related to replicator dynamics)

and regular interior approximations thereof. Using these tools he is able to assign an

index to each component of Nash equilibria and argues that components with non-zero

index have nice properties, and suggests that the property of having a non-zero index

be used for equilibrium selection. It follows from the work of Govindan and Wilson

(1997a,b) that those indexes are the same as the ones we have used in this paper. If

the preferred equilibrium has an index of +1, the outside option component has index

14In fact, they consider outside option games where the subgame may have several strict equilibria

that yield a higher payo� than the outside option. Van Damme's notion of forward induction does not

really apply since player 1 cannot unambiguously signal which equilibrium he will play in the subgame.
15In particular, an EES set which lies in the relative interior of a face cannot be asymptotically stable

under such dynamics.
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zero and Ritzberger's method selects the forward induction equilibrium. However, if the

preferred equilibrium has index �1 (which of course implies that the equilibrium is in

mixed strategies and does not form a singleton EES set), the outside option component

has index +2 and cannot be excluded. An easy way out of this problem consists of

restricting attention to equilibrium components with strictly positive index. Such a \so-

lution concept" will obviously satisfy our notion of forward induction16 and, in contrast

to the EES set, it will always exist.

The above discussion suggests that when the preferred equilibrium is in mixed strate-

gies the details of the dynamics seem to be important. In the case where the preferred

equilibrium is strict all roads lead to Rome, that is, many di�erent dynamics will lead

to the forward induction equilibrium.17

References

Basu, K. and J.W. Weibull (1991). \Strategy subsets closed under rational behavior,"

Economics Letters, 36, 141-146.

Binmore, K. and L. Samuelson (1999), \Evolutionary Drift and Equilibrium Selection,"

Review of Economic Studies, 66, 363-393.

van Damme, E. (1989). \Stable Equilibria and Forward Induction," Journal of Eco-

nomic Theory, 48, 476-496.

van Damme, E. (1994). \Strategic Equilibrium," prepared for: Handbook of Game

16Note, if we use this criterion for equilibrium selection and the preferred equilibrium has index �1,

it is simply not viable and forward induction does not apply. Also note that an equilibrium may have

index +1 while it does not form a singleton EES set. Hence, this new solution concept selects a forward

induction equilibrium more often than EES sets do.
17We should point out one notable exception. Binmore and Samuelson (1999) argue that drift may

matter, especially in large equilibrium components that correspond to play at unreached subgames. They

show that even in an outside option game where the preferred equilibrium is strict and a simple repeated

elimination of dominated strategies argument su�ces to select the forward induction equilibrium, some

speci�cation of drift may in fact stabilize the outside option outcome.

28



Theory with Economic Applications, vol. 3 (R.J. Aumann and S. Hart (Eds.) In

press.

DeMichelis, S. and F. Germano (1998). \On the Indices of Zeros of Nash Fields,"

mimeo CORE.

Fudenberg, D. and J. Tirole (1993). Game Theory. MIT Press, Cambridge, MA. Third

edition. (First edition 1991).

Govindan, S. (1995). \Stability and the Chain Store Paradox," Journal of Economic

Theory 66, 536-547.

Govindan, S. and A. Robson (1998). \Forward Induction, Public Randomization, and

Admissibility," Journal of Economic Theory, 82, 451-457.

Govindan, S. and R. Wilson (1996). \A Su�cient Condition for Invariance of Essential

Components," Duke Mathematical Journal, 81, 39-46.

Govindan, S. and R. Wilson (1997a). \Equivalence and Invariance of the Index and

Degree of Nash Equilibria," Games and Economic Behavior, 21, 56-61.

Govindan, S. and R. Wilson (1997b). \Uniqueness of the Index for Nash Equilibria of

Two-Player Games," Economic Theory, 10, 541-549.

Gul, F. and D.G. Pearce (1996). \Forward Induction and Public Randomization,"

Journal of Economic Theory, 70, 43-65.

Hillas, J. (1990). \On the De�nition of Strategic Stability," Econometrica, 58, 1365-

1390.

Hillas, J., Jansen, M., Potters, J. and D. Vermeulen (1999). \On the relation among

some de�nitions of strategic stability", mimeo.

Hillas, J. and E. Kohlberg. (1994) \Foundations of Strategic Equilibrium," prepared

for: Handbook of Game Theory with Economic Applications, vol. 3 (R.J. Aumann

and S. Hart (Eds.) In press.

29



Jiang Jia-he (1962). \Essential Fixed Points of the Multivalued Mappings," Scientia

Sinica, 11 293-298.

Kohlberg, E. and J.-F. Mertens (1986). \On the Strategic Stability of Equilibria,"

Econometrica, 54, 1003-1037.

Kreps, D. and R. Wilson (1982). \Reputation and Information," Journal of Economic

Theory 27, 253-279.

Matsui, A. (1992). \Best Response Dynamics and Socially Stable Strategies," Journal

of Economic Theory, 57, 343-362.

Mertens, J.F. (1989). \Stable Equilibria - A Reformulation, Part I: De�nition and Basic

Properties," Mathematics of Operations Research, 14, 575-625.

Mertens, J.F. (1991). \Stable Equilibria - A Reformulation, Part II: Discussion of

the De�nition, and Further Results," Mathematics of Operations Research, 16,

694-753.

N�oldeke, G. and L. Samuelson (1993). \An Evolutionary Analysis of Backward and

Forward Induction," Games and Economic Behavior 5, 425-454.

Ritzberger, K. (1994). \The Theory of Normal Form Games from the Di�erentiable

Viewpoint," International Journal of Game Theory, 23, 207-236.

Ritzberger, K. and J. Weibull (1995). \Evolutionary Selection in Normal-FormGames,"

Econometrica, 63, 1371-1399.

Shapley, L. (1974). \A Note on the Lemke-Howson Algorithm," Mathematical Pro-

gramming Study, 1, 175-189.

Swinkels, J. (1992). \Evolutionary Stability with Equilibrium Entrants," Journal of

Economic Theory, 57, 306-332.

Wilson. R. (1997). \Admissibility and Stability," in Understanding Strategic Behavior:

Essays in Honor of Reinhard Selten, W. Albers, W. G�uth, P. Hammerstein, P.

Moldovanu and E. van Damme (Eds.) pp. 85-99. Berlin: Springer-Verlag.

30


