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Abstract

We incorporate the process of enforcement learning by assuming

that the agency's current marginal cost is a decreasing function of

its past experience of detecting and convicting. The agency accumu-

lates data and information (on criminals, on opportunities of crime)

enhancing the ability to apprehend in the future at a lower marginal

cost.

We focus on the impact of enforcement learning on optimal sta-

tionary compliance rules. In particular, we show that the optimal

stationary �ne could be less-than-maximal and the optimal stationary

probability of detection could be higher-than-otherwise.

JEL: K4.

Keywords: �ne, probability of detection and punishment, learning.
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1 Introduction

Economic theory of law enforcement has primarily been built on static mod-

els. Since Becker (1968) seminal paper, the economic theory of compliance

and deterrence has been con�ned to static analysis even though the impor-

tance of dynamics as been recognized long time ago. The fundamental prob-

lem of a static model is the exclusion of learning and recidivistic behavior,

as individuals are allowed to break the law only once.

Once we attend at a dynamic model rather than a static model of com-

pliance, we must consider the source of dynamics. In other words, a fun-

damental issue is to understand why decisions by both potential o�enders

and the government at a given period are history path dependent. Di�erent

sources of history path dependence have been considered in the literature.

One source of dynamics is that the pool of potential o�enders at time t

depends on the pool of o�enders at time t� 1 because (a) some o�enders are

detected and punished at time t� 1 and can no longer commit an o�ense at

time t (e.g. they are imprisoned), (b) the o�ense will continue until detected,

(c) o�enders solve an optimal stopping problem by choosing a path of o�ense

rate over a temporal horizon, or (d) gains from illegal activities are path

dependent (e.g. criminal know-how).1 Compliance rules at time t� 1 a�ect

the pool of potential o�enders at time t. The government should choose

compliance rules at time t that optimally deter o�enses at the current period

and at future periods.

A second source of dynamics comes from the fact that potential of-

fender's perceptions are determined endogenously incorporating information

available to them. This information is generated within the economy as time

goes by.2 Compliance rules should be condition on the learning dynamics.

As an example, raising the probability of detection increases the number of

occasions in which o�enders get caught giving them more information about

law enforcement.

Essentially the literature has considered `supply side' dynamics, that

1Davis (1988), Leung (1991, 1995), Nash (1991), Polinsky and Shavell (1998).
2Sah (1991), Ben-Shahar (1997).
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is, the path dependence is directly related to potential o�enders. In this

paper, we address `demand side' dynamics, that is, the path dependence is

related to the enforcement agency and not to the o�enders. We incorporate

the process of enforcement learning by assuming that the agency's current

marginal cost is a decreasing function of its past experience of detecting and

convicting. The agency accumulates data and information (on criminals, on

opportunities of crime) enhancing the ability to apprehend in the future at

a lower marginal cost.

We focus on the impact of enforcement learning on optimal stationary

compliance rules. In particular, we show that the optimal stationary �ne

could be less-than-maximal and the optimal stationary probability of detec-

tion could be higher-than-otherwise. If the present value of reducing the cost

of enforcement tomorrow because of learning more than compensates the

present cost of enforcement at the steady-state, then the government should

set a higher-than-otherwise probability and reduce the �ne appropriately.

2 A Model of Law Enforcement

Consider an economy of risk-neutral individuals who choose whether to com-

mit an act that bene�ts the actor by b and harms the rest of society by h. The

policy maker does not know individual's gain b, but knows the distribution

of parties by type described by a distribution G(b) with support [0; B], with

a positive density g(b). We suppose that h < B, that is, not every o�ense is

socially undesirable.

The government at time t chooses a sanction f(t) and a probability of de-

tection and conviction p(t). The expenditure on detection and conviction to

achieve a probability p(t) is given by C(E(t))p(t), where C(:) is the marginal

cost and E(t) is a measure of past enforcement experience. In particular, we

assume:

E(t) = �

Z t

�1

p(�)e��(t��)d� (1)

Hence, the measure of past experience is developed over past probabilities

p(�), � � t. Our measure E(t) is a weighted sum of past probabilities p(�)
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(for � � t) with exponentially declining weights given to more distant values

of p(�), where � > 0 is the rate of memory. More distant history deterrence

events carry less weight in the learning mechanism.

Following Ryder and Heal (1973), the evolution of E(t) is given by:

_E(t) = �(p(t)� E(t)) (2)

From (2), we can observe that if the current probability of detection

and apprehension p(t) is more than the weighted sum of past probabilities

E(t), we have _E(t) > 0. Conversely, reducing the probability of detection

and apprehensions a�ects negatively deterrence experience. We could think

that with less detection and apprehension, the agency forgets about past

experience.

Regarding the cost function we assume that C(0) = C > 0, C 0(E(t)) <

0, and C 00(E(t)) � 0. These assumptions pose that the agency must detect

and convict o�enders in order to learn and the cost declines with the habit

of detecting but at a decreasing rate. While the agency's technology (cost)

at any point in time displays constant returns to scale, it is characterized by

dynamic economies to scale.

At time t, a risk-neutral individual commits an o�ense if and only if

b � p(t)f(t). We assume that both the individual's gain b and the magnitude

of harm h are time invariant.

In the optimal law enforcement literature, social welfare at time t gener-

ally equals the sum of individuals' expected utilities minus the harm caused

by o�enses minus expenditure on law enforcement3:

W (t) =

Z B

p(t)f(t)
(b� h)dG(b)� C(E(t))p(t)

The monetary sanction is assumed to be costless to impose as conventional

in the law enforcement literature, and F is the maximal feasible sanction.

3See Garoupa (1997) and Polinsky and Shavell (1999). It is conventional in this litera-

ture to include all gains in social welfare. Some argue that the o�ender's gains should be

excluded for moral reasons.
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The policy maker maximizes the following objective function:

Z
1

0
f

Z B

p(t)f(t)
(b� h)dG(b)� C(E(t))p(t)ge�rtdt (3)

where r > 0 is the discount rate. The maximization problem is subject to the

evolution of E(t) described by (2), the maximal feasible sanction constraint

f(t) � F , and E(0) = E0 � 0. Here we have typically an optimal control

problem where the control variables are p(t) and f(t), and the state variable

is E(t). If we denote by �(t) the costate variable associated with E(t), the

Hamiltonian function H can be expressed as:

H =

Z B

p(t)f(t)
(b� h)dG(b)�C(E(t))p(t) +�(t)�(p(t)�E(t)) + �(t)(F � f(t))

(4)

where � is the usual Lagrangean multiplier.

Let us de�ne the following elasticity:

� = �
C 0(E)

C(E)
E

which is the elasticity of learning with respect to detection and conviction.

Proposition 1 (a) If �(p�) � 1 + r=� and F > h, the optimal steady-state

�ne is less-than-maximal. (b) If �(p�) < 1 + r=� or F � h, the optimal

steady-state �ne is maximal.

Proof

Following Chiang (1992) and according to the maximum principle, the control

variables p(t) and f(t) must be chosen so as to maximize H at each time t,

given the current values of the state and costate variables, E(t) and �(t). If

one assumes continuous di�erentiability of the Hamiltonian, we have:

@H

@p(t)
= f(t)(h� p(t)f(t))g(:)� C(E(t)) + �(t)� = 0 (5)
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@H

@f(t)
= p(t)(h� p(t)f(t))g(:)� �(t) = 0 (6)

Furthermore, optimal control theory imposes two necessary conditions that

the costate variable � must satisfy. The �rst of these conditions is:

_�(t) = r�(t)�
@H

@E(t)

= (r + �)�(t) + C 0(E(t))p(t) (7)

and the second of these constraints consists of the following transversality

condition:

lim
t!+1

e�rt�(t)E(t) = 0 (8)

We also need to invoke the Kuhn-Tucker conditions to deal with the

inequality constraint. We must have f(t) � F , �(t) � 0, and �(t)(F�f(t)) =

0.

We are interested in the steady-state solution of this problem. The

stationary state to this problem is described by _E(t) = _�(t) = 0. At the

steady-state solution, we must have:

_E = �(p� E) = 0

_� = (r + �)�+ C 0(E)p = 0

Thus, E� = p� and �� = �C 0(p�)p�=(r + �) = C(p�)�=(r + �).

Using these two results, we can re-write (5) and (6) as:

f �(h� p�f �)g(:) = C(p�)(1�
�

r + �
�)

p�(h� p�f �)g(:) = ��

If a less-than-maximal sanction is the optimal solution, then it must be

the case that �� = 0, the constraint is not binding. From (6), we have that
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p�f � = h. Therefore, when F � h, the optimal �ne cannot be less-than-

maximal. A less-than-maximal sanction is possible if and only if F > h.

Using these results in (5), we conclude that it if �(p�) � 1+r=�, we have a

less-tha-maximal �ne. The result follows from combining both �(p�) � 1+r=�

and F > h.2

The marginal social cost of imposing a monetary sanction is zero and

the marginal social cost of setting a probability of detection and punishment

at the steady-state is given by C(:)(1 � �

r+�
�). As long as �(p�) < 1 + r=�,

the marginal cost of setting a probability of detection and punishment at

the steady-state is positive. In this case, the usual high-�ne-low-probability

argument applies: we should take the sanction to its maximum and com-

plement its deterrent e�ect with a lower-than-otherwise probability. From

Polinsky and Shavell (1999), we also know that the expected �ne is less than

the magnitude of harm h. In other words, there will be o�enses which so-

cially yield a negative surplus and nevertheless will be committed because it

is too costly to deter them.

Take the case such that � = 1 + r=�. The marginal social cost of set-

ting a probability of detection and punishment at the steady-state is zero.

Therefore, the government is indi�erent between probability and �ne. Fur-

thermore, unlike Polinsky and Shavell (1999), the expected sanction is equal

to the magnitude of harm h. At steady-state, we have e�cient deterrence.

Only o�enses that yield a socially positive surplus are committed.

The last case to consider is � > 1 + r=�. The marginal cost of setting

a probability of detection and punishment at the steady-state is negative.

Therefore, the policy maker will take the probability to one and complement

with the �ne such that f � = h.

The marginal social cost of setting a probability of detection and appre-

hension at steady-state assumes a critical role on the result. This marginal

cost has two terms. The �rst term, C(:), is the usual in the law enforcement

literature and the driving force of the high-�ne-low-probability result. The

second term, ���, measures the present value of reducing the marginal social

cost of the probability of detection and punishment tomorrow. If the present

value of reducing the marginal social cost of the probability of detection and
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punishment tomorrow more than compensates the present marginal social

cost of that probability at the steady-state, then the government should set

a probability equal to one.

Proposition 2 The condition for a less-than-maximal �ne at the steady-

state is more likely to be satis�ed if (a) the elasticity of learning with respect

to detection and conviction is high, (b) the discount rate r is small, and (c)

the rate of memory � is high.

Proof

The result follows trivially from �(p�) � 1 + r=�.2

A less-than-maximal �ne at the steady-state is a consequence of enforce-

ment learning being very valuable for the government to the point of setting a

higher-than-otherwise probability. Proposition 2 states the conditions under

which setting a higher-than-otherwise probability is valuable for the govern-

ment: (a) when the probability a�ects decisively the learning process, (b)

when the government cares for the future, and (c) when there is learning.

In particular, when � = 0 (no memory of past experience) or when � = 0

(independent history), we have the standard result f �(h�p�f �)g(:) = C(p�).

Proposition 3 The optimal steady-state probability decreases with r and in-

creases with �.

Proof

The result follows from the observation that the marginal cost of the proba-

bility increases with r and decreases with �.2

A higher-than-otherwise probability is set by the government as the

discount rate decreases (as the future becomes more important) and the rate

of memory increases (as the gains from learning become more important at

the moment of setting the current probability).
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3 Conclusion

We have shown that a less-than-maximal sanction at steady-state is possible

as a response to a dynamic feature of enforcement policy. The marginal cost

of enforcement depends on a measure of learning provided by past enforce-

ment experience. Setting a higher probability of detection and apprehen-

sion at time t � 1 provides a further gain in reducing the marginal cost of

enforcement at time t. We have shown that this e�ect leads to a higher-

than-otherwise probability at steady-state. Aiming at optimal deterrence,

the government could have to reduce the sanction to a less-than-maximal

�ne.

In our model, the possibility of a less-than-maximal �ne at steady-state

is somewhat extreme since it only happens if the gains from learning more

than compensate the current marginal cost. In a model like the one by

Kaplow (1990), where nonmonetary sanctions are considered, there is a pos-

itive social marginal cost from imposing a sanction. As a consequence, our

result should be re-interpreted as suggesting a less-than-otherwise sanction

at steady-state because of a dynamic feature of enforcement policy.

An interesting extension of the model is to consider that an imprison-

ment term could also bene�t the government in providing information about

criminal opportunities. Setting longer imprisonment terms at time t � 1

reduces the cost of enforcement at time t. Consequently, the optimal impris-

onment term at steady-state could be higher-than-otherwise. Polinsky and

Shavell (1984) have argued that the monetary sanction should be taken to its

highest value, and an imprisonment term should be used to complement it

when the maximal �ne is not very large. Using the rationale we have provided

in this paper, we could have a higher-than-otherwise imprisonment term with

a less-than-otherwise �ne at steady-state if the future marginal gains from

learning more than compensate the current marginal cost of imprisonment.
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