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Abstract

Minkowski's ?(x) function can be seen as the confrontation of two number systems:
regular continued fractions and the alternated dyadic system. This way of looking at it
permits us to prove that its derivative, as it also happens for many other non-
decreasing singular functions from [0,1] to [0,1], when it exists can only attain two
values: zero and infinity. It is also proved that if the average of the partial quotients in
the continued fraction expansion of x is greater than  k* =5.31972, and ?'(x) exists
then ?'(x)=0. In the same way, if the same average is less than k**=2 log2(Φ), where Φ
is the golden ratio, then ?'(x)=∞. Finally some results are presented concerning metric
properties of continued fraction and alternated dyadic expansions.



1. Introduction

In 1904 Minkowski, see [1], builds the function ?(x) with the idea of
matching all quadratic irrationals in [0; 1] to the periodic dyadic ratio-
nals. In 1938, Denjoy, see [3], proves that ?(x) is a singular function in
the sense that its derivative is zero almost everywhere in [0; 1] and ex-
hibits an analytic expression for ?(x): if x = [0; a1; : : : ; an; : : : ] denotes
the regular continued fraction expansion of x, then

?(x) =
1

2a1�1
� 1

2a1+a2�1
+ � � �+ (�1)n+1

2a1+���+an�1
+ � � � :

Salem, in 1943, see [8], proves the singularity of ?(x) using a metric
property of continued fractions:

The set S of x 2 [0; 1] for whom the continued fraction ex-
pansion has unbounded partial quotients is such that if ?0(x)
exists and is �nite then it vanishes.

As the Lebesgue measure of S is 1, see [4, p. 69], the singularity of
?(x) is proved.
In 1960, Kinney, in [5], following the original scheme of Minkowski

and working with the partitions of [0; 1] determined by the di�erent
stages of the Farey tree (also known as the Stern{Brocot tree) proved
that if x =?�1(y), and y is a normal number under the dyadic system
(in the sense of Borel) then given any � > 0 there exists n(�) such that
for any stage of the Farey tree Fn posterior to Fn(�) we have:

If x 2 J(n; x) j?(J(n; x))j � jJ(n; x)j�+�
;

where the interval J(n; x) has as endpoints two consecutive fractions
of the n{th Farey tree stage.
This result allows Kinney to �nd a Lipschitz condition constant �,

that, in its turn determines the Hausdor� dimension of the set formed
by the inverse images of normal numbers in the dyadic system. The
value of � is:

� =

�
2

Z
1

0

log
2
(1 + x)d ?(x)

��1
:

Recently, in 1995, Tichy and Uitz, see [9], following Kinney's ideas
exhibit a family of singular functions g�, which generalize Minkowski's
function. In this last paper, there is a numerical approximation for
Kinney's constant, � � 0:875.
Our purpose in the present paper is to study more closely the links

between the metric properties of the number systems involved in Den-
joy's de�nition of ?(x), continued fractions and alternated dyadic (the
dyadic system with alternating signs in the expansion) , and the sin-
gularity of ?(x). We intend to show that some of the previous results
admit a re{interpretation in a number system context.

1



2

2. Salem's approach

Salem, in [8], proves the singularity of ?(x) in the following way. Let

S = fx = [0; a1; a2; : : : ; an; : : : ] lim sup
n!1

an =1g;

and let rn = pn=qn = [0; a1; : : : ; an] be the n{th convergent and �n =
?(rn). If a

0

n+1
= [an+1; an+2; : : : ], we have

x =
a0n+1

pn + pn�1

a0n+1
qn + qn�1

;

����x� pn

qn

���� = 1

(a0n+1
qn + qn�1)qn

;(2.1)

and, consequently, we have the double inequality

1

(an+1 + 2)q2n
<

����x� pn

qn

���� < 1

an+1q2n
:(2.2)

On the other hand, if Sn = a1 + � � �+ an, we have

y � �n = (�1)n
�

1

2Sn+1�1
� 1

2Sn+2�1
+ � � �

�
;(2.3)

and hence
1

2Sn+1
< jy � �nj < 1

2Sn+1�1
:(2.4)

If �n denotes the di�erential quotient,

�n =

����y � �n

x� rn

���� ;
we can write the double inequality:

an+1q
2

n

2Sn+1
< �n <

2(an+1 + 2)q2n
2Sn+1

:(2.5)

Now, considering the sequence �n,

�n

�n�1
<

2

2an+1

�
an+1 + 2

an

��
qn

qn�1

�
2

<
2

2an+1

�
an+1 + 2

an

�
(an + 1)2 < C

anan+1

2an+1
;

(2.6)

where C is an absolute constant. A simple calculation leads to C = 24.
Salem's reasoning is the following: if x 2 S, there exists a strictly in-

creasing subsequence of partial quotients fankg, with ank !1. Thus:

lim inf
n!1

�n

�n�1
= 0:(2.7)

If ?0(x) existed and were �nite and di�erent from 0, then �n=�n�1 should
tend necessarily to 1. Thus, if ?0(x) exists and is �nite then ?0(x) = 0.
Finally as the derivative exists almost everywhere in [0; 1], the singu-
larity of ?(x) is proved.
Salem's proof suggests that the essential metric property of the con-

tinued fraction expansion of x for which ?0(x) = 0 is the unboundedness
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of its partial quotients. This is not the case as we shall see re�ning
somewhat Salem's proof.

Theorem 2.1. Let S = fx : lim supan(x) � 12g. For x 2 S, if ?0(x)
exists then ?0(x) = 0.

Proof. From inequality (2.6):

�n

�n�1
< 24

anan+1

2an+1
:

As long as a subsequence fankg can be found for which:

�nk
�nk�1

< 24
ankank1
2ank1

� C < 1; (C constant);(2.8)

we can ensure that if ?0(x) exists and is �nite limn!1 �n = 0.

Now, if x 2 S, let us consider a subsequence fankg such that ank �
ank+1, with ank � 12 for all k. For this subsequence we have:

�nk
�nk�1

< 24
a2nk+1
2ank+1

� C < 1;(2.9)

as for h � 12 we have 24h2 < 2h.

Remark 2.2. The set S includes all the quadratic irrationals with a
continued fraction expansion such that any of the periodic terms is
greater or equal than 12.

It is convenient to notice that both, S and S have Lebesgue measure one
and their images, ?(S) and ?(S) have also measure one. This remark
makes us conjecture that both sets contain x for which ?0(x) = 1, as
we shall presently prove rigorously in the next sections.

3. Close study of ?0(x)

Following the steps of Kinney in [5], but using directly the contin-
ued fraction expansions instead of Farey fractions we are going to �nd
an analytical expression for ?0(x) better suited for our purposes than
Salem's.
Let x = [0; a1; a2; � � � ; an; � � � ] be the expansion of x 2 [0; 1] as a regular
continued fraction. We denote by Rn(x) its n{th convergent, Rn(x) =
[0; a1; � � � ; an] = pn=qn. If ?

0(x) exists then it has to coincide with the
following limit:

?0(x) = lim
n!1

?(Rn(x))�?(Rn�1(x))

Rn(x)�Rn�1(x)
;(3.1)

for the terms of the sequence fRn(x)g are the endpoints of a sequence
of nested intervals with limit x:

R0 < R2 < R4 < � � � < x < � � � < R5 < R3 < R1
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and limRn = x. Both, numerator and denominator in (3.1) have the
same sign.
We have:

jRn(x)� Rn�1(x)j = 1

qnqn�1
; j?(Rn(x))�?(Rn�1(x))j = 1

2a1+���+an�1
:

Calling Sn = a1 + � � �+ an, (3.1) can be written as

?0(x) = lim
n!1

2qnqn�1

2Sn
:(3.2)

Using (3.2), our next theorem extends Salem's result freeing it from
any metric consideration:

Theorem 3.1. If ?0(x) exists and is �nite then ?0(x) = 0.

Proof. Let �n = (2qnqn�1)=2
Sn, and let us prove that limn!1 �n 6= k,

for any positive constant k. In fact, we shall prove that �n=�n�1 can
never tend to 1 when n tends to in�nity.
We have

�n

�n�1
=

qn

qn�22an
;(3.3)

and from the recursive de�nition of qn, we have, for all n:

qn = anqn�1 + qn�2 = qn�1

�
an +

qn�2

qn�1

�
= qn�1

 
an +

1

an�1 +
qn�3
qn�2

!
;

and, consequently

qn = qn�2

 
an +

1

an�1 +
qn�3
qn�2

!�
an�1 +

qn�3

qn�2

�

= qn�2

�
an

�
an�1 +

qn�3

qn�2

�
+ 1

�
:

Notice that qn�3=qn�2 = [0; an�2; an�3; : : : ; a1] < 1. If we call qn�3
qn�2

S =

xn�1, replacing in (3.3) and simplifying we �nally get

�n

�n�1
=

an(an�1 + xn�1) + 1

2an
:(3.4)

For values of �n=�n�1 very near 1 we have:

an�1 + xn�1 � 2an � 1

an
:

And from the fact that 8x 2 R; x > 4:9 : : : ; x + 1 < (2x � 1)=x we
infer that if an � 5; an < an�1.
In this way, if �n=�n�1 � 1 from some position onwards, it will be

necessary that the partial quotients, an; decrease till they reach, at
the least, the value 5. Let us examine carefully the situation that
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arises when we reach a certain n for which an = 5. We shall have
an + xn 2 (5; 6), and thus the values of �n+1=�n will be within:

5an+1 + 1

2an+1
<

�n+1

�n
<

6an+1 + 1

2an+1
;

getting the best approximation to 1 for an+1 = 5:

26

32
<

�n+1

�n
<

31

32
=)

�����n+1

�n
� 1

���� > 1

32
:

For the values of an less than 5 we can establish the following. For
an = 1; 2; 3, the best approximations of �n+1=�n to 1 are those for
an+1 = 2; 3; 4, and when we reach a position n for which an = 4, we
shall have an + xn 2 (4; 5), getting the inequalities:

4an+1 + 1

2an+1
<

�n+1

�n
<

5an+1 + 1

2an+1
;

which, examined for the values an+1 = 4 and an+1 = 5 lead to the
bounds:

17

16
<

�n+1

�n
<

21

16
=)

�����n+1

�n
� 1

���� > 1

16
;

31

32
<

�n+1

�n
<

26

32
=)

�����n+1

�n
� 1

���� > 3

16
:

After this analysis the conclusion we reach is that it is impossible for
the terms in the sequence �n=�n�1 to di�er from 1 less 1=32 from some
place onwards.

The theorem we have just established, shows that Minkowski's function
?(x), in the points where the derivative exists (in a wide sense), can
only take two values: 0 or 1.
This behaviour is also presented by the more well{known Cantor's

devil's staircase, for which is rather simple to prove that C 0(x) = 0 if x
does not belong to Cantor's ternary set and in those points of Cantor's
set where C 0(x) exists in a wide sense, C 0(x) = 1. These are all the
possibilities concerning the value of the derivative. The same can be
proved for the family of singular functions of Riesz{Nagy ([7]), or the
wider family found in Wimp and Gho ([10]): for these functions, the
derivative cannot be �nite and di�erent from zero. The proof can follow
the same scheme as the proof of the previous theorem.
There exist though families of singular functions for which there are

points in which the derivative is �nite and di�erent from zero, see ([2]).
In the next section we establish a few metric theorems that will pro-

vide us with information about di�erent sets for which, if the derivative
exists at their points, it has to be zero or in�nity. These theorems will
enable us to exhibit sets of Lebesgue measure one whose image by ?(x)
has measure zero and viceversa, sets of measure zero with image of
measure one. The metric properties that de�ne these sets discriminate



6

the points at which the derivative is zero from those at which the de-
rivative is in�nite, aspect that Salem's approach did not contemplate.

4. New metric results for Minkowski's function

Theorem 4.1. Given x = [0; a1; : : : ; an; : : : ], and assuming that ?0(x)
exists, its value must be zero if the following property is veri�ed:

lim inf
n!1

Sn(x)

n
� k;

where the constant k, is the solution of the equation

2 log
2
(1 + x)� x = 0:

The value of k is, approximately, 5:31972.

Proof. Let us consider expression (3.2) for ?0(x):

?0(x) = lim
n!1

�n = lim
n!1

2qnqn�1

2Sn
:

By the arithmetic{geometric mean inequality we have:

qn < �n
j=1

(aj + 1) �
�
1 +

Sn

n

�n

;

and, consequently,

�n =
2qnqn�1

2Sn
<

2q2n
2Sn

< 2

"�
1 + Sn

n

�
2

2
Sn

n

#n
:

A su�cient condition for �n ! 0 is to have, from some place n0 on-
wards, the following inequality:

8n � n0;

�
1 + Sn

n

�
2

2
Sn

n

� C < 1;

which is equivalent to:

2 log
2

�
1 +

Sn

n

�
� Sn

n
� k < 0:

The only root of 2 log
2
(1 + x)� x = 0 is k = 5:31972 : : : .

In a similar way, we can state a weaker result that ensures ?0(x) =1
whenever the average of the partial quotients is asymptotically bounded

Theorem 4.2. If ?0(x) exists and we have

lim sup
n!1

Sn(x)

n
< 2 log

2
� � 1:388483 : : : ;

where � = (1 +
p
5)=2, then ?0(x) =1.
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Proof. The golden ratio � = [1; 1; 1; : : : ; 1; : : : ] presents the slowest
growth possible in the denominators qn of the convergents of a reg-
ular continued fraction. These denominators constitute exactly the
Fibonacci sequence and it is seen at once that

8x 2 (0; 1); qn(x) � C�n;

which implies:

2qnqn�1 � 2C2

�
�2n;

and, replacing these inequalities in (3.2) we get

�n � 2C2

�

�
�2

2
Sn

n

�n

:

Taking logarithms, �2=2Sn=n > 1 if

Sn

n
< 2 log

2
(�):

Let us examine an example. For the following irrational quadratics

� = [0; 1; 1; � � � ; 1| {z }
30

; 12]; � = [0; 1; 12];

according to theorems (4.1) and (4.2), we have the following limits:

Sn(�)

n
! 1:354 : : : ;

Sn(�)

n
! 6:5;

and, consequently:

If ?0(�) exists, then ?0(�) =1
If ?0(�) exists, then ?0(�) = 0:

In this way, it is easy to construct points belonging to Salem's set S,
such that if the derivative exists it takes the value in�nity. For instance,
for the number whose continued fraction expansion is:

x = [0; 2; 1; 1; 1; 3;

7z }| {
1; : : : ; 1; 4;

11z }| {
1; : : : ; 1; : : : ; n;

4n�5z }| {
1; : : : ; 1; : : : ];

we have

lim
n!1

Sn(x)

n
=

5

4
< 2 log

2
(�);

and, according to theorem (4.2) if the derivative exists at x, it must be
1, in spite of the fact that x 2 S.
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5. Metric sets for whose elements ?0 is either 0 or 1
Theorem 5.1. If x, under the shift transformation of continued frac-
tions, Tx = 1=x � b1=xc, has an orbit whose asymptotic distribution
function is Gauss measure, dg= log

2
(1+x), then if ?0(x) exists its value

is 0.

Proof. It is seen at once that if under the shift transformation x has
an orbit whose a.d.f. is log

2
(1 + x) we have:

lim
n!1

Sn(x)

n
=1:

and, according to theorem (4.1) we have that, if ?0(x) exists it is zero.
Let us denote by Ncf the set of real numbers such that their orbit
under the shift transformation has log

2
(1+x) as its a.d.f. We have the

following result, see [6]:

�(Ncf) = 1; �(?(Ncf)) = 0;

where � is Lebesgue's measure. The result is a consequence of the
fact that the images of Ncf are not normal, in the sense of Borel, in
the alternated dyadic system. We are going presently to prove that
the inverse images of normal numbers in the alternated dyadic system
constitute a set where, if the derivative exists at one of its points, it is
in�nite.

Let N2 denote the set of normal numbers under the alternated dyadic
system. It is clear that we have

�(?�1(N2)) = 0; �(N2) = 1;

and, moreover, we have the following result:

Theorem 5.2. If ?0(x) exists (in a wide sense) for x 2?�1(N2), then
?0(x) =1.

Proof. The normality of y =?(x) under the alternated dyadic system is
equivalent to say that its orbit under the corresponding shift transfor-
mation, Ty = 1� 2y, is uniformly distributed in (0; 1]. If this orbit is
fyng, then the orbit of x generated by the residue function of the contin-
ued fraction system will be f?�1(yn)g, which has as a.d.f. Minkowsk's
function ?(x) as we have

#fi : ?�1(yi) � z; i = 1; 2; : : : ; ng = #fi : yi �?(z); i = 1; 2; : : : ; ng
and, as fyng is uniformly distributed, we have:

lim
n!1

#fi : ?�1(yi) � z; i = 1; 2; : : : ; ng
n

=?(z):

Taking logarithms in �n = (2qnqn�1)=2
Sn we have

log
2
(�n) = 1 + log

2
(qn) + log

2
(qn�1)� Sn;
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log
2
(�n) =

�
1

n
+

log
2
(qn)

n
+
log

2
(qn�1)

n
� Sn

n

�
n:

Let us study the asymptotic behavior of log
2
(qn)=n, knowing that the

orbit of x has ?(x) as a.d.f. We have

qn = qn�1

�
an +

1

qn�1=qn�2

�
= qn�1 [an; an�1; � � � ; a1]| {z }

1=�n

:

Therefore we have

log
2
(qn)

n
= � 1

n

nX
i=1

log
2
(�i);(5.1)

and taking limits

lim
n!1

log
2
(qn)

n
= �

Z
1

0

log
2
(x) d?(x):

Separating the integral in two partsZ
1

0

log
2
(x) d?(x) =

Z 1

2

0

log
2
(x) d?(x) +

Z
1

1

2

log
2
(x) d?(x);

and making the change x = y=(1 + y) in the �rst part and the change
x = 1=(1 + y) in the second part, we have:

�
Z

1

0

log
2
(x) d?(x) = 2

Z
1

0

log
2
(1 + y) d?(y);

which, according to the value found by Tichy in [9] is exactly 1=0:875 �
1:1428.
Replacing this value in the expression

lim
n!1

�
2
log

2
(qn)

n
� Sn

n

�
;

and considering that that limSn=n = 2, as ?(x) is normal, we have as
a numerical approximation for the whole expression within the paren-
thesis 0:2857. Consequently, for the elements of the set ?�1(N2) we
have

lim
n!1

�n(x) =1;

completing thus the proof of theorem (5.2).

An alternative calculation for log
2
(qn)=n can be carried out using di-

rectly equation (5.1), taking as �i the �rst terms of a sequence whose
a.d.f. be ?(x). Thus, taking the �rst 1000 terms of the sequence pre-
sented in [6], which enumerates all the positive rationals in (0; 1] in
such a way that the enumeration has ?(x) as its a.d.f., we get the
approximate value 1:143076, giving an alternative way of computing
� = 0:8748325
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Theorem 5.3. The Hausdor� dimensions of ?(Ncf) and ?�1(N2) are

0 and
�
2
R
1

0
log

2
(1 + x)d?(x)

�
�1

, respectively.

Proof. For each positive integer n let us consider the following parti-
tions of (0; 1). On the one hand,

S2(n) =�
1

2k1
� 1

2k2
+ � � �+ (�1)n+1

2kn
: 0 � k1 < � � � < kn�1 < kn � 1; kj 2 Z+

�

(that is, all the n{term �nite expansions), and on the other hand,

Scf(n) =
�
[0; a1; a2; : : : ; an] : aj 2 Z+; an > 1

	
(that is, all n{term �nite regular continued fractions). The function
?(x) maps each interval of partition Scf(n)

Jcf(a1; : : : ; an) = ([0; a1; a2; : : : ; an]; [0; a1; a2; : : : ; an + 1])

onto each interval of partition S2(n):

J2(S1; : : : ; Sn) =

�
1

2S1�1
� � � � � 1

2Sn�1
;

1

2S1�1
� � � � � 1

2Sn

�

where, as before, Sj = a1 + � � �+ aj. The lengths of both intervals are

jJcf(a1; : : : ; an)j = 1

q2n + qnqn�1
; jJ2(S1; : : : ; Sn)j = 1

2Sn
:

This means that the ratio between both lengths is:

�(a1; : : : ; an) =
jJ2(S1; : : : ; Sn)j
jJcf(a1; : : : ; an)j =

q2n + qnqn�1

2Sn
:

Now, let x = [0; a1; a2; : : : ; an] 2?�1(N2). According to Theorem 5.2,

lim
n!1

Sn(x)

n
= 2; lim

n!1

log
2
(qn(x))

n
= 2

Z
1

0

log
2
(1 + y)d?(y):

Hausdor�'s dimension of ?�1(N2) is

sup

�
� 2 R+ : lim

n!1

jJ2(S1; : : : ; Sn)j
jJcf(a1; : : : ; an)j�

�
<1:

If we denote the expression in the limit by �n(�),

�n(�) =
(q2n + qnqn�1)

�

2Sn
:

The condition �n(�) <1 is equivalent to

lim
n!1

�n(�) =

�
� log

2
(q2n + qnqn�1)

n
� Sn

n

�
� n 6=1:
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Finally, � must verify

lim
n!1

log
2
(q2n)

n
� Sn

n
= 0:

That is, the value of � is

� = lim
n!1

Sn=n

log
2
(q2n)=n

=
1

2
R
1

0
log

2
(1 + x)d?(x)

:

The same ideas can be used to compute the Hausdor� dimension of
?(Ncf):

sup

(
� 2 R+ : lim

n!1

j?(Jcf(a1; : : : ; an))j�
jJcf(a1; : : : ; an)j 6= 0:

)
(5.2)

Now [0; a1; : : : ; an] = y 2?(Ncf). For these elements we have

lim
n!1

Sn(y)

n
=1; lim

n!1

log
2
(qn(y))

n
=

�2

12 ln2(2)
:

Condition (5.2) is equivalent to

lim
n!1

�
log

2
(q2n + qnqn�1)

n
� �

Sn

n

�
� n 6= �1;

which is only possible if � takes the value

lim
n!1

log
2
(q2n + qnqn�1)=n

Sn=n
= 0:

6. Conclusions

Minkowski's singular function derivative ?0(x) can only take two values
when it exists in a broad sense: 0 and 1. The same happens for the
well{known family of Riesz{Nagy.
If lim infn!1 Sn=n > 5:31972, and ?0(x) exists then necessarily ?0(x) =
0. This implies that for the set of real numbers x whose regular con-
tinued fraction expansion follows Gauss law log

2
(1 + x), the derivative

?0(x) can only be zero.
We also prove a weak converse: if lim supn!1

Sn=n < 2 log
2
(�), then

?0(x) =1. As a complement to this result we prove that for the inverse
images of normal numbers y under the alternated dyadic system, for
which the derivative exists we have ?0(?�1(y)) = 1, or, equivalently
(?�1)0(y) = 0
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