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1. Introduction

Let F be a class of densities on the real line. Assume that the sequence of i.i.d. random variables

X1; X2; : : : is drawn according to some density f which may, or may not belong to F . The question is if

it is possible to detect from a �nite sample whether the underlying density is a member of the class F .
Examples of F include the class of all normal densities, the class of all densities bounded by 5, the class

of all unimodal densities, or the class of densities supported on [0; 5] which are Lipschitz with a Lipschitz

constant less than 2. We investigate the testability of such properties.

A test is a sequence fTng of functions Tn : Rn ! f0; 1g so that upon observing the sample

X1; : : : ; Xn, one guesses that the unknown density f is in F i� Tn(X1; : : : ; Xn) = 1. A class F is called

almost surely testable, or simply testable, if there exists a test such that for any density f

P
�
Tn(X1; : : : ; Xn) 6= Iff2Fg for only �nitely many n

	
= 1:

(Here I denotes the indicator function.) In other words, we require that the test make the right decision

eventually, almost surely, for any density. A test fTng with the above property is called consistent.

Obviously, F is testable if and only if its complement Fc is testable.

This paper points out that many common assumptions one �nds nowadays in papers simply are

not testable. For example, one cannot test that a density has compact support or is bounded. One cannot

even test whether it is Lipschitz, let alone have a continuous �rst derivative. Integrability conditions likeR
f2 <1 can also not be tested. On the other hand, many properties can be tested such as unimodality,

monotonicity, and convexity. Several general theorems in this respect are provided. For example, closed

classes with an L1 minimax risk over F that tends to zero are testable. We provide an explicit and

non-obvious construction of such tests.

Even though we work with densities on the real line, basically all results may be reproduced for

multivariate densities in Rd. Since the multivariate problem does not need new ideas, we stay with the

simple case of d = 1.

Finally, we recall here that Kulkarni and Zeitouni (1995) studied a similar, though slightly weaker

de�nition of testability. Their de�nition, based on early work of Cover (1973) and Koplowitz (1977), is

asymmetric. If f =2 F they allow the test to fail for some very small subclass of densities. Under their

de�nition, Kulkarni and Zeitouni propose a general testing procedure. This, however, cannot be used to

prove testability under the symmetric de�nition studied here.

2



2. Classes de�ned by functionals

In this section we derive some su�cient conditions for testability for classes which are de�ned

in terms of some functional of the density. A functional 	 assigns an (extended) real number to every

density. Examples include 	(f) =
R
f2; 	(f) =

R
f log f ; 	(f) = ess sup f ; or 	(f) =

R
(f 0

2
=f).

Theorem 1. Let 	 be a functional de�ned for all densities, and consider a class F = ff : 	(f) � cg,
where c is a constant. Assume that there exists an estimate 	n = 	n(X1; : : : ; Xn) of 	(f) and a sequence

an ! 0 such that for all densities f ,

1X
n=1

P f	n > 	(f) + ang <1;

and 	n ! 	(f) almost surely. (Note: the convergence of (	n�	)+ must thus be uniform, but not that

of (	�	n)+.) Then F is testable.

Remark 1. An explicit test based on Theorem 1 can only be constructed if an is explicitly known. We

will provide several examples following the proof.

Proof. Consider the test

Tn(X1; : : : ; Xn) =
n
1 if 	n � c+ an,

0 otherwise.

If the common density f of the Xi's is in the class F then the probability of making a mistake is

P fTn = 0g = P f	n > c+ ang � P f	n > 	(f) + ang ;
which is summable by assumption, so the Borel-Cantelli lemma implies that the number of mistakes

remains �nite almost surely. If, on the other hand, f =2 F , then 	(f) > c, so since 	n ! 	(f) almost

surely, for su�ciently large n, 	n > c+ an, and therefore the number of mistakes is �nite in this case as

well.

Example 1: The class of densities supported in [�c; c]. As a �rst simple example, let c > 0, and

consider the class Fc of densities supported in the interval [�c; c]. This class is testable. To prove this,

de�ne 	(f) = ess supfjxj : f(x) > 0g, and 	n = maxi�n jXij. The test Tn(X1; : : : ; Xn) = I	n�c is easily

shown to be consistent. However, ignoring the existence of this obvious test, we may also apply Theorem

1. Clearly, 	n ! 	(f) almost surely. Furthermore, for any � > 0, P f	n > 	(f) + �g = 0, and therefore

the condition of Theorem 1 is satis�ed for any positive sequence an ! 0.

Example 2: The class of densities bounded by c. Let c > 0, and consider the class Fc of all

densities such that ess sup f � c. Then Fc is testable. To prove this statement, we apply Theorem 1

with 	(f) = ess sup f . The estimate of the functional 	(f) is 	n = 	(fn) = sup
x
fn(x), where fn is the

kernel estimate of f de�ned by

fn(x) =
1

nh

nX
i=1

Ifjx�Xij�h=2g;
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where we choose the smoothing factor h to be h = n�1=3. First we check the property involving an. For

any � > 0 and for every n,

sup
f2F

P f	n > 	(f) + �g = sup
f2F

P

�
sup
x

fn > ess sup f + �

�

� sup
f2F

P

(
sup
x

 
1

nh

nX
i=1

Ifjx�Xij�h=2g �
1

h

Z
x+h=2

x�h=2

f(z)dz

!
> �

)

� sup
f2F

"
P

(
sup
x

 
1

n

nX
i=1

IfXi�xg �
Z x

�1

f(z)dz

!
>

h�

2

)

+ P

(
sup
x

 Z x

�1

f(z)dz � 1

n

nX
i=1

IfXi�xg

!
>

h�

2

)#
� 2e�nh

2
�
2
=2

= 2e�n
1=3

�
2
=2;

where the last inequality follows from Massart's (1990) sharpened version of the Dvoretzky-Kiefer-

Wolfowitz theorem. Therefore, we may take an = n�1=7 in Theorem 1. To complete the proof, we

need to show that for any density,

sup
x

fn(x)! ess sup f almost surely:

It is clear from the argument above that for any f , lim supn	n � 	(f) almost surely. On the other hand,

observe that for any f , by the Lebesque density theorem (see, e.g., Wheeden and Zygmund, 1977), for

every B < ess sup f there exists an x0 2 R and a �0 > 0 such that for all � < �0,
R x0+�=2
x0��=2

f(z)dz > B�.

Then if n is so large that h = n�1=3 < �0, then for any � > 0,

P ffn(x0) < B � �g � P

(
1

n

nX
i=1

Ifjx0�Xij�h=2g <

Z
x0+h=2

x0�h=2

f(z)dz � �h

)
� e�2n�2h2 = e�2n1=3�2

by Hoe�ding's inequality (1963). This, together with the Borel-Cantelli lemma proves that, almost surely,

lim infn	n � 	(f), concluding the proof.

Example 3: The class of densities whose integrated square is at most c. Let c > 0, and

de�ne the class

Fc =
�
f :

Z
f2 � c

�
:

The estimator of 	(f) =
R
f2 may be 	n =

R
f2n or 	n = (2=n)

Pn

i=n=2+1 fn=2(Xi), where fn is a kernel

or histogram estimate of f . For the sake of simplicity, we take 	n =
P

i
N2
i
=(n2h), where Ni; i 2 Z ; are

the cardinalities of the intervals [ih; ih+h). Observe that changing one Xj and replacing it by X 0
j
, causes

at most two Ni's to change by one. Therefore, the change in 	n is at most 2=(nh). By McDiarmid's

inequality (McDiarmid, 1989),

Pfj	n �Ef	ngj > �g � 2 exp(�nh2�2=2) :

If nh2= logn!1, the probability on the left-hand-side is summable, uniformly over all f . In particular,

	n ! 	(f) almost surely (even if 	(f) =1) if Ef	ng ! 	(f). Denote Ai = [hi; h(i+ 1)), pi =
R
Ai
f .
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Then

Ef	ng =
P

i
(npi)

2 + npi(1� pi)

n2h

=

Z
g2h +

P
i
pi(1� pi)

nh

(where gh(x) = pi=h; x 2 Ai is a density)

=

Z
g2h + o(1) :

Assume h ! 0 as n ! 1. By the Lebesgue density theorem (Wheeden and Zygmund, 1977), gh ! f

at almost all x when h ! 0. Thus, by Fatou's lemma, lim infn!1Ef	ng �
R
lim infh!0 g

2
h
=
R
f2.

This remains valid even if
R
f2 = 1. Furthermore, by Jensen's inequality,

R
g2
h
� R f2. Collecting all

this shows that for all f , 	n ! 	(f) almost surely if h ! 0, nh2= logn ! 1. Furthermore, if we take

an = 1=n1=5, then for all f ,

Pf	n > 	(f) + ang � Pf	n �Ef	ng > an=2g (if 1=nh < an=2)

� 2 exp(�nh2=8n2=5)
and this is summable in n if we take, say, h = n�1=5. By Theorem 1, the class of densities is thus testable

by the test 	n � c+ 1=n1=5.

Example 4: The class of densities f with
R
fr � c, where r > 1 is a fixed constant. The

details for this extend those of the previous example, and are left to the reader.

3. Classes with vanishing minimax risk

Next we derive another general su�cient condition for testability. We recall that a density

estimate fn is a real-valued measurable function of x 2 R and the data X1; : : : ; Xn:

fn(x) = fn(x;X1; : : : ; Xn):

fn is called strongly universally consistent if for every density f ,

lim
n!1

Z
jfn � f j = 0 almost surely:

A density estimate fn is uniformly convergent on F if

lim
n!1

sup
f2F

E

Z
jfn � f j = 0 :

Also, we say that F is closed (in the L1 space of densities) if for any density g =2 F there exists an � > 0

and an open ball Bg;� = ff :
R jf � gj < �g such that Bg;� \ F = ;.

Theorem 2. Let F be a closed class of densities. If there exists a density estimate fn that is uniformly

convergent on F , then F is testable. And any closed subclass G � F is testable.

In other words, apart from the closedness of the class, we require the convergence to zero of the

minimax expected L1 error of the class, as the following Lemma shows.
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Lemma 1. The following are equivalent:

A.

lim
n!1

inf
fn

sup
f2F

E

Z
jfn � f j = 0 :

B. There exists a density estimate fn such that

lim
n!1

sup
f2F

E

Z
jfn � f j = 0 :

Proof. B implies A. A implies B because A says that for each k, we may �nd density estimates fn;k and

numbers nk such that for n � nk, supf2F E
R jfn;k � f j < 1=k. Without loss of generality, nk ". De�ne

gn = fn;k, nk � n < nk+1, and use gn in part B.

It is well-known (Devroye (1983), Birg�e (1986)) that very large classes do not satisfy this latter

condition. However many positive examples are also known. The theorem also points out that we do

not have to explicitly construct fn|a proof of existence su�ces. Note however that the actual density

estimate used to test membership in the class F may be very di�erent from the uniformly consistent fn.

A construction follows from the proof below. The reason we need a special construction is that fn may

not be stable or concentrated enough to provide good almost sure behavior over an entire sequence.

Example 5: Finite classes of densities. As the kernel estimate is universally consistent if we take

the smoothing factor h such that h! 0 and nh!1 (nhd !1 in IRd), it is clear from Theorem 2 that

we can always test the class F = ffg. In fact, any �nite class of densities is testable.

4. Testability via kernel estimates

The next lemma states that to verify the minimax condition, it su�ces to establish it for a kernel

estimate in which the bandwidth may depend upon the (unknown) density. It removes the burden of

construction of minimax optimal or near-optimal densities. Recall that the kernel estimate of a density

is

fnh(x) =
1

nh

nX
i=1

K

�
x�Xi

h

�
;

where h > 0 is a bandwidth and K : R ! R is a kernel function usually chosen to satisfy
R
K = 1.

Note that all kernels used in practice satisfy the condition of the following Lemma.
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Lemma 2. Assume that gn is a kernel estimate with kernel K of polynomial kernel complexity (Devroye

and Lugosi, 1997), and with bandwidth hn = hn(f). Then, if

lim
n!1

sup
f2F

E

Z
jgn � f j = 0 ;

it follows that there exists a density estimate fn such that

lim
n!1

sup
f2F

E

Z
jfn � f j = 0 ;

Proof. This follows from the inequalities of Devroye and Lugosi (1996, 1997), where a data-dependent

bandwidth is constructed guaranteeing that the kernel estimate fn with that bandwidth satis�es E
R jfn�

f j � C infhE
R jfnh � f j +D

p
logn=n for universal constants D and C not depending upon f , and all

n. Here fnh is the kernel estimate with deterministic bandwidth h.

The lemma above allows us to further deduce su�cient conditions for our classes F , while avoiding
explicit constructions of density estimates for them.

Lemma 3. If G and F [ G are disjoint classes of densities that are both testable, then so is F . If F and

G are testable, then so are F [ G and F \ G.

Proof. We run a test for G, which based on a sample of size n yields the decision Yn. Then we run a

test on the same sample for membership in F [G, and call the decision Zn. We decide that the unknown

density is in F when Zn = 1 and Yn = 0. This makes a �nite number of errors with probability one. The

second statement does not require disjointness: we decide F [G if Wn+Yn � 1, whereWn is the decision

for F . Again, only a �nite number of errors are made with probabilty one. Finally we decide F \ G if

WnYn = 1.

Example 6: Scale/translation classes. As a �rst example, letF be any subset of the scale/translation

class of densities f((� � �)=�)=�, where f is a �xed density, � 2 IR and � > 0. Then, in any kernel esti-

mate, take hn = �=
p
n, and note that with this choice, the expected L1 error is the same for all � and �.

Therefore, by Lemma 2, the L1 minimax risk tends to zero for this scale/translation class and hence for

F . Therefore, F is testable whenever it is closed. In particular, we can test whether a normal density has

a rational � = p=q, with p > 0 and 0 < q � 500. And normality is testable, as is any scale/translation

class (by closedness).

Example 7: Nonlinear transformation classes. As a second example, let F be the class of all

densities for random variables T (X), where X > 0 has density f , and T (x) = (xa � 1)=a, a > 0 or

T (x) = log(x) (case a = 0) (the Box-Cox transformations). Then F is testable. To see this, transform

the data by T�1(�), and use a kernel estimate for f with bandwidth hn = 1=
p
n. Then note that the

inequality in the proof of Lemma 2 has been extended to include the joint data-based choice of h and the

Box-Cox parameter a (Devroye, Lugosi and Udina, 1998). Therefore, using the fact that L1 errors are

invariant under monotone transformations of the input, we conclude there exists a density estimate for

which the expected L1 error tends to zero uniformly over all values of a. As the density of T (X) has no

limit in the class of densities when a!1, we see that F is closed, and conclude that F is testable.
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Example 8: Parametric classes. Consider a countable class F = f�k; 1 � k � 1g of densities �1
and �k (k < 1), with �k ! �1, where convergence is meant in the L1 sense. This class is closed in

the collection of all densities. Also, its L1 minimax error tends to zero. To see this, consider the kernel

estimate with bandwidth hn = 1=
p
n. Then the expected L1 error is easily bounded as follows: let f and

g be two densities, and let fn and gn be two kernel estimates based upon two samples of size n, both

using the same kernel and bandwidth. Then there exists a coupling of the samples such that

E

Z
jfn � gnj �

�
1 +

Z
jKj
�Z

jf � gj

(Devroye, 1985). We take K such that
R jKj = 1. So, given � > 0, let K� be the collection of indices

k <1 such that
R j�k � �1j > �. Then, with fnk denoting the kernel estimate mentioned above (with n

for sample size, and k for �k), we have, letting gn denote the kernel estimate (with the same kernel and

bandwidth as fnk) based on a sample of size n from �1,

sup
k

E

Z
jfnk � �kj

� max
k2K�

E

Z
jfnk � �kj+ sup

k 62K�

�
E

Z
jfnk � gnj+E

Z
jgn � �j+

Z
j�k � �j

�
� max

k2K�

E

Z
jfnk � �kj+E

Z
jgn � �1j+ 3 sup

k 62K�

Z
j�k � �1j

� o(1) + 3� :

Thus, F is testable. By arguments as above, the class G consisting of all scaled/or translated densities

from F is also testable. To see why this example is powerful, let Xk denote a random variable with the

gamma density xk�1e�x=�(k), x > 0, k > 0, k integer. Let Yk = (Xk� k)=
p
k be the normalized random

variable. Then, as is well-known, the density of Yk tends to the normal (0; 1) density in L1 as k ! 1.

As argued above, the class F of all the densities of Yk, merged with the standard normal density, is

testable. If we consider the scale/translation enlargement G of F , we obtain all gamma densities, possibly
linearly transformed, with integer shape parameter plus all normal densities. It too is testable. Finally,

a small additional argument shows that the shape parameter does not have to be restricted at all. Thus,

parametric classes in general, when merged with their limit densities, are in most instances testable.

When the limits are not included, the question is di�erent, but Lemma 3 provides help. To illustrate this,

let F be the class of all scaled and translated gamma densities, and G be the class of all normal densities.

Then, as argued above, both F [G and G are testable, so F is. Lemma 3 is thus useful for the removal of

limit classes of parametric collections. Finally, let F be the class of all gamma densities, not translated

or scaled. This class does not contain any densities as limits, and is thus closed. Hence it is testable.
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5. Testability via total boundedness

A class F of densities is said to be totally bounded if for every � > 0, there exists a �nite number

N� of densities fk; 1 � k � N� such that the L1 balls of radius � centered at the fk's cover F . (Note that
in this de�nition, it is irrelevant whether we additionally ask that the fk's belong to F : both de�nitions

would be equivalent.) That is, for every f 2 F , there exists k � N� such that
R jf �fkj � �. The smallest

possible value of logN� for F is called the Kolmogorov entropy of F . Yatracos (1985) (see also Devroye,
1987, p. 90) has constructed a minimum distance estimate fn with the property

sup
f2F

E

�Z
jfn � f j

�
� 5�+

4+
p
128N�p
2n

:

De�ne �k = 1=k + inff� > 0 : 128 logN� <
p
kg. By total boundedness, �k ! 0 as k !1. Thus,

sup
f2F

E

�Z
jfn � f j

�
� 5�n +

4 +
p
128N�np
2n

� o(1) +
4p
2n

+
8

n1=4
:

Thus, applying Theorem 2, we immediately have

Theorem 3. Let F be a closed totally bounded class of densities. Then F is testable.

Example 9: bounded unimodal densities. Let F be any closed class of unimodal densities bounded

by B with support on [0; 1]. Then F is testable. In particular, the class of all concave densities with

support on [0; 1] is testable.

Example 10: Lipschitz densities. Let F be the class of Lipschitz densities on [0; 1] with Lipschitz

constant not exceeding C. Then F or any closed subclass of it is testable.

Example 11: Finite mixtures. Let F be the class of convex mixtures of k �xed densities. Clearly,

this class is closed. Also, by creating a �nite grid for the possible convex weights, it is trivial to see that

this class is totally bounded. Thus, F is testable.

Example 12: Uniform modulus of continuity. Let F be a closed class of densities on [0; 1] with

uniformly bounded modulus of continuity: for all � > 0,

sup
f2F

sup
x;y:ky�xk��

jf(y)� f(x)j <1 :

Then F is totally bounded (Lorentz, 1966; see also Devroye, 1987, p. 98) and thus testable.
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6. Testability via Yatracos' minimum distance estimates

Next we give another simple su�cient condition for testability via Theorem 2. Recall that given

a class of sets A, the vc dimension V of A is de�ned as the largest positive integer k for which there

exist k points x1; : : : ; xk such that

jfA \ fx1; : : : ; xkg : A 2 Agj = 2k:

If there is no such largest k, then we say that V =1. If V <1, then A is called a vc class.

Theorem 4. Let F be a closed class of densities, and assume that the class of sets

A = fx : f(x) > g(x); f; g 2 Fg
is a vc class. Then F is testable.

Proof. By Theorem 2, it su�ces to prove that there exists a density estimate fn which is uniformly

convergent in F . Consider now the minimum distance estimate proposed by Yatracos (1988):

fn = argmin
f2F

sup
A2A

����Z
A

f � �n(A)

���� ;
where �n(A) = (1=n)

Pn

i=1 IA(Xi) is the empirical measure of A based on the random sample. Yatracos

showed (see also Devroye, Gy�or�, and Lugosi, 1996, p. 278) that

sup
f2F

E

Z
jfn � f j � 4E sup

A2A

����Z
A

f � �n(A)

���� :
The well-known Vapnik-Chervonenkis inequality (Vapnik and Chervonenkis, 1971) implies that

E

�
sup
A2A

����Z
A

f � �n(A)

����� � 8

r
V logn+ 3

2n

(see also Devroye, Gy�or�, and Lugosi, 1996), which �nishes the proof.

Example 13: Exponential mixtures. Let k be a �xed positive integer, and consider the class F of

all mixtures of k exponential densities (that is, translations and scales of e�x; x � 0. Then Theorem 4

may be applied to show that F is testable. It su�ces to show that the class

A = fx : f(x) > g(x); f; g 2 Fg
is a vc class. A member set in this class is thus of the form(

x :

2kX
i=1

aie
�bixI[x>ci] > 0

)
where ai; ci 2 IR and bi > 0 are free parameters. We claim that each set in this class is the union of at

most `
def
= (2k + 1)(k + 1) intervals. Since the class of unions of ` intervals is a vc class, we are done.

Therefore, the test described above may be used to test whether a density is a k-mixture of exponentials.

We may similarly test for k-mixtures of normals and indeed many other parametric families. The interval-

counting argument is as follows: clearly, we have at most k + 1 intervals de�ned by the thresholds ci. It

su�ces to show that on each of these intervals, a set of the form fx :
P2k

i=1 aie
�bix > 0g de�nes at most

2k + 1 intervals. But this is well-known (Lemma 25.2 of Devroye, Gy�or� and Lugosi, 1996). Hence the

claim.
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7. Smoothness and monotonicity classes

In this section, we remove the burden of checking the conditions of Theorem 2, and provide

easy-to-verify su�cient conditions for classes of densities to be testable. We begin with a subclass F of

the monotone densities f on [0;1) with �nite value f(0).

Theorem 5. Let F be a closed subclass of the monotone densities f with �nite modal value m(f).

Assume that

sup
f2F

�Z p
f

� 2
3

(m(f))
1
3 <1 :

Then F is testable.

Proof. Theorem 5 follows from Theorem 2 and Lemmas 1 and 2 if, for f 2 F , we can establish uniform

L1 error bounds for the kernel estimate fnh with uniform kernel K on [�1; 1]. To this end, we use the

typical argument (see Devroye and Gy�or�, 1985). From the proof below, it will become apparent that

the position of the mode is unimportant, and thus we may assume without loss of generality that the

mode occurs at zero, and thus that m(f) = f(0). Let � be the convolution operator.

E

Z
jfnh � f j �

Z
jEfnh � f j+

Z p
E(fnh �Efnh)2

=

Z
jf �Kh � f j+

Z p
(1=n)Var(Kh(x �X1))

�
Z
jf �Kh � f j+

Z q
(1=n)EfK2

h
(x�X1)g :

For x > h, observe that jf�Kh(x)�f(x)j � f(x�h)�f(x+h), and that for x < h, jf�Kh(x)�f(x)j � f(0).

Furthermore, EfK2
h
(x�X1)g � f(max(0; x� h))=(2h). Using these estimates, we obtain

E

Z
jfnh � f j � hf(0) +

Z 3h

h

f + h

r
f(0)

2nh
+

R p
fp

2nh

� 3hf(0) + h

r
f(0)

2nh
+

R p
fp

2nh

=
4(
R p

f)
2
3 (f(0))

1
3

(2n)
1
3

+
(
R p

f)
1
3 (f(0))

1
6

(2n)
2
3

when we take h3=2 =
R p

f=(f(0)
p
2n). Therefore, we have uniform convergence to zero whenever

sup
f2F

�Z p
f

� 2
3

(f(0))
1
3 <1 :

By Lemma 2 and Theorem 2, Theorem 5 follows.

Let us extend the previous Theorem to include densities of bounded variation. We recall that a

density f is of bounded variation if we may �nd an increasing function f1 and a decreasing function f2
such that f = f1 + f2, such that the total variation

V(f) def
= inf

f1;f2:f=f1+f2;f1";f2#
sup
y>x

(f1(y)� f1(x)) + sup
y>x

(f2(x) � f2(y)) <1 :

11



Theorem 6. Let F be a closed subclass of the densities of bounded variation, and assume that

sup
f2F

(V(f)) 13
�Z p

f

� 2
3

<1 :

Then F is testable.

Proof. We argue as in the proof of Theorem 5, and apply Lemma 2 and Theorem 2. Let fnh be the

kernel estimate. If f = f1 + f2 is the bounded variation decomposition of f , with f1 " and f2 #, and K

is the uniform kernel on [�1; 1], then
jf �Kh � f j � f1(x+ h)� f1(x) + f2(x� h)� f2(x)

and

jf �Kh � f j � 2hV(f) :
Also, Z r

EfK2
h
(x�X1)g
n

�
Z r

f(x+ h) + f(x� h)

2hn
dx �

r
2

nh

Z p
f

so that

E fjfnh � f jg � 2hV(f) +
r

2

nh

Z p
f =

4

(2n)1=3

�Z p
f

� 2
3

(V(f)) 13

if we take h3=2 =
R p

f=(
p
2nV(f)).

Example 14: log-concave densities. A very important subclass of the densities is the class of

log-concave densities: log f is concave. We claim that any closed subclass of the log-concave densities

is testable. Consider that this class includes all beta densities with both parameters greater than or

equal to 1, all gamma densities with shape parameter greater than or equal to one, all exponential power

distributions with shape parameter at least one, the normal densities, and a host of other densities. It

is known that these densities are unimodal and that if the mode occurs at z, a rescaling of the random

variable to place the mode at zero with modal value one results in a density g with g(u) � e1�juj (Devroye,

1987). As the product in Theorem 5 is scale and translation invariant, and the log-concave inequality is

absolute, we see that, except for the monotonicity, all conditions of Theorem 5 are full�lled. It is left as

a trivial exercise to extend Theorem 5 to this class of densities. Thus, we have a very simple condition

for establishing the testability of large subclasses of the famous parametric families. And as the class of

log-concave densities is closed, we can indeed test log-concavity.

Example 15: concave densities. Consider the class of all concave densities on their support. Clearly,

this class is closed. Furthermore, if the mode is forced to be at zero and of modal value one, then any

density in this class is bounded by one, and of support contained in [�2; 2]. By an argument as for the

log-concave densities, this class is testable (regardless of the support!), and indeed any closed subclass of

it is testable as well.

One could re�ne the bounds of the proof of Theorem 5 and indeed use higher-order kernels to

obtain results for subclasses related to Akhiezer classes of densities. In this manner, we may deal with

convex subclasses of the monotone densities, and classes for which the r-th derivative f (r) is monotone.

12



Example 16: Lipschitz densities. A class F of Lipschitz (1) densities with Lipschitz constant C(f) <

1 and support s(f) is testable if F is closed and

sup
f2F

C(f)s2(f) <1 :

To see this, apply Theorem 6, and note that V(f) � C(f)s(f), and
R p

f �
q
s(f)

R
f =

p
s(f).

Example 17: Unimodal densities. Let F be a class of unimodal densities with modal value m(f) and

variance �2(f). Then this class is testable if F is closed and

sup
f2F

m(f)(1 + �2(f)) <1 :

To see this, note that V(f) � 2m(f) and assuming without loss of generality that the mean is at the

origin, Z p
f =

Z p
(1 + x2)fp
1 + x2

�
sZ

(1 + x2)f

sZ
1

1 + x2
=
p
�(1 + �2(f)) :

Examples of such classes include the gamma densities with shape parameter 1 or larger, the symmetric

beta densities with shape parameter 1 or larger, and the unimodal densities f � A=(1+x4), with A <1
�xed and given.

8. Ad hoc analysis: testing unimodality and convexity

Surprisingly, there are classes whose minimax risk and whose complement's minimax risk does

not tend to zero, and yet they are testable. We have already encountered such classes in Section 2. In

this section we construct explicit tests to prove that the following classes are testable: the monotone

densities on [0;1), the monotone densities on an interval of the real line, the unimodal densities with

mode at 0, and the unimodal densities. To keep the material limited, we will only provide an explicit

proof for the class of monotone densities on [0;1). We recall from Devroye (1983) that the minimax risk

of this class does not tend to zero. To construct an explicit ad hoc test, consider a histogram estimate

with bins [0; h); [h; 2h); [2h; 3h); : : :. Let Ni denote the number of data points in [ih; (i+ 1)h). The test

is the following: take h = 1=n1=7. Then

decide non-monotone if max
i�0

(Ni+1 �Ni) > n2=3 ;

decide monotone otherwise.

13



Theorem 7. The test above makes almost surely a �nite number of errors for testing membership in the

class of monotonically decreasing densities on [0;1).

Proof. First, assume that f is indeed monotone on [0;1). We bound PfNi+1 �Ni > tg by standard

methods: For each i � 0, de�ne pni = PfX1 2 [ih; (i + 1)h)g. Introduce N 0
i
such that (N 0

i
; Ni) are two

components of a multinomial random vector with total count n and success probabilities pni each. Then

PfNi+1 �Ni > tg � PfN 0
i
�Ni > tg

� PfN 0
i � npni > t=2g+PfNi � npni < �t=2g

= PfjNi � npnij > t=2g
� 2e�

t
2

2n ;

by Hoe�ding's inequality (Hoe�ding, 1963). Thus,

P

�
max
i�0

(Ni+1 �Ni) > n2=3
�

� P

�
max
i�n

Ni > n2=3
�
+ 2ne�n

1=3
=2

�
X
i�n

P
n
Ni > n2=3

o
+ 2ne�n

1=3
=2

�
X
i�n

P
n
binomial(n; 1=(i+ 1)) > n2=3

o
+ 2ne�n

1=3
=2

(because pni � 1=(i+ 1) by monotonicity)

�
X
i�n

�
n

(i+ 1)n2=3

�n2=3
� i+ 1

i
+ 2ne�n

1=3
=2

(because Pfbinomial(n; p) � tg � �n
t

�
pt=(1� p) � (np=t)t=(1� p), t integer)

= O
�
e�n

1=3
=3
�
:

In the above chain, we assumed without loss of generality that n2=3 is integer-valued. As this is summable

in n, the Borel-Cantelli lemma implies that we will make �nitely many errors almost surely.

Next assume that f is not monotone. Thus, there exist Lebesgue points 0 < y < z with the

property that f(y) = f(z)� 3� for some � > 0. As these are Lebesgue points, we know that there exists

an � > 0 such that for any interval I of length jI j < � containing y,
R
I
f(x)dx < jI j(f(y)+�), and similarly

for z:
R
I
f(x)dx > jI j(f(z) � �). The number of intervals [ih; (i + 1)h) separating z from y is at most

2 + (z � y)=h. Let h < �, and let i range over the intervals covering [y; z]. The di�erence between the

last pni and the �rst pni is at least �h, so that the maximal di�erential pn;i+1 � pn;i for i and i+ 1 both

among the given intervals is at least �h=(2 + (z � y)=h) � �h2=2(z � y)
def
= 3ch2 for n large enough (and

thus h small enough). Let j be an index for which pn;j+1� pn;j � 3ch2. If we decide that f is monotone,

then we have Nj+1 �Nj � n2=3, however. Thus, the probability of erring is not more than

PfNj+1 �Nj � n2=3g � PfNj+1 � npn;j+1 � (Nj � npnj) � n2=3 � 3cnh2g
= PfNj+1 � npn;j+1 � (Nj � npnj) � n2=3 � 3cn5=7g
� PfNj+1 � npn;j+1 � (Nj � npnj) � �2cn5=7g

14



(for n large enough)

� PfNj+1 � npn;j+1 < �cn5=7g+PfNj � npnj > cn5=7g
� 2e�2c2n3=7

by Hoe�ding's inequality. By the Borel-Cantelli lemma, we once again make �nitely many errors almost

surely.

For monotonicity on any right-in�nite interval, we apply the same test, starting with the second

occupied interval from the left. For unimodality, we �nd the interval of maximal cardinality, and apply

monotonicity tests of opposite polarity on both sides of that maximal interval. The details are uninter-

esting. It is also worth noting that we can test for convexity. In particular, if i and j are the indices of

the leftmost and rightmost intervals in a grid of intervals of width h that are occupied, then the test with

h = 1=n1=7 that decides against convexity if maxi<k<j�2(2Nk+1 �Nk+2 �Nk) > n2=3 errs �nitely often

with probability one, for any density. In fact, one can in this manner test membership in any Akhiezer

class.

9. Proof of Theorem 2

The proof of the theorem is split into two lemmas, the �rst of which is directly applicable to

prove testability in many cases.

Lemma 4. Let F be a closed class of densities. If there exists a sequence of positive numbers bn ! 0

and a density estimate gn such that gn is strongly universally consistent, moreover for every f 2 F
1X
n=1

P

�Z
jgn � f j > bn

�
<1;

then F is testable.

Proof. Consider the test

Tn(X1; : : : ; Xn) =

�
1 if inff2F

R jgn � f j � bn,

0 otherwise.

In other words, based on the data X1; : : : ; Xn, we compute the density estimate gn, and project it in the

L1 distance on the class F . If the distance between gn and the class is greater than bn, then we say that

the unknown density is not in the class. Now it is easy to see that this test is consistent, since if the Xi's

are drawn from a density f 2 F then

PfTn failsg = P

�
inf
g2F

Z
jgn � gj > bn

�
� P

�Z
jgn � f j > bn

�
:

By assumption these probabilities are summable over n = 1; 2; : : :, so the Borel-Cantelli lemma implies

that, almost surely, Tn fails at most for �nitely many n.

On the other hand, if f =2 F , then by closedness of the class F , there exists an � > 0 such that

infg2F
R jf � gj > �. However, since gn is strongly universally consistent and bn ! 0, eventually, almost

surely, inff2F
R jgn � f j > �=2 > bn, and therefore the test does not fail.
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In many cases there exists a simple estimate which satis�es the condition of Lemma 4. For

example, if F is the class of all densities supported on [a; b] such that ess supx;y jf(x)� f(y)j=jx� yj � c,

then the kernel estimate with an appropriate non-data-dependent bandwidth will do. However, even

simple cases as the class of all normal densities, any such kernel estimate fails to provide a uniform rate

of convergence within F . In this speci�c case it is possible to de�ne a data-dependent bandwidth with

the desired property (see Devroye, 1989). However, to �nish the proof of Theorem 2, we need a universal

construction, provided in the lemma below:

Lemma 5. If for some sequence an ! 0 there exists a density estimate fn with sup
f2F E

R jfn�f j � an,

then there exists another sequence bn ! 0 and a density estimate gn such that gn is strongly universally

consistent, and for all f 2 F
1X
n=1

P

�Z
jgn � f j > bn

�
<1:

Remark 2. The proof below shows that one may always take bn = 3ab(n=2)1=3c+3(n=2)�1=12+4n�1=3,

so bn only depends on an but not on the class F . However, in most cases this is a suboptimal choice.

The estimate gn de�ned below is merely a part of a general proof of existence. In most concrete cases

much superior estimates exist. Also, in fact, we show that supf2F
P1

n=1P
�R jgn � f j > bn

	
<1.

Proof. First, we \stabilize" fn to make sure that the L1 error
R jfn� f j is always concentrated around

its mean, and then combine it with a consistent estimate to achieve strong universal consistency. We

de�ne the stabilized density estimate bfn as follows:

bfn(x;X1; : : : ; Xn) =
1�
n

N

� b nN cX
k=1

fN(x;X(k�1)N+1; : : : ; XkN );

where N = bn1=3c. In other words, we chop up the data into about n2=3 equal blocks, construct the

estime on all blocks, and take their average. McDiarmid's inequality (1989) assures that if by changing

the value of one data point but leaving all others intact the L1 error does not change by much, then it is

close to its mean with large probability. In our case,����Z j bfn(x;X1; : : : ; Xn)� f(x)jdx �
Z
j bfn(x;X1; : : : ; X

0
i ; : : : ; Xn)� f(x)jdx

����
�
����Z bfn(x;X1; : : : ; Xn)�

Z bfn(x;X1; : : : ; X
0
i
; : : : ; Xn)dx

����
� 1�

n

N

� Z jfN(x;X(k�1)N+1; : : : ; XkN )� fN (x;X(k�1)N+1; : : : ; X
0
i
; : : : ; XkN )jdx

(if the index i is in the k-th block)

� 2�
n

N

� ;
where the last inequality follows from the fact that we may assume that the estimate fN is always a

density (i.e., nonnegative and integrates to one, since otherwise with standard operations one may always
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construct such an estimate by not increasing the L1 error, see Devroye (1987)), and that the L1 distance

between any two densities is at most 2. Thus, McDiarmid's inequality implies that for any t > 0,

P

�Z
j bfn � f j �E

Z
j bfn � f j > t

�
� e�t

2
=2n(1=b nN c)2 � e�t

2
n
1=3

=8:

if n � 3. Thus, for example, by taking t = n�1=12 and using the simpli�ed notation a0n = abn1=3c+n�1=12,

for any f 2 F ,
P

�Z
j bfn � f j > a0

n

�
� e�n

1=6
=8:

The second step is to extend bfn so that it becomes universally consistent. Without loss of generality

we may assume again that bfn is indeed a density. Let �n be an arbitrary strongly universally consistent

density estimate. We proceed as follows: Split the available data into two equal parts X1; : : : ; Xn=2 and

Xn=2+1; : : : ; Xn. Based on the �rst half construct the estimates bfn=2 and hn=2. De�ne the \Yatracos set"
(see Yatracos (1985) or Devroye and Lugosi (1997))

An=2 =
n
x : bfn=2(x) > �n=2(x)

o
;

and use the second half of the data to calculate the empirical probability

�n=2(An=2) =
2

n

nX
j=n=2+1

IfXj2An=2g:

The density estimate gn is de�ned by

gn =

8<: bfn=2 if

������n=2(An=2)�
Z
An=2

bfn=2
����� <

������n=2(An=2)�
Z
An=2

�n=2

�����;
�n otherwise.

We need to show that gn is universally consistent, and within F is has a uniform rate of convergence.

We start with the case f 2 F . De�ne cn = 2a0
n=2

+ 4n�1=3. If
R j bfn=2 � �n=2j � cn then by the triangle

inequality Z
jgn � f j �

Z
j bfn=2 � f j+ cn:

Otherwise, if
R j bfn=2 � �n=2j = 2

�R
An=2

bfn=2 � RAn=2 �n=2� > cn, observing that�����
Z
An=2

f �
Z
An=2

bfn=2
����� � 1

2

Z
j bfn=2 � f j

by Sche��e's theorem, we have gn = bfn=2 whenever������n=2(An=2)�
Z
An=2

f

����� < cn

4
� 1

2

Z
j bfn=2 � f j:

Summarizing the two cases, we see that for all f 2 F ,

P

�Z
jgn � f j > a0

n=2 + cn

�
� P

�Z
jgn � f j >

Z
j bfn=2 � f j+ cn

�
+ e�(n=2)1=6=8

� P

(������n=2(An=2)�
Z
An=2

f

����� > cn

4
�
a0
n=2

2

)
+ 2e�(n=2)1=6=8

(by the above argument)
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= P

(������n=2(An=2)�
Z
An=2

f

����� > n�1=3

)
+ 2e�(n=2)1=6=8

� e�n
1=3

+ 2e�(n=2)1=6=8

(by Hoe�ding's inequality, 1963).

Therefore, taking bn = a0
n=2

+ cn, we have that, indeed, for every f 2 F ,
1X
n=1

P

�Z
jgn � f j > bn

�
<1:

Now it remains to show that gn is strongly universally consistent. This may be done in a similar way: IfR j bfn=2 � �n=2j � 2
�R j�n=2 � f j+ n�1=3

�
then by the triangle inequality,Z

jgn � f j � 3

Z
j�n=2 � f j+ 2n�1=3:

Otherwise, by Sche��e's theorem,
R
An=2

bfn=2 � RAn=2 �n=2 > R j�n=2 � f j+ n�1=3 and�����
Z
An=2

f �
Z
An=2

�n=2

����� � 1

2

Z
j�n=2 � f j:

Therefore, gn = �n=2 whenever ������n=2(An=2)�
Z
An=2

f

����� < 1

2
n�1=3:

Therefore, in all cases, since the L1 distance is bounded by 2,Z
jgn � f j � 3

Z
j�n=2 � f j+ 2n�1=3 + 2In����n=2(An=2)�R

A
n=2

f

����(1=2)n�1=3

o:
By the strong universal consistency of �n and Hoe�ding's inequality, all terms on the right-hand side

converge to zero almost surely. This concludes the proof of Lemma 5 and Theorem 2.

10. Non-testable classes

In this section we establish su�cient conditions for the nontestability of a class of densities, and

show several examples of nontestable classes.

We �rst generalize the de�nition of testability: if X is a class of densities, then we say that F is

testable with respect to X if there exists a consistent test to decide whether f 2 F \X or f 2 Fc\X .
Clearly, if F is not testable with respect to X , then F is not testable (with respect to the class of all

densities).

It will be convenient to work, instead of densities, with the inverse of their corresponding cumu-

lative distribution function: Any density f is uniquely determined by a monotonically increasing function

G : (0; 1)! (�1;1) de�ned by G = F�1, where F (x) =
R x
�1

f(z)dz. If U1; U2; : : : is a sequence of in-

dependent uniform [0; 1] random variables, then G(U1); G(U2); : : : is a sequence of i.i.d. random variables

with density f . This is the coupling between samples from di�erent distributions which will be used in

the proof below.
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Theorem 8. Let F ;X be classes of densities. Denote the class of all inverse distribution functions

corresponding to densities in X by A, and to those in F \ X by G. Assume that there exist two sets of

functions B � G and C � A � G with the following property:

(1) there exists a family of subsets S� of (0; 1) indexed by real numbers � 2 (0; 1) such that �(S�) � �

(� denotes the Lebesgue measure);

(2) if �1 > �2 then S�1 � S�2 ;

(3) for any � 2 (0; 1) and G 2 B there exists a H 2 C such that G(x) = H(x) for all x =2 S�.

(4) for any � 2 (0; 1) and H 2 C there exists a G 2 B such that G(x) = H(x) for all x =2 S�.

Then F is not testable with respect to X .

Proof. Let U1; U2; : : : be an i.i.d. sequence of uniform [0; 1] random variables, from which we obtain

all samples for all distributions by the inverse distribution function transformation. We may represent

this sequence by the probability element !. Assume that there exists a consistent test Tn. Then for any

density f 2 F \ X , and almost all ! (i.e., with probability one) there exists an integer N(!) such that

Tn(X1; : : : ; Xn) = 1 if n > N(!)

and for any density f 2 Fc \ X , and almost all ! there exists an integer N(!) such that

Tn(X1; : : : ; Xn) = 0 if n > N(!):

We will construct a density such that, with probability more than 1=2, Tn(X1; : : : ; Xn) = 0 for in�nitely

many n and Tn(X1; : : : ; Xn) = 1 for in�nitely many n, which is a contradiction.

We use the coupling de�ned in the introduction of this section. Let �k = 2�k�2, k = 1; 2; : : :, and

let G1 2 B be arbitrary. Then there exists an integer N1 = N1(!) such that

P fTn(G1(U1); : : : ; G1(Un)) = 1 for all n � N1g > 1� �1

(see, e.g., Royden, 1968, p. 70, Problem 23.a). Choose �1 > 0 such that (1� �1)
N1 > 1� �1, and consider

a function G2 2 C which agrees with G1 on (0; 1)� S�1 . Then

P fG1(U1) = G2(U1); : : : ; G1(UN1
) = G2(UN1

)g > 1� �1;

and

P fTn(G2(U1); : : : ; G2(UN1
)) = 1g > 1� 2�1:

Now similarly, since G2 2 C, there exists an integer N2 = N2(!) > N1 such that

P fTn(G2(U1); : : : ; G2(Un)) = 0 for all n � N2g > 1� �2:

Next we choose �2 > 0 such that (1� �2)
N2 > 1� �2, and consider a function G3 2 B which agrees with

G2 on (0; 1)� S�2 . We continue this procedure such that Gk 2 B for odd k and Gk 2 C for even k, and

Gk agrees with Gk�1 on (0; 1)� S�k�1
, where (1� �k�1)

Nk�1 > 1� �k�1, and Nk is chosen such that

P
n
Tn(Gk(U1); : : : ; Gk(Un)) = I

fk is oddg for all n � Nk

o
> 1� �k:

Then clearly the sequence of these functions G1; G2; : : : converges pointwise to some function G 2 A.
Also,

P
n
Tn(G(U1); : : : ; G(UNk

)) = I
fk is oddg for all k = 1; 2; : : :

o
> 1�

1X
k=1

2�k =
1

2
;
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and the proof is �nished.

Example 18: Boundedness of the support of a density is not testable. Let F be the class

of all densities whose support is bounded. Then Theorem 8 implies that F is not testable. To see this,

simply take S� = (1 � �; 1), and let B be the family of inverse distribution functions corresponding to

positive bounded random variables with a density, and let C be the family corresponding to positive

unbounded random variables with a density. Then clearly, functions in B are bounded and functions

in C are unbounded, and for any bounded function G 2 B and � 2 (0; 1) there exists an unbounded

H 2 C such that G and H agree on (0; 1 � �) and vice versa, and therefore the condition of Theorem 8

is satis�ed. It is also easy to see that one cannot test boundedness of the support with respect to the

following classes: all bounded densities, all continuous densities, all Lipschitz densities, and all unimodal

densities. In particular, unimodality is testable, but not bounded support once it is known that a density

is unimodal.

Example 19: Boundedness of a density is not testable. Let F be the class of all densities

with ess sup f < 1. Then F is not testable. We show this, via Theorem 8, by proving that F is not

testable with respect to X , the class of all monotonically decreasing densities on [0;1) that are continuous

on (0;1). Then all inverse distribution functions G 2 A corresponding to densities in X are concave

increasing functions with G(0) = 0, G0(0) � 0, and lim inft#0G
0(t) = 1 if and only if the density is

unbounded. Take S� = (0; �), and continue a function G for an unbounded density on [0; �] by a parabola

through (0; 0) and (�;G(�)) with derivative G0(�) at � (which corresponds to a G for a bounded continuous

and monotonically decreasing density on [0;1)). Similarly, continue a function G for a bounded density

on [0; �) by a quadratic Bezier spline (Farin, 1993) having derivative 1 at 0, G0(�) at �, and with control

point at (0; a), where a is the place where the line through (�;G(�)) with derivative G0(�) crosses the

y-axis. It is clear that all four conditions of Theorem 8 are satis�ed, and therefore F is not testable with

respect to X .

Example 20: Square integrability of a density is not testable. Consider the class F of

all densities f for which
R
f2dx < 1. Then the same argument as in the previous example shows

that F is not testable with respect to X , the class of monotonically decreasing densities on [0;1) that

are continuous on (0;1) (and thus have possibly an in�nite peak at the origin). For the construction

involving continuations, just note that a density with
R
f2 = 1 is continued on [0; �) as in Example 19

by a bounded density (which necessarily has
R
f2 <1). The other continuation argument is trickier and

requires a density whose behavior near the origin is as c=2
p
x (and thus is not square integrable), and

whose distribution function G evolves as c
p
x. By choice of c, such a continuation exists that meets the

requirements of continuity and monotonicity as well.

Example 21: Continuity of a density is not testable. Let F be the class of densities such that

each f 2 F has a version which is continuous at 0. This class is not testable. To see this, we apply

Theorem 8 in the following setup: X is the class of all strictly monotonically increasing densities on [0; 1],

continuous on (0;1), with f(1) = 1 and f(x) = (2� x)+; x > 1. Taking again S� = (0; �), it is easy to

see that conditions (3) and (4) of Theorem 8 are satis�ed, which implies the non-testability of F with

respect to X . Indeed, we apply the same extension arguments from the previous examples, and note that

the distribution functions G should be convex and increasing on [0; 1], with continuous derivatives there,

and with G0(0) = 0 if and only if f is continuous at 0 (and f(0) = 0). Thus, within the class, we may

always continue a G with G0(0) > 0 on [0; �] by one having G0(0) = 0 using a quadratic Bezier spline

having the speci�ed derivatives at 0 and �. Similarly, a function G with G0(0) = 0 may be continued on
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[0; �) by a quadratic Bezier spline B having B0(0) = G(�)=(2�) > 0 and B0(�) = G0(�). It should be easy

to generalize and conclude that the class of densities with
R
fr <1 (for �xed r > 1) is not testable with

respect to the decreasing densities on [0; 1]. The same goes for conditions like
R
f loga(1 + f) < 1 for

any a > 0, and indeed many other functionals.

Example 22: Lipschitz continuity of a density is not testable. Let F be the class of densities

such that each f 2 F has a version which is Lipschitz at 0. This class is not testable. To see this, we

consider X as in the previous example and ask additionally for continuity on the whole line (so that for

each density, f(0) = 0). We need to slightly modify the continuation argument. If G corresponds to a

density in F \ X , then, near the origin, G(x) � Cx2 for some constant C. Such a G may be continued

on [0; �) by another G behaving as cx3=2 near the origin, where c > 0 is picked appropriately, while

maintaining the other restrictions imposed by X . Note that the corresponding density behaves as
p
x

near the origin, and is thus not Lipschitz. If G corresponds to a density in Fc \X , then, near the origin,
we may continue G by another function within X that behaves as Cx2 near the origin for an appropriately

small but positive C. Thus, within X , Lipschitz continuity at even one point is not testable.

We leave it to the reader as a simple exercise now to verify that we cannot test whether EjX ja <1
for �xed a > 0 with respect to the class of bounded symmetric unimodal densities (by continuations of the

tails by �nite support or heavy-tailed pieces). Similarly, the �niteness of a moment generating function

cannot be tested.

11. Non-testability of mixture classes

Consider the class X of densities which may be obtained as densities of random variables of the

form X = F (U;Z), where F : [0; 1] � f1; 2; : : :g ! R is a �xed measurable function, U is a uniform

random variable on [0; 1], and Z is an arbitrary positive-integer-valued random variable, independent of

U . We assume that F is such that F (U;Z) has a density for all possible Z, and that for any two di�erent

distributions of Z, F (U;Z) has di�erent densities. Let F be the subclass of X containing all densities

such that Z has a �nite support.

Theorem 9. The class F de�ned above is not testable with respect to X .
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Proof. We proceed similarly as in Theorem 8. Just like there, we need a coupling between samples

drawn from di�erent densities of X . A simple way of doing it is as follows: Let U1; V1; U2; V2; : : : be

i.i.d. uniform random variables on [0; 1]. Given a distribution (p1; p2; : : :) on the set of positive integers,

let Zi = j if and only if Vi 2
hP

j�1
k=0 pk;

P
j

k=0 pk

�
. The sample drawn from a density f 2 X is now

X1; X2; : : :, where Xi = F (Ui; Zi). The densities in F are characterized by the distributions (p1; p2; : : :)

which have �nite support (i.e., only �nitely many pi's are nonzero). Call this class P . Similarly, the class
X �F corresponds to the class Q of distributions with in�nite support.

Assume that the statement is false, and there exists a test Tn such that for any f 2 F , with
probability one, there exists an integer N(!) such that

Tn(X1; : : : ; Xn) = 1 if n > N(!);

and for any f 2 X �F , with probability one, there exists an integer N(!) such that

Tn(X1; : : : ; Xn) = 0 if n > N(!):

Let �k = 2�k�2, k = 1; 2; : : :.

Let (p
(1)
1 ; p

(1)
2 ; : : :) 2 P be arbitrary. Then there exists an integer N1 = N1(!) such that

P
n
Tn(X

(1)
1 ; : : : ; X(1)

n
) = 1 for all n � N1

o
> 1� �1;

where X
(1)
1 ; : : : ; X

(1)
n is the sample drawn from the corresponding density as described above. Next

consider another distribution (p
(2)
1 ; p

(2)
2 ; : : :) 2 Q such that

P
n
X

(1)
1 = X

(2)
1 ; : : : ; X(1)

n
= X(2)

n

o
> 1� �1:

Such a distribution may be constructed by choosing �1 > 0 such that (1 � �1)
N1 > 1 � �1, and de�ning

p
(2)

i
= p

(1)

i
for all i < m, where m is the largest integer such that p

(2)
m > 0, p

(2)
m = min(0; p

(1)
m � �1), and

p
(2)
i

= 2�(i�m+1)min(�1; p
(1)
m ) for all i � m.

This step may be iterated just like in Theorem 8, leading to the construction of a limiting density

in X � F for which, with probability greater than 1=2, the test Tn fails for every odd n. The proof is

�nished.

Example 23: Normal mixtures. It is not testable whether a normal mixture density has �nitely or

in�nitely many components. This may be straightforwardly cast in the framework of Theorem 9: let X
be the class of all densities of the form

f(x) =
1p
2�

1X
i=1

pi

�i
e
�

(x�mi)
2

2�2
i ;

where p1; p2; : : : is a probability vector, �1; �2; : : : are positive numbers, and m1;m2; : : : are arbitrary

real numbers. Assume that all parameters except the pi's are known, an that no two pairs (mi; �i) are

identical. This class is X . According to Theorem 9, the class F consisting of all densities of the above

form such that pi > 0 for only �nitely many i's is not testable with respect to X . From this, it follows

certainly that the class of all �nite mixtures of normal densities is not testable (here, the parameters mi

and �i are unrestricted).

Example 24: Characteristic functions with compact support. Let F be the class of all densities

whose characteristic function ' has bounded support. This class is not testable. To see this, we take

densities fn with characteristic function (1� jtj=n)+, and let X be the class of all mixtures of �nitely or
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in�nitely many components fn. Then the class of �nite mixtures of fn's is not testable with respect to

X , by Theorem 9.

Example 25: Characteristic functions with exponentially decreasing tails. Let F be

the class of all densities whose characteristic function ' drops o� exponentially quickly, i.e., for which

j'(t)j � Ce�ajtj for positive constants C; a. This class is not testable. To see this, we take Cauchy

densities fn with characteristic function e�jtj=n, and let X be the class of all mixtures of �nitely or

in�nitely many components fn. Then the class of �nite mixtures of fn's is not testable with respect to

X , by Theorem 9. However, for any ini�nite mixture, the mixture density does not have an exponentially

decaying characteristic function.
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