
A General Class of Adaptive Strategies�

Sergiu Harty Andreu Mas-Colellz

March 1999

Abstract

We exhibit and characterize an entire class of simple adaptive

strategies, in the repeated play of a game, having the Hannan-consistency

property: In the long-run, the player is guaranteed an average payo�

as large as the best-reply payo� to the empirical distribution of play

of the other players; i.e., there is no \regret." Smooth �ctitious play

(Fudenberg and Levine [1995]) and regret-matching (Hart and Mas-

Colell [1998]) are particular cases. The motivation and application of

this work come from the study of procedures whose empirical distri-

bution of play is, in the long-run, (almost) a correlated equilibrium.

The basic tool for the analysis is a generalization of Blackwell's [1956a]

approachability strategy for games with vector payo�s.
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1 Introduction

Consider a game repeated through time. We are interested in strategies of

play which, while simple to implement, generate desirable outcomes. Such

strategies, typically consisting of moves in \improving" directions, are usually

referred to as adaptive.

In Hart and Mas-Colell [1998] we presented simple adaptive strategies

with the property that, if used by all players, the empirical distribution

of play is, in the long-run, (almost) a correlated equilibrium of the game

(for other procedures leading to correlated equilibria, see Foster and Vohra

[1997] and Fudenberg and Levine [1996; 1998]). From this work we are

led|for reasons we will comment upon shortly|to the study of a concept

originally introduced by Hannan [1957]. A strategy of a player is called

Hannan-consistent if it guarantees that his long-run average payo� is as

large as the highest payo� that can be obtained (i.e., the best-reply payo�)

against the empirical distribution of play of the other players. In other words,

a strategy is Hannan-consistent if, given the play of the others, there is

no regret in the long-run for not having played (constantly) any particular

action. As a matter of terminology, the regret of player i for an action1 k

at period t is the di�erence in his average payo� up to t that results from

replacing his actual past play by the constant play of action k: Hannan-

consistency thus means that all regrets are non-positive, as t goes to in�nity.

In this paper we concentrate on the notion of Hannan-consistency, rather

than on its stronger conditional version which characterizes convergence to

the set of correlated equilibria (see Hart and Mas-Colell [1998]). This is just

to focus on essentials. The extension to the conditional setup is straightfor-

ward; see Section 5 below.

Hannan-consistent strategies have been obtained by several authors: Han-

nan [1957], Blackwell [1956b] (see also Luce and Rai�a [1957, pp. 482-483]),

Foster and Vohra [1998], Auer et al [1995], Fudenberg and Levine [1995;

1998], Hart and Mas-Colell [1998, Section 4(c)]. The strategy of Fudenberg

and Levine [1995] (as well as those of Hannan [1957], Foster and Vohra [1998]

1Think of this as the \regret of not having played k in the past."
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and Auer et al [1995]) is a smoothed out version of �ctitious play (which by

itself is not Hannan-consistent, and which may be stated as: at each period

play an action with maximal regret). The strategy of Hart and Mas-Colell

[1998], called \regret-matching," prescribes, at each period, play probabilities

that are proportional to the (positive) regrets.

Clearly, a general examination is called for. Smooth �ctitious play and re-

gret matching should be but particular instances of a whole class of adaptive

strategies with the Hannan-consistency property. In this paper we exhibit

and characterize this class. It turns out to contain, in particular, a large

variety of new simple adaptive strategies.

In Hart and Mas-Colell [1998], the basic tool used for the analysis of

regrets is Blackwell's [1956a] approachability theory for games with vector

payo�s. In this paper, therefore, we proceed in two steps. First, in Section

2, we generalize Blackwell's result: Given an approachable set (in vector

payo� space), we �nd the class of procedures that guarantee that the set is

approached. We defer the speci�cs to that section. Su�ce it to say that

Blackwell's strategy emerges as the particular quadratic case of a contin-

uum of strategies where continuity and, interestingly, integrability feature

decisively.

Second, in Section 3, we apply the general theory to the regret framework

and derive an entire class of Hannan-consistent strategies. A feature common

to them all is that, in the spirit of bounded rationality, they aim at \better"

rather than \best" play. We elaborate on this aspect, and carry out an

explicit discussion of �ctitious play in Section 4. Section 5 discusses a number

of extensions.

2 The Approachability Problem

2.1 Model and Main Theorem

Consider a game in strategic form played by a player i against an opponent

�i (which may be Nature and/or the other players). The action sets are the
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�nite2 sets Si for player i and S�i for �i: The payo�s are vectors3 in some

Euclidean space. We denote the payo� function by A : S � Si � S�i ! <m;

thus A(si; s�i) 2 <m is the payo� vector when i chooses si and �i chooses

s�i: As usual, A is extended bi-linearly to mixed actions, thus4 A : �(Si)�

�(S�i)! <m:

Let time be discrete: t = 1; 2; ::: , and denote by st = (sit; s
�i
t ) 2 Si� S�i

the actions chosen by i and �i, respectively, at time t. The payo� vector in

period t is at := A(st); and at := (1=t)
P

��t a� is the average payo� vector

up to t: A strategy5 for player i assigns to every history of play ht�1 =

(s� )��t�1 2 (S)t�1 a (randomized) choice of action �it � �it(ht�1) 2 �(Si) at

time t, where [�it(ht�1)](s
i) is, for each si in Si, the probability that i plays

si at period t following a history ht�1.

Let C � <m be a convex and closed6 set. The set C is approachable by

player i (cf. Blackwell [1956a]; see Remark 3 below) if there is a strategy of i

such that, no matter what �i does, dist(at; C)! 0 almost surely as t!1.

Blackwell's result can then be stated as follows:

Blackwell's Approachability Theorem.

(1) A convex and closed set C is approachable if and only if every half-

space H containing C is approachable.

(2) A half-space H is approachable if and only if there exists a mixed

action of player i such that the expected vector payo� is guaranteed to lie in

H; i.e., there is �i 2 �(Si) such that A (�i; s�i) 2 H for all s�i 2 S�i:

The condition for C to be approachable may be restated as follows (since,

clearly, it su�ces to consider in (1) only \minimal" half-spaces containing

2See however Remark 2 below. Also, we always assume that Si contains at least two

elements.
3The coordinates may represent di�erent commodities, or contingent payo�s in di�erent

states of the world, or regrets, etc.
4We write �(Z) for the set of probability distributions on Z; i.e., the (jZj � 1)-

dimensional unit simplex �(Z) := fp 2 <Z
+
:
P

z2Z p(z) = 1g:
5Note that we use the term \action" for a one-period choice, and the term \strategy"

for a multi-period choice.
6A set is approachable if and only if its closure is approachable; we thus assume without

loss of generality that the set C is closed.
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C): For every � 2 <m there exists �i 2 �(Si) such that

� � A
�
�i; s�i

�
� w(�) := supf� � y : y 2 Cg for all s�i 2 S�i (1)

(w is the \support function" of C; note that only those � 6= 0 with w(�) <1

matter for (1)). Furthermore, the strategy constructed by Blackwell that

yields approachability uses at each step t where the current average payo�

at�1 is not in C; a mixed choice �it satisfying (1) for that vector � � �(at�1)

which goes to at�1 from that point y in C that is closest to at�1 (see Figure

1). To get some intuition, note that the next period expected payo� vector
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Figure 1: Approaching the set C by Blackwell's strategy

b := E[atjht�1] lies in the half-space H, and thus satis�es � � b � w(�) <
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� � at�1; which implies that

� � (E[atjht�1]� at�1) = � � (
1

t
b +

t� 1

t
at�1 � at�1) =

1

t
� � (b� at�1) < 0:

Therefore the expected average payo� E[atjht�1] moves from at�1 in the

\general direction" of C; in fact, it is closer than at�1 to C. Hence E[atjht�1]

converges to C, and so does the average payo� at (by the Law of Large

Numbers).

Fix an approachable convex and closed set C:We will now consider general

strategies of player i which|like Blackwell's strategy above|are de�ned in

terms of a directional mapping, that is, a function � : <mnC ! <m that

associates to every x =2 C a corresponding \direction" �(x): Given such a

mapping �; a strategy of player i is called a �-strategy if, whenever at�1 does

not lie in C; it prescribes using at time t a mixed action �it that satis�es

�(at�1) � A
�
�it; s

�i
�
� w(�(at�1)) for all s

�i 2 S�i (2)

(see Figure 2: a �-strategy guarantees that, when x = at�1 =2 C, the next

period expected payo� vector b = E[atjht�1] lies in the smallest half-space

H with normal �(x) that contains C); notice that there is no requirement

when at�1 2 C: We are interested in �nding conditions on the mapping �

such that, if player i uses a �-strategy, then the set C is guaranteed to be

approached, no matter what �i does.

We introduce three conditions on a directional mapping �; relative to the

given set C.

(D1) � is continuous.

(D2) � is integrable, namely there exists a Lipschitz function7 P : <m !

< such that rP (x) = �(x)�(x) for almost every x =2 C; where � :

<mnC ! <++ is a continuous positive function.

(D3) �(x) � x > w(�(x)) for all x =2 C:

See Figure 3. The geometric meaning of (D3) is that the point x is

7Notice that P is de�ned on the whole space <m.

6



�
�
��

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

HHH

s

E
E
E
E
E
E
E
E
E
E
E
E
E
E
EEs

s

x = at�1

b = E[atjht�1]

E[atjht�1]�(x)

C

H

s

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�

Figure 2: A �-strategy
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Figure 3: The directional mapping � and level sets of the potential P
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strictly separated from the set C by �(x): Note that (D3) implies that all

� with w(�) = 1; as well as � = 0; are not allowable directions. Also,

observe that the combination of (D1) and (D2) implies that P is continuously

di�erentiable on <mnC (see Clarke [1983, Corollary to Proposition 2.2.4 and

Theorem 2.5.1]). We will refer to the function P as the potential of �.

The main result of this section is:

Theorem 1 Suppose that player i uses a �-strategy, where � is a directional

mapping satisfying (D1), (D2), and (D3) for the approachable convex and

closed set C: Then the average payo� vector is guaranteed to approach the set

C; that is, dist(at; C)! 0 almost surely as t!1, for any strategy of �i:

Before proving the Theorem (in the next subsection), we state a number

of comments.

Remarks.

1. The conditions (D1){(D3) are independent of the game A (they depend

on C only). That is, given a directional mapping � satisfying (D1){

(D3), a �-strategy is guaranteed to approach C for any game A for

which C is approachable (of course, the speci�c choice of action depends

on A; according to (2)). It is in this sense that we refer to the �-

strategies as \universal."

2. The action sets Si and S�i need not be �nite; as we will see in the

proof, it su�ces for the range of A to be bounded.

3. As in Blackwell's result, our proof below yields uniform approachabil-

ity: For every " there is t0 � t0(") such that E [dist(at; C)] < " for all

t > t0 and all strategies of �i (i.e., t0 is independent of the strategy of

�i):

4. The conditions on P are invariant under strictly increasing monotone

transformations (with positive derivative); that is, only the level sets

of P matter.
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5. If the potential P is a convex function and C = fy : P (y) � cg for some

constant c, then (D3) is automatically satis�ed: P (x) > P (y) implies

rP (x) � x > rP (x) � y.

6. Given a norm k�k on <m; consider the resulting \distance from C" func-

tion P (x) := miny2C kx� yk : If P is a smooth function (which is always

the case when either the norm is smooth|i.e., the corresponding unit

ball has smooth boundary|or when the boundary of C is smooth),

then the mapping � = rP satis�es (D1){(D3) (the latter by the pre-

vious Remark 5). In particular, the l2 Euclidean norm yields precisely

the Blackwell strategy, since then rP (x) is proportional to x � y(x);

where y(x) 2 C is the point in C closest to x. The lp norm is smooth

for 1 < p < 1; therefore it yields strategies that guarantee approach-

ability for any approachable set C. However, if the boundary of C is

not smooth|for instance, when C is an orthant, an important case in

applications|then (D1) is not satis�ed in the extreme cases p = 1 and

p =1 (see Figure 4; more on these two cases below).
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Figure 4: The lp potential for an orthant C

7. When C = <m
� and P is given by (D2), condition (D3) becomes rP (x) �

x > 0 for every x =2 C; which means that P is increasing along any ray

from the origin that goes outside the negative orthant.
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2.2 Proof of Theorem 1

We begin by proving two auxiliary results. The �rst applies to functions Q

that satisfy conditions similar to but stronger than (D1){(D3); the second

allows us to reduce the general case to such a Q: The set C; the mappings

� and P; and the strategy of i (which is a �-strategy) are �xed throughout.

Also, let K be a convex and compact set containing in its interior the range

of A (recall that S is �nite).

Lemma 2 Let Q : <m ! < be a continuously di�erentiable function that

satis�es:

(i) Q(x) � 0 for all x;

(ii) Q(x) = 0 for all x 2 C;

(iii) rQ(x) � x� w(rQ(x)) � Q(x) for all x 2 KnC; and

(iv) rQ(x) is non-negatively proportional to �(x) (i.e., rQ(x) = �(x)�(x)

where �(x) � 0) for all x =2 C.

Then limt!1Q(at) = 0 a.s. for any strategy of �i:

Proof. We have at � at�1 = (1=t)(at � at�1); thus, writing x for at�1;

Q(at) = Q(x) +rQ(x) �
1

t
(at � x) + o

�
1

t

�
; (3)

since Q is (continuously) di�erentiable. Moreover, the remainder o(1=t) is

uniform, since all relevant points lie in the compact set K: If x =2 C then

player i plays at time t so that

rQ(x) �E[atjht�1] � w(rQ(x)) (4)

(by (2) and (iv)); if x 2 C then rQ(x) = 0 (by (i) and (ii)), and (4) holds

too. Taking conditional expectation in (3) and then substituting (4) yields

E[Q(at)jht�1] � Q(x) +
1

t
(w(rQ(x))�rQ(x) � x) + o(

1

t
)

� Q(x)�
1

t
Q(x) + o(

1

t
);

11



where we have used (iii) when x =2 C and (i){(ii) when x 2 C. Thus

E[Q(at)jht�1] �
t� 1

t
Q(at�1) + o(

1

t
):

This may be rewritten as8

E[�tjht�1] � o(1); (5)

where �t := tQ(at)�(t�1)Q(at�1): Hence limsupt!1(1=t)
P

��tE[�� jh��1] �

0: The Strong Law of Large Numbers for Dependent Random Variables (see

Lo�eve [1978, Theorem 32.1.E]) implies that (1=t)
P

��t (�� � E[�� jh��1]) !

0 a.s. as t ! 1 (note that the �t's are uniformly bounded, as can be

immediately seen from equation (3): �t = Q(at�1) +rQ(at�1) � (at � at�1) +

o(1); and from the fact that everything happens in the compact set K).

Therefore limsupt!1(1=t)
P

��t �� � 0: But 0 � Q(at) = (1=t)
P

��t �� ; so

limt!1Q(at) = 0.

Lemma 3 The function P satis�es:

(c1) If the boundary of C is connected, then there exists a constant c such

that (
P (x) = c; if x 2 bd C;
P (x) > c; if x =2 C:

(c2) If the boundary of C is not connected, then there exists a � 2 <mnf0g

such that9 C = fx 2 <m : �w(��) � � � x � w(�)g (where w(�) < 1

and w(��) <1); and there are constants c1 and c2 such that

8>>><
>>>:
P (x) = c1; if x 2 bd C and � � x = w(�);

P (x) = c2; if x 2 bd C and (��) � x = w(��);
P (x) > c1; if x =2 C and � � x > w(�);

P (x) > c2; if x =2 C and (��) � x > w(��):

8Recall that the remainder term o(1=t) was uniform; that is, for every " > 0 there is

t0 (") such that o(1) < " is guaranteed for all t > t0("):
9This is a general fact about convex sets: The only case where the boundary of a convex

closed set C � <m is not path-connected is when C is the set of points lying between two

parallel hyperplanes. We prove this in Steps 1{3 below, independently of the function P:
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Proof. Let x0; x1 2 bd C; and denote by �j; for j = 0; 1; an outward unit

normal to C at xj; thus k�jk = 1 and �j � xj = w(�j):

Step 1: If �1 6= ��0; we claim that there is a path on bd C connecting x0

and x1; and moreover P (x0) = P (x1): Indeed, there exists a vector
10 z 2 <m

such that �0 � z > 0 and �1 � z > 0: The straight line segment connecting x0

and x1 lies in C; we move it in the direction z until it reaches the boundary

of C: That is, for each � 2 [0; 1]; let y(�) := �x1 + (1� �)x0 + �(�)z, where

�(�) := maxf� : �x1 + (1 � �)x0 + �z 2 Cg; this maximum exists by the

choice of z. Note that y(�) is a path on bd C connecting x0 and x1:

It is easy to verify that �(0) = �(1) = 0 and that � : [0; 1] ! <+ is a

concave function|thus di�erentiable a.e: For each k = 1; 2; :::; de�ne yk(�) :=

y(�)+(1=k)z; then yk(�) is a path in <
mnC; the region where P is continuously

di�erentiable. Let � 2 (0; 1) be a point of di�erentiability of �(�), thus also

of y(�); yk(�) and P (yk(�)); we have dP (yk(�))=d� = rP (yk(�)) � y
0
k(�) =

rP (yk(�)) �y
0(�): By (D3), rP (yk(�)) �yk(�) > w(rP (yk(�))) � rP (yk(�)) �

y(�) for any � 2 [0; 1] (the second inequality since y(�) 2 C): Thus, for

any accumulation point q of the bounded11 sequence (rP (yk(�)))
1
k=1; we get

q � y(�) � q � y(�) for all � 2 [0; 1]: Therefore q � y(�) is maximized at � = �;

which implies that q � y0(�) = 0: This holds for any accumulation point q,

hence limk!1 dP (yk(�))=d� = 0 for almost every �: Therefore

P (x1)� P (x0) = P (y(1))� P (y(0)) = lim
k
[P (yk(1))� P (yk(0))]

= lim
k

Z 1

0
(dP (yk(�))=d�)d� =

Z 1

0

�
lim
k
dP (yk(�))=d�

�
d� = 0;

(again, P is Lipschitz, so dP (yk(�))=d� are uniformly bounded).

Step 2: If �1 = ��0 and there is another boundary point x2 with outward

unit normal �2 di�erent from both ��0 and ��1; then we get paths on bd C

connecting x0 to x2 and x1 to x2; and also P (x0) = P (x2) and P (x1) = P (x2)

|thus we get the same conclusion as in Step 1.

Step 3: If �1 = ��0 and no x2 and �2 as in Step 2 exist, it follows that

the unit normal to every point on the boundary of C is either �0 or ��0; thus

10Take for instance z = �0 + �1:
11Recall that P is Lipschitz.
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C is the set bounded between the two parallel hyperplanes �0 �x = w(�0) and

��0 � x = w(��0): In particular, the boundary of C is not connected, and

we are in case (c2). Note that in this case when x0 and x1 lie on the same

hyperplane then P (x0) = P (x1) by Step 1 (since �1 = �0 6= ��0):

Step 4: If it is case (c1)|thus not (c2)|then the situation of Step 3 is not

possible; thus for any two boundary points x0 and x1 we get P (x0) = P (x1)

by either Step 1 or Step 2.

Step 5: Given x =2 C; let x0 2 bd C be the point in C that is closest to x:

Then the line segment from x to x0 lies outside C, i.e., y(�) := �x+(1��)x0 =2

C for all � 2 (0; 1]: By (D3) and x0 2 C, it follows that rP (y(�)) � y(�) >

w(rP (y(�))) � rP (y(�))�x0; or, after dividing by � > 0; thatrP (y(�))�(x�

x0) > 0; for all � 2 (0; 1]: Hence P (x) � P (x0) =
R 1
0 rP (y(�)) � y

0(�) d� =R 1
0 rP (y(�)) � (x � x0) d� > 0; showing that P (x) > c in case (c1) and

P (x) > c1 or P (x) > c2 in case (c2).

We can now prove the main result of this section.

Proof of Theorem 1. First, use Lemma 3 to replace P by P1 as follows:

When the boundary of C is connected (case (c1)), de�ne P1(x) := (P (x)�c)2

for x =2 C and P1(x) := 0 for x 2 C; when the boundary of C is not connected

(case (c2)), de�ne P1(x) := (P (x) � c1)
2 for x =2 C with � � x > w(�);

P1(x) := (P (x)� c2)
2 for x =2 C with (��) � x > w(��); and P1(x) := 0 for

x 2 C: It is easy to verify that: P1 is continuously di�erentiable; rP1(x) is

positively proportional to rP (x) and thus to �(x) for x =2 C; P1(x) � 0 for

all x; and P1(x) = 0 if and only if x 2 C:

Given " > 0; let k � 2 be a large enough integer such that

rP1(x) � x� w(rP1(x))

P1(x)
�

1

k
(6)

for all x in the compact set K \ fx : P1(x) � "g (the minimum of the above

ratio is attained and it is positive by (D3)): Put12 Q(x) := ([P1(x)� "]+)
k
:

Then Q is continuously di�erentiable (since k � 2) and it satis�es all the

conditions of Lemma 2. To check (iii): When Q(x) = 0 we have rQ(x) = 0;

12We write [z]+ for the positive part of z; i.e., [z]+ := maxfz; 0g:

14



and when Q(x) > 0 we have

rQ(x) � x� w(rQ(x)) = k(P1(x)� ")k�1 [rP1(x) � x� w(rP1(x))]

� (P1(x)� ")k�1P1(x)

� Q(x):

(the �rst inequality follows from (6)):

By Lemma 2, it follows that the �-strategy guarantees a.s. limt!1Q(at) =

0, or lim supt!1 P1(at) � ": Since " > 0 is arbitrary, this yields a.s. limt!1 P1(at) =

0; or at ! C.

Remark. P may be viewed (up to a constant, as in the de�nition of

P1 above) as a generalized distance to the set C (compare with Remark 6 in

Subsection 2.1).

2.3 Counterexamples

In this subsection, we provide counterexamples showing the indispensability

of the conditions (D1){(D3) for the validity of Theorem 1. The �rst two

examples refer to (D1), the third to (D2), and the last one to (D3).

Example 1 The role of (D1).

Consider the following 2-dimensional vector payo� matrix A

C1 C2

R1 (0;�1) (0; 1)

R2 (1; 0) (�1; 0)
:

Let i be the Row player and �i the Column player. The set C := <2
� is

approachable by the Row player since w(�) <1 whenever � � 0; and then

the mixed action �Row(�) := (�1=(�1 + �2); �2=(�1 + �2)) of the Row player

yields � �A(�Row(�); ) = 0 = w(�) for any action  of the Column player.

We de�ne a directional mapping �1 on <2n<2
�:

�1(x) :=

(
(1; 0); if x1 > x2;

(0; 1); if x1 � x2:

15



Clearly �1 is not continuous, i.e., it does not satisfy (D1); it does how-

ever satisfy (D3) and (D2) (with P (x) = maxfx1; x2g; the l1 potential; see

Remark 6 in Subsection 2.1). Consider a �1-strategy for the Row player

that, when x := at�1 =2 C, plays �Row(�1(x)) at time t; that is, he plays

R1 when x1 > x2; and R2 when x1 � x2: Assume that the Column player

plays13 C2 when x1 > x2; and C1 when x1 � x2: Then, starting with, say,

a1 = (0; 1) =2 C; the vector payo� at will always be either (0; 1) or (1; 0); thus

on the line x1 + x2 = 1; so the average at does not converge to C = <2
�:

Example 2 The role of (D1), again.

The same as in Example 1, but now the directional mapping is �1; de�ned

on <2n<2
� by

�1(x) :=

8><
>:

(1; 1); if x1 > 0 and x2 > 0;

(1; 0); if x1 > 0 and x2 � 0;

(0; 1); if x1 � 0 and x2 > 0:

Again, the mapping �1 is not continuous|it does not satisfy (D1)|but it

satis�es (D3) and (D2) (with P (x) := [x1]++[x2]+; the l1 potential). Consider

a �1-strategy for the Row player where at time t he plays �Row(�1(x)) when

x := at�1 =2 C, and assume that the Column player plays C1 when x1 � 0

and x2 > 0; and plays C2 otherwise. Thus, if x =2 C then at is:

� (0; 1) or (�1; 0) with equal probabilities, when x1 > 0 and x2 > 0;

� (0; 1); when x1 > 0 and x2 � 0;

� (1; 0); when x1 � 0 and x2 > 0:

In all cases the second coordinate of at is non-negative; therefore, if we start

with, say, a1 = (0; 1) =2 C; then, inductively, the second coordinate of at�1

will be strictly positive, so that at�1 =2 C for all t: But then E[atjht�1] 2 D :=

convf(�1=2; 1=2); (0; 1); (1; 0)g; and D is disjoint from C and at a positive

13In order to show that the strategy of the Row player does not guarantee approacha-

bility to C; we exhibit one strategy of the Column player for which at does not converge

to C:
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distance from it: Therefore (1=t)
P

��tE[a� jh��1] 2 D and so, by the Strong

Law of Large Numbers, limat = lim(1=t)
P

��t a� 2 D too (a.s.), so at does

not approach14 C:

To get some intuition, consider the deterministic system where at is re-

placed by E[atjht�1]: Then the point (0; 1=3) is a stationary point for this

dynamic. Speci�cally (see Figure 5), if at�1 is on the line segment joining

-

6

s

sPPPPPPPPPPPPPPPPPP

s

qPP

iPP

A(R2; C1)

(0; 1
3
)

(�1
2
; 1
2
)

x1

x2

s

s

s

(1; 0)(�1; 0)

(0; 1)

(0;�1)

A(R1; C2)

A(R2; C2)

A(R1; C1)

C

�
�
�
�
�
�
�
�
�
��

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
��

�� ��

Figure 5: The deterministic dynamic in Example 2.4

14One way to to see this formally is by a separation argument: Let f(x) := x1 + 3x2;

then E[f(at)jht�1] � 1; so lim inf f(at) = lim inf(1=t)
P

��t f(at) � 1; whereas f(x) � 0

for all x 2 C:
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(�1=2; 1=2) with (1; 0); then E[atjht�1] will be there too, moving towards

(�1=2; 1=2) when at�1 is in the positive orthant and towards (1; 0) when it

is in the second orthant.
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Example 3 The role of (D2).

Consider the following 2-dimensional vector payo� matrix A:

C1 C2 C3 C4

R1 (0; 1) (0; 0) (0;�1) (0; 0)

R2 (�1; 0) (0; 0) (1; 0) (0; 0)

R3 (0; 0) (0;�1) (0; 0) (0; 1)

R4 (0; 0) (�1; 0) (0; 0) (1; 0)

:

Again, the Row player is i and the Column player is �i: Let C := f(0; 0)g: For

every � 2 <2nf(0; 0)g; put �1 := j�1j =(j�1j+j�2j) and �2 := j�2j =(j�1j+j�2j);

and de�ne a mixed action �Row(�) for the Row player and a pure action c(�)

for the Column player, as follows:

� If �1 � 0 and �2 � 0 then �Row(�) := (�1; �2; 0; 0) and c(�) := C1;

� If �1 < 0 and �2 � 0 then �Row(�) := (0; 0; �1; �2) and c(�) := C2;

� If �1 < 0 and �2 < 0 then �Row(�) := (�1; �2; 0; 0) and c(�) := C3; and

� If �1 � 0 and �2 < 0 then �Row(�) := (0; 0; �1; �2) and c(�) := C4.

It is easy to verify that in all four cases:

(1) � � A(�Row(�); ) � 0 = w(�) for any action  of the Column player;

and

(2) A(�Row(�); c(�)) = (j�1j+ j�2j)
�1 b�, where b� := (��2; �1):

Condition (1) implies, by (1), that C is approachable by the Row player; and

condition (2) means that A(�Row(�); c(�)) is 90� counterclockwise from �:

Consider now the directional mapping � given by �(x) := (x1+�x2; x2�

�x1); where � > 0 is a �xed constant.15 Then (D1) and (D3) hold (for

the latter, we have x � �(x) = (x1)
2
+ (x2)

2
> 0 = w(�(x)) for all x =2 C);

but integrability (D2) is not satis�ed. To see this, assume that rP (x) =

15This will provide a counterexample for any value of �; showing that it is not an isolated

phenomenon.
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�(x)�(x) for all x =2 C; where �(x) > 0 is a continuous function. Consider

the path y(�) := (sin �; cos �) for � 2 [0; 2�]: We have 0 = P (y(2�)) �

P (y(0)) =
R 2�
0 (dP (y(�))=d�)d� =

R 2�
0 rP (y(�)) � y0(�)d�: But the integrand

equals (�(y(�)))(sin� + � cos �; cos � � � sin �) � (cos �;� sin �) = ��(y(�))

which is everywhere positive, a contradiction.

We claim that if the Row player uses the �-strategy where at time

t he plays16 �Row(�(at�1)); and if the Column player chooses c(�(at�1));

then the distance to the set C = f(0; 0)g does not approach 0: Indeed,

let bt := E[atjht�1]; then the strategies played imply that the vector bt =

A(�Row(�(at�1)); c(�(at�1))) is perpendicular to �(at�1) and makes an acute

angle with the vector at�1. Speci�cally,17 bt � at�1 = � kbtk kat�1k ; where

� := �=
p
1 + �2 � 1: Therefore

(E[t katk jht�1])
2 � kE[tatjht�1]k

2

= (t� 1)2 kat�1k
2
+ 2(t� 1)bt � at�1 + kbtk

2

� (t� 1)2 kat�1k
2
+ 2(t� 1)� kbtk kat�1k+ �2 kbtk

2

= ((t� 1) kat�1k+ � kbtk)
2
:

Now kbtk � 1=
p
2 (for instance, see (2)), and we have thus obtained

E[t katk � (t� 1) kat�1k jht�1] � �=
p
2 > 0;

from which it follows that lim inf katk = lim inf(1=t)
P

��t [� ka�k � (� � 1) ka��1k] �

�=
p
2 > 0 a.s., again by the Strong Law of Large Numbers. Thus the distance

of the average payo� vector at from the set C = f(0; 0)g is, with probability

one, bounded away from 0 from some time on.

16For all � except those on the two axes (i.e., �1 = 0 or �2 = 0); the mixed action

�Row(�) is uniquely determined by (2). If the Row player were to play in these exceptional

cases another mixed action satisfying (2), it may easily be veri�ed that the Column player

can respond appropriately so that C is not approached. Thus, no �-strategy guarantees

approachability.
17Writing for short: b for bt; x for at�1; and � for �(at�1) = �(x); we have: x =

(1 + �2)�1
�
�+ �b�� (recall the de�nition of � and invert); thus b � y = (j�1j+ j�2j)

�1 b� �
(1 + �2)�1

�
�+ �b�� = �

�
1 + �2

��1
(j�1j+ j�2j)

�1
k�k

2
(we have used (2), � � b� = 0 and

k�k =
b�). Now kbk = (j�1j+ j�2j)

�1
k�k and kxk = (1 + �2)�1=2 k�k ; completing the

proof.
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To get some intuition for this result, note that direction of movement

from at�1 to E[atjht�1] is at a �xed angle � 2 (0; �=2) from at�1; which, if

the dynamic was deterministic, would generate a counterclockwise spiral that

goes away from (0; 0):

21



Example 4 The role of (D3).

Consider the 2-dimensional vector payo� matrix A

R1 (0; 1)

R2 (�1; 0)
;

(where i is the Row player, and �i has one action). The set C := <2
� is

approachable by the Row player (by playing \R2 forever"). Consider the

directional mapping � de�ned on <2n<2
� by �(x) := (1; 0): Then (D1) and

(D2) are satis�ed (with P (x) := x1); but (D3) is not: �(0; 1) � (0; 1) = 0 =

w(�(0; 1)): Playing \R1 forever" is a �-strategy, but the payo� is (0; 1) =2 C:

3 Regrets

3.1 Model and Preliminary Results

In this section we consider standard N -person games in strategic form (with

scalar payo�s for each player). The set of players is a �nite set N; the action

set of each player i is a �nite set Si; and the payo� function of i is ui : S ! <,

where S := �j2NS
j; we will denote this game < N; (Si)i; (u

i)i > by �:

As in the previous section, the game is played repeatedly in discrete time

t = 1; 2; ::: ; denote by sit 2 Si the choice of player i at time t; and put

st = (sit)i2N 2 S: The payo� of i in period t is U i
t := ui(st); and U

i

t :=

(1=t)
P

��t U
i
� is his average payo� up to t:

Fix a player i 2 N: Following Hannan [1957], we consider the regrets of

player i, namely, for each one of his actions k 2 Si; the change in his average

payo� if he were always to choose k (while no one else makes any change in

his realized actions):

Di
t(k) :=

1

t

tX
�=1

ui(k; s�i� )� U
i

t = ui(k; z�it )� U
i

t;

where z�it 2 �(S�i) is the empirical distribution of the actions chosen by

the other players in the past.18 A strategy of player i is called Hannan-

consistent if, as t increases, all regrets are guaranteed|no matter what the

18I.e., z�it (s�i) :=
��f� � t : s�i� = s�ig

�� =t for each s�i 2 S�i, where we write j
j for the
cardinality of the set 
:
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other players do|to become almost surely non-positive in the limit; that is,

with probability one, limsupt!1Di
t(k) � 0 for all k 2 Si:

Following Hart and Mas-Colell [1998], it is useful to view the regrets

of i as an m-dimensional vector payo�; where m := jSij. We thus de�ne

A � Ai : S ! <m; the i-regret vector-payo� game associated to �; by

Ak(s
i; s�i) := ui(k; s�i)� ui(si; s�i) for all k 2 Si; and

A(si; s�i) := (Ak(s
i; s�i))k2Si ;

for all s = (si; s�i) 2 Si � S�i = S: Rewriting the regret as

Di
t(k) =

1

t

X
��t

h
ui(k; s�i� )� ui(si� ; s

�i
� )

i

shows that the vector of regrets at time t is just the average of the A vector

payo�s in the �rst t periods: Di
t = (1=t)

P
��tA(s� ): The existence of a

Hannan-consistent strategy in � is thus equivalent to the approachability

by player i of the non-positive orthant <Si

� in the vector-payo� game A,

and a strategy is Hannan-consistent if and only if it guarantees that <Si

� is

approached.

We now present two important results that apply in all generality to the

regret setup.

Proposition 4 For any (�nite) N-person game �; the non-positive orthant

<Si

� is approachable by player i in the i-regret vector-payo� associated game.

This Proposition follows immediately from the next one. Observe that

the approachability of <Si

� is equivalent, by the Blackwell condition (1), to:

For every � 2 �(Si) there exists �i(�) 2 �(Si); a mixed action of player i;

such that

� � A(�i(�); s�i) � 0 for all s�i 2 S�i (7)

(indeed, w(�) equals 0 for � � 0 and it is in�nite otherwise). That is, the

expected regret obtained by playing �i(�) lies in the half-space (through the

origin) with normal �. In this regret setup, the mixture �i(�) may be actually

chosen in a simple manner:
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Proposition 5 For any (�nite) N-person game � and every � 2 �(Si);

condition (7) is satis�ed by �i(�) = �:

Proof. Given � 2 �(Si); a �i � (�ik)k2Si 2 �(Si) satis�es (7) if and only if

X
k2Si

�k
X
j2Si

�ij[u
i(k; s�i)� ui(j; s�i)] � 0 (8)

for all s�i 2 S�i: This may be rewritten as

X
k2Si

ui(k; s�i)[�k
X
j2Si

�ij � �ik
X
j2Si

�j] =
X
k2Si

ui(k; s�i)[�k � �ik] � 0:

Therefore, by choosing �i so that all coe�cients in the square brackets

vanish|that is, by choosing �ik = �k|we guarantee (8) and thus (7) for

all s�i.

3.2 Regret-Based Strategies

The general theory of Section 2 is now applied to the regret situation. We

will say that a strategy for player i is regret-based if the choices of i depend

only on i's regret vector; that is, for every history ht�1; the mixed action of

i at time t is a function19 of Di
t�1 only: �

i
t = �i(Di

t�1) 2 �(Si). The main

result of this section is:

Theorem 6 Consider a regret-based strategy of player i given by a mapping

�i : <Si

! �(Si) that satis�es:

(R1) There exists a continuously di�erentiable function P : <Si

! < such

that �i(x) is positively proportional to rP (x) for every x =2 <Si

� ; and

(R2) �i(x) � x > 0 for every x =2 <Si

� :

Then this strategy is Hannan-consistent for any (�nite) N-person game.

19Observe that it is a stationary function of the regrets: the time t does not matter.
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Proof. Apply Theorem 1 for C = <Si

� together with Propositions 4 and 5:

(D1) and (D2) yield (R1), and (D3) yields (R2).

We have thus obtained a wide class of strategies that are Hannan-consistent.

It is noteworthy that these are \universal" strategies: the mapping �i is in-

dependent of the game (see also the \variable game" case in Section 5).

Condition (R2) says that when Di
t�1 =2 <Si

�|i.e., when some regret is

positive|the mixed choice �it of i satis�es �
i
t �D

i
t�1 > 0: This is equivalent

to

ui(�it; z
�i
t�1) > U

i

t�1: (9)

That is, the expected payo� of i from playing �it against the empirical distri-

bution z�it�1 of the actions chosen by the other players in the past, is higher

than his realized average payo�. Thus �it is a better-reply, where \better" is

relative to the obtained payo�. By comparison, �ctitious play always chooses

an action that is a best-reply to the empirical distribution z�it�1. For more on

this \better vs. best" issue, see Subsection 4.2 and Hart and Mas-Colell

[1998, Section 4(e)].

We now describe a number of interesting special cases, in increasing order

of generality.

1. l2 potential : P (x) =
�P

k2Si([xk]+)
2
�1=2

: This yields (after normaliza-

tion) �(x) = (1= k[x]+k1)[x]+ for x =2 <Si

� ; and the resulting strategy

is �it(k) = [Di
t�1(k)]+=

P
k02Si[Di

t�1(k
0)]+ when Di

t�1 =2 <
Si

� : This is the

Hannan-consistent strategy introduced in Hart and Mas-Colell [1998,

Theorem C], where the play probabilities are proportional to the posi-

tive regrets.

2. lp potential: P (x) =
�P

k2Si([xk]+)
p
�1=p

for some 1 < p < 1; which

yields �it(k) = ([Di
t�1(k)]+)

p�1=
P

k02Si([Di
t�1(k

0)]+)
p�1; i.e., play prob-

abilities that are proportional to a �xed positive power (p� 1 > 0) of

the positive regrets.

3. Separable potential: A separable strategy is one where �it is propor-

tional to a vector whose k-th coordinate depends only on the k-th re-

gret; i.e., �it is proportional to a vector of the form ( k(D
i
t�1(k)))k2Si:
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Conditions (R1) and (R2) result in the following requirements20: For

each k in Si; the function  k : < ! < is continuous;  k(xk) > 0 for

xk > 0; and  k(xk) = 0 for xk � 0: The corresponding potential is

P (x) =
P

k2Si 	k(xk); where 	k(x) :=
R x
�1  k(y)dy. Note that, unlike

the previous two cases, the functions  k may di�er for di�erent k; and

they need not be monotonic (thus a higher regret may not lead to a

higher probability).

Finally, observe that in all the above cases, actions with negative or zero

regret are never chosen. This need no longer be true in the general (non-

separable) case; see Subsection 4.2 below.

3.3 Counterexamples

The counterexamples of Subsection 2.3 translate easily into the regret setup.

� The role of \better" (R2). Consider the 1-person game

R1 0

R2 1
:

The resulting regret game is given in Example 4. The strategy of

playing \R1 forever" satis�es condition (R1) but not condition (R2)

(or (3.3)), and it is indeed not Hannan-consistent.

� The role of continuity in (R1). Consider the simplest 2-person coordi-

nation game (a well-known stumbling block for many strategies).

C1 C2

R1 1; 1 0; 0

R2 0; 0 1; 1

:

The resulting regret game for the Row player is precisely the vector-

payo� game of Examples 1 and 2, where we looked at the approach-

ability question for the non-positive orthant. The two strategies we

considered there|which we have shown not to be Hannan-consistent|

are not continuous. They correspond to the l1 and the l1 potentials,

20Consider points x with xj = �" for all j 6= k:
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respectively, which are not di�erentiable. (Note in particular that the

l1 case yields \�ctitious play," which is further discussed in Subsection

4.1 below.)

� The role of integrability in (R1). The vector-payo� game of our Exam-

ple 3 can easily be seen to be a regret game. However, the approachable

set there was not the non-positive orthant. In order to get a counterex-

ample to the result of Theorem 6 when integrability is not satis�ed,

one would need to resort to additional dimensions, that is, more than 2

strategies; we do not do it here, although it is plain that such examples

are easy|though painful|to construct.

4 Fictitious Play and Better Play

4.1 Fictitious Play and Smooth Fictitious Play

As we have already pointed out, �ctitious play may be viewed as a regret-

based strategy, corresponding to the l1 mapping (the directional mapping

generated by the l1 potential). It does not guarantee Hannan-consistency

(see Example 1 and Subsection 3.3); the culprit for this is the lack of conti-

nuity (i.e., (D1)).

Before continuing the discussion it is useful to note a property of �ctitious

play: The play at time t does not depend on the realized average payo�

U
i

t�1. Indeed, maxkD
i
t�1(k) = maxk u

i(k; z�it�1) � U
i

t�1; so an action k 2 Si

maximizes regret if and only if it maximizes the payo� against the empirical

distribution z�it�1 of the actions of �i: In the general approachability setup

of Section 2 (with C = <Si

� ), this observation translates into the requirement

that the directional mapping � be invariant to adding the same constant to

all coordinates. That is, writing e := (1; 1; :::; 1) 2 <Si

;

�(x) = �(y) for any x; y =2 <Si

� with x� y = �e for some scalar �: (10)

Note that, as it should be, the l1 mapping satis�es this property (10).

Proposition 7 A directional mapping � satis�es (D2), (D3) and (10) for
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C = <m
� if and only if it is equivalent to the l1 mapping, i.e., its potential P

satis�es P (x) = �(maxk xk) for some strictly increasing function �:

Proof. Since C = <m
� ; the allowable directions are � � 0; � 6= 0: Thus

rP (x) � 0 for a.e. x =2 <m
� by (D2); implying that the limit of rP (x) � x is

� 0 as x approaches the boundary of <m
� : But rP (x) �x > 0 for a.e. x =2 <m

�

by (D3), implying that the limit of rP (x) � x is in fact 0 as x approaches

bd <m
� : Because P is Lipschitz, it follows that P is constant on bd <m

� ; i.e.,

P (x) = P (0) for every x 2 bd <m
� : By (D3) again we have P (x) > P (0) for

all x =2 <m
� : Adding to this the invariance condition (10) implies that the

level sets of P are all translates by multiples of e of bd <m
� = fx 2 <m :

maxk xk = 0g:

Since the l1 mapping does not guarantee that C = <m
� is approached

(again, see Example 1 and Subsection 3.3), we have:

Corollary 8 There is no regret-based strategy that satis�es (R1), (R2) and

is independent of realized average payo�.

The import of the Corollary (together with the indispensability of con-

ditions (R1) and (R2), as shown by the counterexamples in Subsection 3.3)

is that one cannot simultaneously have independence of realized payo�s and

guarantee Hannan-consistency in every game.

We must weaken one of the two properties. One possibility is to weaken

the Hannan consistency requirement to "-consistency: limsuptD
i
t(k) � " for

all k. Fudenberg and Levine [1995; 1998] propose a smoothing of �ctitious

play that|like �ctitious play itself|is independent of realized payo�s. In

essence, their function P is convex, smooth, and satis�es the property that its

level sets are obtained from each other by translations along the e = (1; :::; 1)

direction (see Figure 6).21 The level set of P through 0 is therefore smooth;

it is very close to the boundary of the negative orthant but unavoidably

distinct from it. The resulting strategy approaches C = fx : P (x) � P (0)g

21Speci�cally, P (x) = max�i2�(Si)f�
i � x + "v(�i)g; where " > 0 is small and v is a

strictly di�erentiably concave function, with gradient vector approaching in�nite length

as one approaches the boundary of �(Si).
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Figure 6: The level sets of the potential of smooth �ctitious play
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(recall Remark 5 in Subsection 2.1: a set of the form fx : P (x) � cg; for

constant c; is approachable when c � P (0)|since it contains <Si

�|and is

not approachable when c < P (0)|since it does not contain 0). The set C is

strictly larger than <Si

� ; it is an "-neighborhood of the negative orthant <
Si

��:

Thus one obtains only "-consistency.22;23

The other possibility is to allow the strategy to depend also on the realized

payo�s. Then there are strategies that are close to �ctitious play and guar-

antee Hannan-consistency in any game. Take, for instance, the lp potential

strategy for large enough p (see Subsection 3.2).24

4.2 Better Play

All the examples presented up to now satisfy an additional natural require-

ment, namely, that only actions with positive regret are played (provided, of

course, that there are such actions). Formally, consider a regret-based strat-

egy of player i that is given by a mapping �i : <Si

! �(Si) (see Theorem

6); we add to (R1) and (R2) the following condition:25

(R3) For every x =2 <Si

��; if xk < 0 then [�i (x)]k = 0:

Since x is the i-regret vector, (R3) means that �i gives probability 1 to the

set of actions with non-negative regret (unless all regrets are negative, in

which case there is no requirement26). This may be rewritten as

[�it]k > 0 only if ui(k; z�it�1) � U
i

t�1: (11)

22Other smoothings have been proposed, including Hannan [1957], Foster and Vohra

[1991] and Auer et al [1995] (in the latter the strategy is non-stationary, i.e., it depends

not only on the point in regret space but also on the time t; of course, non-stationary

strategies where " decreases with t may yield exact consistency).
23Smooth �ctitious play may be equivalently viewed, in our framework, as �rst taking

a set C that is close to the negative orthant and has smooth boundary, and then using the

l1 distance from C as a potential (recall Remark 6 in Subsection 2.1).
24This amounts to smoothing the norm and keeping C equal to the negative orthant,

whereas the previous construction smoothed the boundary of C and kept the l1 norm.

These are the two \dual" ways of generating a smooth potential (again, see Remark 6 in

Subsection 2.1).
25Note that the condition needs to be satis�ed not only for x =2 <Si

� ; but also for

x 2 bd <Si

� :
26See Footnote 30 below.
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That is, only those actions k are played whose payo� against the empirical

distribution z�it�1 of the opponents' actions is at least as large as the actual

realized average payo� U
i

t�1; in short, only the \better actions."27 For an

example where (R3) is not satis�ed, see Figure 7.
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C

P = c1

P = c2

Figure 7: (R3) is not satis�ed

The lp potential strategies, for 1 < p < 1; and in fact all separable

strategies (see Subsection 3.2) essentially28 satisfy (R3). Fictitious play (with

the l1 potential) also satis�es (R3): The action chosen is a \best" one (rather

than just \better"). At the other extreme, the l1 potential strategy gives

27Observe that (R2) (or (9)) is a requirement on the average over all played actions k;

whereas (R3) (or (11)) applies to each such k separately.
28The condition in (R3) is automatically satis�ed in these cases for x =2 <Si

; one needs

to impose it explicitly for x 2 bd <Si

� (where, up to now, we had no requirements).
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equal probability to all better actions, so it also satis�es (R3). (However,

these last two do not satisfy (R1)).

Using condition (R3) yields the following result, which is a generalization

of Theorem A of Monderer, Samet and Sela [1997] for �ctitious play:

Proposition 9 Consider a regret-based strategy of player i given by a map-

ping �i : <Si

! �(Si) that satis�es29 (R3). Then, in any (�nite) N-person

game, the maximal regret of i is always non-negative:

max
k2Si

Di
t(k) � 0 for all t:

Proof. By induction, starting with Di
0(k) = 0 for all k: Assume that

maxkD
i
t�1(k) � 0 (or, Di

t�1 =2 <
Si

��): By (R3), Di
t�1(k) � 0 for any k chosen

at time t; since Ak(k; s
�i
t ) = 0 it follows that Di

t(k) = (1=t)((t� 1)Di
t�1(k) +

t 0) � 0:

Thus, the vector of regrets never enters the negative orthant.30 Recall

that the result of Theorem 6 is that the vector of regrets approaches the

non-positive orthant. To combine the two, we de�ne better play as any

regret-based strategy of player i that is given by a mapping �i satisfying

(R1){(R3). We thus have:

Corollary 10 In any (�nite) N-person game, if player i uses a better play

strategy, then his maximal regret converges to 0 a.s.

lim
t!1

max
k2Si

Di
t(k) = lim

t!1

�
max
k2Si

ui(k; z�it )� U
i

t

�
= 0 a.s.

That is, the average payo� U
i

t of player i up to time t is close, as t !

1; to i's best-reply payo� against the empirical distribution of the other

players' actions. In particular, in a two-person zero-sum game we obtain the

following:

Corollary 11 In any (�nite) two-person zero-sum game, if both players use

better play strategies, then:

29Note that (R1) and (R2) are not assumed.
30Therefore at every period there always are actions with non-negative regret|out of

which the next action is chosen (and so the condition x =2 <Si

�� in (R3) always holds).
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(i) For each player, the empirical distribution of play converges to the set of

optimal actions.31

(ii) The average payo� converges to the value of the game.

Proof. Let 1 be the maximizer and 2 the minimizer, and denote by v the

minimax value of the game. Then maxk2S1 u
1(k; z2t ) � v; so by Corollary 10

we have lim inft U
1

t � v: The same argument for player 2 yields the opposite

inequality, thus limt U
1

t = v. Therefore limtmaxk2S1 u
1(k; z2t ) = v (apply

the Corollary again), hence any limit point of the sequence z2t must be an

optimal action of player 2; similarly for player 1:

Thus, better play enjoys the same properties as �ctitious play in two-

person zero-sum games (for �ctitious play, see Robinson [1951] for the con-

vergence to the set of optimal strategies, and see Monderer, Samet and Sela

[1997, Theorem B] and Rivi�ere [1997] for the convergence of the average

payo�).

5 Discussion and Extensions

In this section we discuss a number of extensions of our results.

1 Conditional regrets

As we stated in the introduction, we have been led to the \no regret"

Hannan-consistency property from considerations of \no conditional regret"

that correspond to correlated equilibria (see Hart and Mas-Colell [1998]).

Given two actions k and j of player i; the conditional regret from j to k is

the change in the average payo� of i if he were to play action k in all those

periods where he played j (and everything else is left unchanged). That is,

Di
t(j; k) :=

1

t

X
��t:si�=j

h
ui(k; s�i� )� ui (s� )

i

31That is, the set of mixed actions that guarantee the value.
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for every j; k 2 Si: The vector of regrets Di
t is now in <L; where L := Si�Si,

and the set to be approached is again the non-positive orthant <L
�: The

corresponding game with vector payo�s A is de�ned as follows: The (j; k)

coordinate of the vector payo� A(si; s�i) 2 <L is ui(k; s�i)� ui(j; s�i) when

si = j; and it is 0 otherwise; hence Di
t = (1=t)

P
��tA(s� ):

As in Propositions 4 and 5 (see Hart and Mas-Colell [1998, Section 3]),

it can easily be veri�ed that:

� C = <L
� is always approachable.

� For every � 2 <L
+; the Blackwell approachability condition for C = <L

�

((1) or (7)) holds for any mixed action �i = (�ik)k2Si 2 �(Si) that

satis�es X
j2Si

�ij�(j; k) = �ik
X
j2Si

�(k; j) for all k 2 Si: (12)

Viewing � as an Si � Si matrix, condition (12) says that �i is an

invariant vector for the (non-negative) matrix �.

� For every � 2 <L
+; there exists a �

i 2 �(Si) satisfying (12).

Applying Theorem 1 yields a large class of strategies. For example (as

in Subsection 3.2), if P is the lp potential for some 1 < p < 1, then �i is

an invariant vector of the matrix of the p � 1 powers of the non-negative

regrets.32 In the more general separable case, �i is an invariant vector of the

matrix whose (j; k) coordinate is  (j;k)(D
i
t�1(j; k)); where  (j;k) is any real

continuous function which vanishes for x � 0 and is positive for x > 0 . As

in Hart and Mas-Colell [1998, Theorem A], if every player uses a strategy in

this class (of course, di�erent players may use di�erent types of strategies),

then the empirical distribution of play converges to the set of correlated

equilibria of �:

Since �nding invariant vectors is by no means a simple matter, in Hart

and Mas-Colell [1998] much e�ort is devoted to obtaining simple adaptive

32For p = 2 we get the matrix of regrets|which yields precisely Theorem A of Hart and

Mas-Colell [1998].
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procedures, which use the matrix of regrets as a one-step transition matrix.

To do this here, one would use instead the matrix �
�
Di

t�1

�
.

2 Variable game

We noted in Subsection 3.2 that our strategies are game-independent.

This allows us to consider the case where, at each period, a di�erent game is

being played (for example, a stochastic game). The strategy set of player i is

the same set Si in all games, but he does not know which game is currently

being played. All our results|in particular, Theorem 6|continue to hold33

provided player i is told, after each period t, which game was played at time

t and what were the chosen actions s�it of the other players. Indeed, as in

Section 3, i can then compute the vector a := A(sit; s
�i
t ) 2 <Si

; update his

regret vector: Di
t = (1=t)((t� 1)Di

t�1 + a); and then play �i(Di
t) in the next

period, where �i is any mapping satisfying (R1) and (R2).

3 Unknown game

When the player does not know the (�xed) game � that is played and

is told, at each stage, only his own realized payo� (but not the choices of

the other players; this may be referred to as a \stimulus-response" model),

Hannan-consistency may nonetheless be obtained (see Foster and Vohra

[1998], Auer et al [1995], Fudenberg and Levine [1998, Section 4.8], Hart and

Mas-Colell [1998, Section 4(j)], and also Ba~nos [1968] and Megiddo [1980] for

related work). For instance, one can replace the regrets|which cannot be

computed here|by appropriate estimates.34
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