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1 Introduction

Consider the stochastic heat equation

0X 92X .
S (t2) = S5t e) + o(X (t,2) Wi 4+ b(X (1, 2)), (1.1)

(t,z) € [0,77 x [0,1], with initial condition X (0,z) = Xo(z) and either
Neumann or Dirichlet boundary conditions. The process {VVW7 (t,z) €
[0,T] x [0,1]} is a space-time white noise and 0,6 : R — R are smooth
functions. The purpose of this paper is to study the Taylor expansion
in ¢ of the density pf.(y) of the probability law of the solution of (1.1)
when the coefficient ¢ is perturbed by a factor £ > 0. More precisely, let
{X*(t,z), (t,2) €[0,T] x [0,1]} be the mild solution of (1.1), that is,

N R

t gl
4 / / Giosli,y) {20 (X (5,9))W (ds, dy) + D(X*(5, ) ds dy .

v (1.2)
where G¢(z,y) is the fundamental solution of the heat equation on [0,7] x
[0, 1] with the above-mentioned boundary conditions. Assuming smoothness
of the coefficients and strong ellipticity (see assumptions (H1), (H2) in Sec-
tion 2) [Bally and Pardoux (1998)] have proved the existence and smooth-
ness of the density of the solution of (1.2) for fixed (¢,2) € (0,T]x (0,1],¢ €
(0,1].
Let H denote the reproducing kernel Hilbert space of the Wiener sheet
W = {W;,, (t,z) € [0,7] x [0,1]}. For any h € H, let {\Ilél(o (t,2), (t,x) €
[0, T] x [0,1]} be the solution of the deterministic evolution equation

Wit = [ Gl oty
+ [ ] Gsteon {o Wk (s it ) + b0, s f s .

In the previous work [Marquez-Carreras and Sanz-Solé (1998b)] we have
proved a Taylor expansion of pf.(y), when y = \Ilg(o (t,z). Our purpose
here is to extend this result to any y € R.

This problem has been extensively studied for diffusions and is related to the
behaviour at small time of the density. A good list of references is given in



[Watanabe (1987)] and [Takanobu and Watanabe (1993)]. In this situation,
if y is the initial value of a d-dimensional diffusion, say y = =z, the zero
order term of the expansion is, up to constants, e~¢. For y # z, it is of
the order exp{—C/s?}e~%. We obtain the same behaviour for our family
{X=(t,z),e € (0,1]}.

The method used to approach the problem is inspired in [Léandre (1988)],
[Watanabe (1987)] and [Takanobu and Watanabe (1993)]. A basic assump-
tion, formulated as (H3) in Section 3, ensures that, for any y € R, there is
a finite number of elements hy,---, hy, in H such that \IIQL("O (t,z) = y,i =
1,--+,ng, and ||h;||3, is minimum. This allows to split the problem into two
parts by means of a localization around these minima. This method is devel-
oped in Section 3. Large deviations estimates for the family {X*(¢,z),c €
(0,1]}, proved in [Sowers (1992)] and [Chenal and Millet (1997)], allow us
to deal with the trajectories for which X*(¢,2) and \IIQL("O (t,z),i=1,---,ng,
are distant. When they are close, we use Girsanov’s theorem and a nor-
malization by ¢ to reduce the problem to the study of a Wiener functional
which is the product of two random variables, one of exponential type and
f(X="(t, ), where f is smooth and

Xe(t,z)(w+ g) — \IISL(O (t,z)

Xoh(t, z) =
€

In Section 2 we prove the regularity in € which is needed in Section 3 in order
to obtain the Taylor expansion of f(X®"(t,z)). We combine this with the
expansion of the exponential random variable. By means of the integration
by parts formula, in the framework of Malliavin Calculus, well-suited to our
problem (see Propositions 3.8, 3.9) we remove the derivatives of f of order
k > 1. The Taylor expansion is obtained by taking a sequence of smooth
functions f converging to the Dirac é-function ().

In the case of diffusions, the analogue of the derivatives %Xs’h(t, ) satisfy
linear equations which have an explicit solution. Furthermore one can apply
the martingale representation theorem when necessary. These two ingredi-
ents are essential tools for the proof. In our case, these linear equations do
not have an explicit solution and the stochastic integrals in the equations
do not define martingales. These are the main causes of most the difficulties
that we have encountered.

To solve these problems we compute in Section 3, exponential estimates of
the tail probabilities of the processes involved. Later, in order to obtain an
explicit expansion of the density we carry out a careful study of a localized



integration by parts formula. As a result of such an explicit calculation one
obtains the Taylor expansion of the density in Theorem 3.11. In particular
we obtain explicit expressions for the constants in the expansion. This allows
us to prove that the terms with odd powers vanish.

For the expansion to hold we assume hypotheses (H1)-(H3) which are natural
to the problem at hand. (H4) is a technical condition. At the end of Section
3, as an example, we give a class of coefficients that satisfy this condition.
Finally, Section 4 is an appendix which contains technical results.

We refer the reader to [Nualart (1995)] and [Nualart (1998)] for all notions
and notations on Malliavin Calculus used along the paper. As usually we
denote by ' any real constant, independently of its values.

2 Preliminary results

This section is devoted to state some properties of the solution of the evo-
lution equation (2.1) which are needed in the forthcoming sections.
We introduce some hypothesis on the coefficients and the initial condition:

(H1) 0,b: R — R are C*°-functions with bounded derivatives of any order
greater than 1, and X, € C([0,1]).

(H2) There exists C' > 0 such that inf{|o(y)|, y € R} > C.

Set X7t 2)() = X¥(t,2) (w2 )., < € (0,11, (t,2) € [0, T]x [0, 11, h € .
The process { X" (t,z), (t,x) € [0,T] x [0, 1]} satisfies the equation

Xt x) = /01 Gy(z,y) Xo(y)dy + /Ot/ol Gt_s(x,y){ea(Xs,h(&y))

X W (ds, dy) + o (X (s,9)) h(s, y)ds dy + b(X (s, y)) ds dy},
(2.1)
and, by uniqueness of solution, X=°(t, ) = X*(¢,z) and X""(¢t,2) =
\Ilél(o (t,x), where X%*(¢,2) = lim. o X="(t, ) (see Proposition 2.1).

In the sequel j will denote a positive integer. Let X;’h(t7 z), j>1,¢e€][0,1],



be the solutions of the following stochastic differential equations:

XPh(t,a) / / Calr, ) {0 (X (s, 9)) W (ds, dy) + 20" (X (s, )
X X7 (s, )W (ds, dy) + o' (X" (5, ) X7 " (s, y) (s, y) ds dy
B(XE (5, )) X7 (s,y) dsdy |

(2.2)
and, for j > 2,

X = 12 + [ [ G s () X )

J

x W (ds, dy) + o' (X" (s,)) X"(s,y) h(s,y)ds dy

V(X (s, ) X7 (s, ) ds dy |,
(2.3)

where

I;’_hl(t,ac): /Ot/o Gi_s(m,y {Z Z di—1(Bry- .-\ Br)

k=1 Bi1+...+8=3-1
BB >l

k J
< o X (s ) T X5 (5,0) Widsdy) + cj(Bus- - Br)

the coefficients ¢;(f1, ..., Br) and d;(B,. .., Br) are obtained by induction.
In particular, when j =2, ¢3(1,1) = 1,d1(1) = 2, and for ¢ = 0,

190t 2) = / / Gl y){ 207 (W, (5. 9)) XD (5, ) W (ds dy)
T 0" (Wl (5,4)) XPP(s,y)2h(5, ) ds dy (2.4)

+ (T (s,)) XM(s, )2 ds dy}.



We use the conventions Xg’h(t7 z) = X"(t, ) and Xg’h(t7 z) = \Ilél(o (t,z).
Equation (2.1) has a similar structure than (1.2), with the new term in-
volving h. This novelty does not rise up any technical problem. For this
reason, some results on the paths of X¢(¢,2) that have been proved in
[Mdrquez-Carreras and Sanz-Solé (1998b)] can be extended to the solution
of (2.1), using the same arguments.

We now give the precise statements and the reference of the corresponding
results for X*(¢, 2), from which the proof can be borrowed.

Proposition 2.1 Assume (H1). Fiz (t,z) € (0,7]x (0,1], h € H. Then
there exists a version of {X="(t,z), ¢ € (0,1)} which is a C* function with
respect to € and, for any j > 1

dj Xs,h
d{fj (t7 x)

e,h
= X] (t7$).
Furthermore, for any j >0, p € (1,00), ¢," € (0,1),

sup B(|X5" (1, 2) = X3 (4, 0) ) < C e =P

t,x I

Consequently,
E { sup |X;’h(t,x)|p} < 00. (2.5)
0<e<1
Moreover,
. e,h 0,h
1{;}?8 XMt e) = X7 (t2), as,
See [Marquez-Carreras and Sanz-Solé (1998b)], Proposition 3.1 and Corol-
lary 3.2.
For any ¢ € (0,1] set

N Xoh(t, ) =W (t, 2

Xoht2) = ( )8 X, ), (2.6)
Xoh(t,2) =W (t,2 — e X i,z

Ss’h(t7$) — ( ) Xoi~2 ) 1 ( ) (27)

Notice that R
_ XMt ) - XM )
- .

S (L, x) (2.8)

The functions X="(t, ) and S=(t,z) are clearly C°° with respect to ¢ €
(0,1). The next Lemma states the relationship between the derivatives



of the processes X" (t,z), Xs’h(t,x) and S=(t,x). For any j > 1 set
el 4 X A di =R (¢,

XMt 2) = LX) G 58 (t0) = =255

As before we use the conventions Xg’h(t,x) = X*"(t,z) and Sg’h(t,x) =

Seh(t, ).
Lemma 2.2 Assume (H1). Then, for any j >0, ¢ € (0,1),

& 1 ! ; £
Xj’h<t7x>:j+—1{X?’+’”‘1<t,x>+e / (1— &) X550, x)ds} (2.9)

ek 1 0,h € ! ; b h
(L = —F= X (¢ —_ 1—&Thy XMt d€.
500 = G g SR 09 Sl
(2.10)
See [Mérquez-Carreras and Sanz-Solé (1998b)], Lemma 3.3.
Clearly, (2.5), (2.9) and (2.10) yield, for any j > 0,
9 ,h . A57h 1 h
XMty = 12{8 XMt ) = 1 XMt ), (2.11)
0, o geh 1 0,
(2 =1 (e = ———F= X o 2). (212
S] (7$) .‘.‘IJI,IOI S] (7$) (]‘|‘1)(]+2) ]—|—2(7$) ( )

By the mean value theorem, one can easily check that the processes
{X(t,2); (tz) € [0,T]x [0,1]}, {9%"(¢t, )5 (t,2) € [0,7] x [0,1]} given
n (2.6) and (2.7), respectively, satisfy the following equations

Xs’h(t,x) = /Ot/ol Gis(z,y) U(Xs’h(s,y)) W (ds, dy)
[ [ o pren e ey 29
+ 0b°(s,y) Xs’h(s,y)}ds dy ,

et a) = / / Gros(2,y) 0" (s,y) X (s, ) W (ds, dy)

/ / Groslay) {a'@XO(svy)) 5 (s,y) h(s,y)
9% (s,y) X7 (s,)? h(s,y) + V(W (5,9)) S (s,9)

+ 027 (s, y) X=(s, y)z}ds dy,
(2.14)



with 90%(s,y) = fo o' (W, (5,9) + MY (s,9) = W (5,1)) )d X 0%07(5,)
= fol du [ dv o (\Ilg(o(s, y) +o(X"(s,y) - Uk (s, y))) and a similar defi-

nition for 9b°(s,y), 9%b°(s,y), respectively. From (2.12), (2.3) and (2.4) we
see that SO\ (t, ) satisfies

S (t,a) = / / Gioslayy) o' (W, (5,)) X0 (s,y) W(ds, dy)

/ / G, ) {0 (W, (5,)) 8°%(5, ) (s, y)

+ 50" (W (5, ) XD 5,95, 0) + D (W 5,5 (5, )

5 VW (5,9) XD (s,9)? s dy. (2.15)

Assume (H1). Then the standard arguments developed, for instance, in
[Bally and Pardoux (1998)] yield that for any fixed (t,2) € (0,7] x (0, 1),

X;’h(t,w), S;’h(t,x) belong to D™, for any 7 > 0. Moreover, for any

jGZ-H k€N7p€(071)7

sup sup X2ty < C
0<e<l t
sup sup HS (t,x)H;W < C, (2.16)

0<e<l t

where ||-||., denotes the norm of the Sobolev space DFP (see [Nualart (1995)]
Section 1.5 for the definitions of D¥?, || - |z, and D) .
If, in addition, (H2) holds, then (see [Millet and Sanz-Solé (1996)])

sp E([det, {, ) <C, pe(loo),
0<e<1 ’

and X?’h(t7 ) is a nondegenerate Gaussian random variable, where , Xeh ()
denotes the Malliavin matrix of X" (t, ) (see [Nualart (1995)] pg. 81).

3 Taylor expansion of the density

In this section we consider a fixed (¢,2) € (0,7]x(0,1], y e R, y # \Ilg(o (t,x)
and we establish a Taylor expansion for the density p; ,(y) of X°(¢,z) at y.



As in [Watanabe (1987)] the proof uses a localization procedure based on
an additional hypothesis (see (H3) below).

Let Ky = {h € # : W% (t,2) =y} and K" the set of those h € K, that
minimize the H-norm. In [Millet and Sanz-Solé (1996)] we have proved that
(H1) and (H2) yield KM = (.

We now introduce an additional condition, as follows:
(H3) The set K™ is finite.

Set KM = {hy,..., hpo} and a = ||hll3, i=1,...,n

Consider a family {¢,, p € (0,1]} of C*-functions on R, increasing with
p, such that supge,<q |@pllec < 1, ¢p(x) = 0if |2] > p and ¢,(z) = 1 if
|z| < £. Fix § € (2,00) and define, for any p € (0,1],¢ > 0,

o

Xoslee) = 3 n(IX @) = V1 o mpeoy)
=1
Then,
Pa(y) = (60 (X7(t.2))) = pb () + 72 () (3.1)

where 47,1 denotes the Dirac é-function at y and

pitw) = E{ (1= xos(:0)) 6y (X7(1,0)) },
Pi2() = B {xpn(ew) 0 (X(L0)) ).

Denote by B”(z,p) the open ball in L?([0,T] x [0,1]) centered at x, with
radius p. Under (H2) there exists po > 0 such that for any p € (0, po) the
balls Bﬁ(\Il?go,p), 1=1,...,ng, are pairwise disjoint.

Our first purpose is to study p;’;(y).

Proposition 3.1 Assume (H1)-(H3). For every p € (0, pg) there exists a
constant C' > 0 such that

p;é(y) :E{(l_xl)ﬁ(ng)) 5{y}(X6(t7$))} = O(eXp{—Q— a—|—C })
(3.2)

as ] 0.



Proof: Let p’ > 0 and set ¥ = (1 — x,5(c,w)) ¢ (X°(t,2) —y). The
integration by parts formula of the Malliavin Calculus and the local property
of the Skorohod integral yield

0 < B{ (1= xpp(e,)) by (X)) | = B{® 8, (X(t,0)) |

< E{l{XE(t,x)>y} Hy (Xs(t, ac), \I/)

“Aixeeqre, ol 29 n {|X6<t,x>—y|sw}}’

with Hy(X®(¢,2), V) = §(V||DX*(¢,2)||72DX*(t,z)), where § denotes the
Skorohod integral (see [Nualart (1998)]).
Let , . denote the Malliavin matrix of X (¢, ). Lemma 2.4 in [Millet and Sanz-Solé (1996)]
implies
Iy <= pa 33)

Thus, by Hélder’s inequality and the LP-bounds for the Skorohod integral,
E{(1=xpn(e@)) by (X500)) | < TPy

T T
with ]—)—I—g_l7 and

2
Ty = ||H(X (), WIT < C UL 21X )5 121

no c
no=pP{X e (BW,, D)) X°(o) - ol <o},
=1

where r,s,s' a,b, and d are some positive real numbers greater than 1.
The estimate (3.3) together with (3.21) in [Marquez-Carreras and Sanz-Solé (1998b)]
yield Ty < C' 722, for some a > 0. Consequently, letting p — 1,

lim sup < log B((1= Xp(2:0)) 81,y (X7 (1, 2)) )

) c
< limsup &2 logP{Xs € m (Bﬁ(\I/?g , B)) Xt z) —yl < p’}.
el0 im1 ot 2
: (3.4)
Let o5 € C([0,7] x [0,1]), ¢ = 1,...,m0, 7,p" > 0 and y € R. The set
{p €C([0,T]x[0,1]) : o € N2y (B (¢0,7))% lgp(t, ) —y| < p'} is closed in
the topology of the uniform norm. Therefore, the large deviation principle



for the family {X°, ¢ € (0, 1]} established in [Chenal and Millet (1997)] (see
also [Sowers (1992)]), shows that the right hand-side of (3.4) is bounded by

. 1 = P\
_1nf{§ IRlZ  heH, W e (Bﬁ(qﬂggo, 5)) LWk () -yl < p/}.
=1

There exists p’ > 0 such that this last quantity is strictly bounded by —a/2.
Indeed, otherwise we could choose p’ = 1/n, h™ € H satisfying

ng
n B P ¢ n 1
\IISL(O € m (Bﬁ(quov 5)) s |\Il§(0(t,$) - y| S 57
=1

and limsup,, [|A"]|3, < a. Let {k™, h > 1} be a subsequence of {h", n > 1}
converging weakly to some h € H. Clearly, ||h]|3, < a and, by the continuity
property of the skeleton proved in [Chenal and Millet (1997)], \IISL(O (t,z)=1y
and
no
h Brghi PyY

U Q (B, 2)) . (3.5)
Thus, by (H3), h € K;/“in and h = h; for some i = 1,...,ng. This leads to a
contradiction with (3.5). Hence

1
limsup &2 log E((l — Xp,8(e,w)) 5{y}(X5(t,x))) < —-a,
el0 2

proving (3.2). O

Our next aim is to analyze the contribution of the term p;’z(y). Without
“min

," consists of a unique element,

loss of generality we will assume that F
denoted by A in the sequel. . B
Consider the transformation of the Wiener space defined by T/ (w) = w+ g;
the Cameron-Martin-Girsanov theorem, Lemma 4.2 and the identity (2.8)
yield

P2 ) = B{xhale) 60y (X0 0)) b = Zexp (= 5o IFIR,)

X E{ exp (;\ S‘E’E(t7 x)) X?ﬁ (e,w + é) dr0y (XE’E(t, 96))},

(3.6)
where Xﬁﬁ(s,w) = (bp(HXE — qj?fo”iﬁ([o,T]x[o,l])) and A = A, where A" is
defined in Lemma 4.2.

10



The remaining of this section is essentially devoted to give the Taylor ex-
pansion of the right hand-side of (3.6).

We now give some crucial ingredients of the proof. In the next Lemmas
3.2 to 3.4 and in Proposition 3.5, h is an arbitrary element of H. Although
we assume (H1) to obtain these results, the proofs still go through under
weaker conditions. For any 3 € (1,00), € € (0,1], p € (0,1], and h € H, set

B _ e,h h 20
AZPP = {HX - ‘I’XOHLw([O,T]x[O,l]) < ,0}.

Lemma 3.2 Assume (H1). There exist ro,C' > 0 such that, for any r > ro,
0,h r
PUXY e > r} < exn (- ), (3.7

2
sup P{HXE’hHOO > 7, As’ﬁ’p} < exp ( — r—), (3.8)
0<e<1 C
for every € (3,00), p € (0,1].
Proof: Using a version of Gronwall’s lemma given, for instance, in [Walsh (1986)]
it is easy to check that

sup sup |Uh (t,2)[<C. (3.9)
0<I<T 0<a<1

Consequently,
lo (Wi )l < C. (3.10)

Consider the equation satisfied by {X (¢, z), (t,2) € [0, T]x[0, 1]} (see (2.2)).
Schwarz’s inequality implies

X (@) < C{\/o / Grmale,y) o (W, (s ) Wds, dy)|+ (L + [[AI13)

¢ 1
X / sup |X?’h(s,y)|2ds}.
0

ViE—5 o<y<a
Then, using the above-mentioned Gronwall’s lemma, we obtain

0,h
sup sup |X; (¢, )]
0<t<T 0<a<1

t ol
<(C' sup sup ‘/ / Gios(z,y) U(\Ilg(o(s,y)) W (ds, dy)|.
0<t<T 0<a<1 ' Jo Jo

11



Therefore, by Lemma 4.1 and (3.10)

' 1
:
PUS > 1) < P{IL[ [ Gatoon) ol (o) Wias, il > .

// o (W ( sy))wdsdngT}
on(-2)

for r big enough. This proves (3.7).
The proof of (3.8) is similar. Again, the equation satisfied by {X="(¢, z),
(t,z) € [0,T] x [0,1]} and an argument based on Gronwall’s lemma yield

S
IX= o < C || / / Gos(4,y) o (X7 (5,)) W(ds, dy)|oc -
The Lipschitz property of ¢ and (3.10) imply that, on the set As,ﬁ7p7

T 1
/ / |U(X5’h(s,y))|25dsdy§ R,
o Jo

for some positive constant R not depending on p.
Therefore, Lemma 4.1 applied to 7(s,y) = o(X="(s,y)) yields (3.8). O

Lemma 3.3 Assume (H1). Foranyp € (0,1], 8 € (3,00), there exist ro, C,
not depending on p, such that, for every r > ro,

sup  P{|X" = XD > r, A%} Cexp (= 2 ©).
0<e<1 P

Proof. We recall that (Xs’h — X?’h) (t,x) = ¢ Sh(t, x), where {S="(t, z),
(t,z) € [0, T] x [0, 1]} satisfies (2.14). More exactly, we have

KX = [ [ Gt o5 - W) e

x W(ds, dy) + / / Gis(z,y) { (\I/XO(S,y))h(s7y)_|_b’(\IIX0(S,y)))
X (X = XM () + (070 (5,) hls,p) + 02 6(s,9) ) X505, )

<0 = (s dsdy.

12



Therefore

(Eh = XD (8,22 < ] / / Goosl,y) 90%(s,y) (X = W )(s,0)

2 t 1 R
x Widsd ‘ + / ———— su Xeh _ x 0k 8, 2ds
( y) o (t—8)1/2 OSxI;l |( 1 )( )|

[ [ Gt () (X = W o) .

(3.11)
Let o € (1,3/2) satisfying 1/a+ 1/ = 1. Holder’s inequality yields

/ / G2, (2,y) (Xh(s,0))? (X — Wh, ) (5, ))ds dy

A 1 1/
=412 / | et s ay) " IX = s oy

< HXE}LHZO | X" — \IISL(OH%M([O,T]x[O,l])‘

IN

Substituting this estimate in (3.11) and using Gronwall’s lemma we obtain
PR = XM o > 1, A% <t
with

pi = P{HXE’hHoo > Ae,ﬁ,p}

m=r{|[ / G (9) D07 (5.9) (X = W )(5.9) W s,y

r
> —7r 2 A57ﬁ7p}7
s 1p2%F

where r{ = arp_l/(zﬁ) with 1/Cy —a > 0.
Then, the statement of the Lemma follows from Lemmas 3.2 and 4.1. O

Lemma 3.4 Assume (H1). Foranyp € (0,1], 8 € (3,00), there exist ro, C,
not depending on p, such that, for any r > rg

sup P { 1557 — 8O0 >, As’ﬁ’p} < exp (— rl C). (3.12)
0<e<1 35

13



Proof. From (2.14) and (2.15) it follows that the process {(5%" —S%*)(¢, z),
(t,z) € [0, T] x [0, 1]} satisfies the equation.

(555 = $°0)(t,2) = L//”@sxy @%@wﬁﬂ&w+5@%@wﬁ)

(5 = S (s, s dy+ 3 T
=1
(3.13)
with

Tty = [ [ Gieslon) o/ (W (5. ) (X5 = X5, W s, ).

Ty(t,z) = // Gi_s(,y) 02 0%(s,y) X =P (s, y) (X — \IIX)(S Y)
x W(ds,dy),

1) = [ [ Gt o) (92076 (56,

1

= 5 (W (s,9)) (XD (s,9))?) dsdy.,

Tu(t, ) = L//Y%sxm@%%umxwwm>—%w@%@w»
X (X?h(s,y)) )dsdy.

For any r,r;, i = 1,2,3, positive real numbers, § € (3,00), p € (0,1], set

4
PLS*" = SO > v, AP} <N g, (3.14)

=1
where
_ P{ HSs,h _ SO,hHOO >, As,ﬁ,p7 HXs,h _ XIOJLHOO <, HXs,hHOO <ry,
h
X7 o < 73},
= P{|X = 5o > m, ASP0Y
g5 = P{IX o0 > 1y, ASFPY
h
¢5 = P{IXY" oo > s}

14



Lemma 3.2 yields the existence of rg,Cy > 0 such that, for any rq,rs >

ro, P € (07 1]7 5 5

L) <oxp (- ) (-2). 3.15
s taiSexp( — ) texp( - (3.15)
By Lemma 3.3, for any fixed p € (0, 1], there exist 7o, C2 > 0 such that, for

every r > 1o,
2

p "
gy <exp| — Cy). 3.16
2 ( p1/B 2) (3-16)

Using (3.13) and the standard arguments based on Gronwall’s lemma we
obtain

4
1557 = 5%l < C Y Tl oo (3.17)
=1
Our next aim is to give upper bounds for ||7}||ec, ¢ = 3,4, on the set
Apfl, = AP ALK = XD oo < 1KMo < gy (1IXD o < )

rirars
(3.18)
Note that

Tg(t,x):/o /0 Gt_s(x,y)h(s,y){a%f(s,y)(ﬁvh—mgo)(s,y))&fvh(s,w

1 . - 1
5 (W, (5,9) X0, ) (X5 = XM (5, ) + 5 0" (W, (5,1)

X XD (s, ) (X5 = XPM) (s, ) fds dy,

with 8 0%(s,y) = [y du [ dv [ dw o (Wh (s,y) +w(X=F =0k ) (s,9)).

Then, clearly, on AZ%A.
1
ITsl|eo < C (7% 13+ rira+r1rs) (3.19)

The same upper bound holds for ||T4||-
Thus, (3.17)-(3.19) yield, on the set A2

1
|55 — SOh||., < C(Pw ry+ e+ s+ || T1f|oo + HT2H<><>)' (3.20)

Let a; € (0,00), ¢ = 1,2, 3, be such that Cy := % —ag —Jarag —Jajaz > 0,
where ' is the positive constant appearing in the right hand-side of (3.20).
Then, set

r= (e 2 = (e p PR g = (agr T )R (320)

15



Clearly, ¢7 < ¢7; + ¢4, with

1
0, =P {1l > ) Cor, AZPr 1,
— P T 1 C A57ﬁ7p
To = {H 2HOO > 5 o’ rirors S *

Lemma 4.1 applied to the process 7(s,y) = O'/(\IISL(O (s,y)) (X=P —X?’h)(s7 Y)
vields the existence of positive constants Ky, Ky such that,
r? C2

—K), 3.22
T L2 (3.22)

g7, < exp ( -
whenever r/ry > Kj.
Analogously, the same Lemma applied to 7(s,y) = 9% 0°(s,y) Xs’h(s,y)
(X — \Ilg(o)(s, y), ensures the existence of positive constants Ky, Ky such
that
r? C2
Ao"||Z, r3 p*/P

q7y < exp ( - Kg), (3.23)

for m Z I(l-

Substituting the values of r;, ¢ = 1,2,3, given in (3.21) into the inequalities
(3.15), (3.16), (3.22) and (3.23) and, taking into account (3.14), we finish
the proof of the Lemma. O

Proposition 3.5 Assume (H1). For any p > 0, g € (6,00), there exists
p1 = p1(p) € (0,1] such that

h
e,h _ QOh h _
0:11;21 E{exp(p|(5 S )(t795)|)Xp1,5 (e, w+ eg)}<—|—c>o.

Proof. Fix p >0, 8 > 6. Let ro,C be such that (3.12) is satisfied for any
r > ro; then choose p; € (0, 1] such that p < C/pf/z. Clearly le glew+
g) < 1,¢,8/2,0, - Thus Fubini’s theorem and the choice of p; yield
h
B exp (p (57" = ™) (1) )xb, (=0 + 2) |

< B{exp (pl0s7" = ") L)) g, }

A% 2P

) 525t )
0
e+ n{( pey) 1 g, )

0

S
§C—|—p/ e 1 dy < +o0. O

0

16



The preceding Proposition is one of the ingredients used in the proof of the
integration by parts formula well-suited to our problem proved in Proposi-
tion 3.8. The additional ingredient, stated in Proposition 3.6, needs a new
requirement (see (H4) below).

The random variable S%*(¢, z) has only components in the Wiener-Chaos of
order 0 and 2. Indeed, from (2.15) one easily checks that the second order
Malliavin derivative is deterministic and, in addition, E(D S%*(t,z)) = 0.
Set Y(t,x) = A" S%h(¢,2), h € K™, where A" is defined in Lemma 4.2.
Then

Yite) = B(Y(to)+ /[Ot]x[m] /[Ot]x[m]ﬁ((m);<s,y>,<m>>

x Wi(ds, dy) W(dr, dz), (3.24)

with fJ((t,z);-) € L*(([0,¢] x [0,1])?). So, the kernel fJ((t,z);-) defines
a Hilbert-Schmidt operator A(¢,z) on H = L?([0,¢] x [0,1]). Denote by
{,uz, k > 1} the sequence of eigenvalues of this operator. Then

Z(t,x) =Y (t,2) = E(Y(t,2)) =) i &k @&k,
k=1

with {£,} a CONS of the first Wiener-Chaos.

Following Proposition 8.4 in [Neveu (1968)], for any ¢ > 0 such that 20 maxy ,uZ
<1,

_1
2

E (eg Z(t’l’)) = (det2 (I —20 Alt, 96))) < 00,

where dety denotes the Carleman-Fredholm determinant.
We now introduce a new assumption, as follows:

(H4) 2 maxy, puf <1, for any h € KIMn.
The preceding discussion leads to the next statement.

Proposition 3.6 Assume (H1), (H2) and (H4). For any h € K" there
exists p € (1,00) such that,

E(exp (p A" SO0 (L, z)) ) <+ 0.

The results of Propositions 3.5, 3.6 and Hélder’s inequality yield

17



Proposition 3.7 Assume (H1), (H2) and (H4). For any h € K" there
exist p € (1,00) and p € (0,1] such that, for any 5 € (6, 00),

0221 E(exp(p/\h Ss,h(ux)) Xﬁﬁ(e,w—l— g)) <+ 00.

The Taylor development of p;’;(y) relies on the particular integration by
parts formula stated in the next Propositions.
Let E be a Polish space. A family of E -valued random vectors {U*,i € I}
indexed by I C R is said to be uniformly in D> (E) if, for any p € (1,0),
k> 1, sup; |U*|lpx < Cpi. We write D* for D™ (R).
For any n € N, let ¢, (2) € Cg° be a function satisfying ||¢n||e < 1,
1, if x| <
(@) = { 0, if|z|>n+1, (3.25)
k
and sup, s [|o1” oo < C-
Let {G", 5 € [0,1]}, {F¢, ¢ € [0, 1]} be families of random variables which are
uniformly in D*. We also assume supg< <1 ||, ;%Hp < O, forany p € (1,00).
Consider a family {L?, e € (0,1]} of random variables. Fix h € K" and A"
given in Lemma 4.2, set B, = {Mmax(|S="(t,z)|, |S%"(t,z)]) < n}. We
assume the following properties:
(i) Forany n > 1, (L% @, (\'S=(t,2)) @ (MNWSO (¢, 2))) € D,
(i) For any € € (0, 1],
1] < exp(NSOH (1 2)) L5, + exp(A'STh (1, 2)) L5, (3.26)
where {L§ ;¢ € (0,1]}, 7 = 1,2, are uniformly in D*.
(iii) On every set B, n > 1,

|DFLE| < exp(A'SOM (1, 2)) I, + exp(V'S5" (8, 2)) L35 + L5,
(3.27)
with {L5 ;€ € (0,1]},7 = 1,2, 3, uniformly in D> (L*(([0, T]x[0, 1])¥)).

Condition (i) above clearly yields L € DY, with localizing sequence B,,.
Set

pemr = G LF Xﬁﬁ(e,w—l— g),

@87%(70 — \iﬁ:m,p7

Oy = O 5(|DFE||T2DFC) — (DOY"S | DFY|"2DFC),
(3.28)

18



n,¢ € [0,1],e € (0,1],k > 1,5 € (6,00),h € H. Notice that, since D is a
local operator @2’77’(’0, k > 1, is well defined.

Proposition 3.8 Assume (H1), (H2) and (H4). Let f € C°(R). There
exists p € (0,1] such that, for any integer k > 1, n,¢ € [0,1], £ € (0,1],
h € Kmn,

E{fOF) @ Le et b = B (RO ). (3.29)

Moreover,
&m,Gyp
sup [|©.">"|]1 < oo.
0<n,{<1
0<e<1
Proof: Set

h
An =B { O G717\ (04 2) @a(NSTH (1 2)) pu(A SO (2, 2)) ).

Assume that, for any n € N, ¢, € [0,1], ¢ € (0,1] we can prove the
existence of p € (0, 1] and a random variable @6’77’C’p € L'(Q) such that A4, =

E(f(F¢) @2’77;’(’ )s SUD. . H@ M6 Pl < o0 and L' — im0 @Z’Z’C’p =

@Z’”’C’p uniformly in e, 5, C. Then (3.29) follows.
Indeed, clearly

lim 1 (F(F) 07797 = B (F(FS) 0777).

n—0oo

The function Xﬁﬁ(e, w + L) satisfies

. I? <xh (e w Atk
{”X P 17 0,71 o,y S5 pirl® - (3.30)

<lge. :
(=8 17 5 oy oy

Consequently, the random variable W=7 belongs to L'(€Q). Indeed, let
p € (1,00), 2p € (0, 1], satisfying the conclusions of Propositions 3.6, 3.7,
1/¢+ 1/p=1. Then, by (3.30), Hélder’s inequality and (3.26)

) 1/p
E [F=me| < |G Lgﬁluq{E(exp(pAhSo’h(uw)))}
1/p

+ [|G7 LS,QHq{E(eXP(p/\hSE’h(tv z)) Xgpﬁ(g’w T g))} <o
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Thus, by bounded convergence

lim A, = B { fO(F) G717\ ple0+ D).

n—0oo

Set Wi = G L5 \h (2,0 + B)pn(NS#R (1, 2) ) (ALSOA (1, 2)).
Notice that W5"” € D*; then the integration by parts formula yields

Ay = B (JIFYH(FS057))
with Hy(F¢, ¥5"") defined recurrently as follows:
HA(FS¥59) = 8(U5 | DFS2DFe),
Hyp(FC,WemP) = H(FC, Hp_(F¢,05m)), k> 2.

where § is the Skorohod integral.
The properties of the anticipating stochastic calculus imply

Hy(FC, Hy (FC,05™7)) = Hyp_y (FC, U5 §(|| DFC|| "2 DFC)

— (DHj_ (FC,05™7) | DFC||2DFSY, k> 2.

Define

@87”7(70 — \I’}E,T],p7

OLL = O S(IDFY TP DY) — (DO | DFE| P DEY),
for any k > 1.

Clearly, by the local property of the derivative operator D,

@57777C7p — @27777C7p7

k.

on B,, foranyk > 0.

We want to prove the following facts. There exists p € (0, 1] and a decreasing
sequence pi € (1,00), k > 0, such that

? 7C7 ? 7C7
sup 105" = O lpy, — 0, (3.31)
sup |07, < C. (3.32)
67777C7n '
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This clearly suffices to end the proof.
We check (3.31), (3.32) using induction on k. Let k = 0, then

T = 5 — G|, = ([T~ B L.

Fix p > 1 and p € (0, 1] satisfying Propositions 3.6, 3.7. Let po, ¢1, ¢2, 93 > 1
such that 1/g; +1/g2 + 1/q3 = 1, po ¢z = p. Then, Holder’s inequality,
(3.30), Propositions 3.6, 3.7 and (3.26) yield

57" < (1167 Ly llpons { B(exp(Vpoms(t,2))) } 7
1

167 Lo Moo { 2 exp(MpogaS= (1,2, sl + 1) }77)
x (P(B}) 7%

Thus

supTy™" — 0.

e, n—00
The uniform estimate (3.32) follows from (3.26), Hélder’s inequality, (3.30),
Propositions 3.6, 3.7 and the boundness of ¢,, and its derivatives.
In order to simplify the presentation we will give the precise arguments
allowing to check (3.31), (3.32) for k = 1 and only sketch the general case.
We have

6
H®i7777C7p _ ®i7777C7pH£} — H(@i:Z7C7p _ ®i7777C7p)1B2H£} S ZT;”’NCJ’Z

n
=1
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where
TEmEn = B3 — ene) §(|DFE|-* DFOP,
T3 = BILF X s(e,0 4 2) (DGY,[|DFC)| 72 DFO(1 = @n(ALS™ (1, 2))
X on (ARSOR (L, 2)))lPr,
TS = BIGT X (e w + £) (DL |DFC 72 DFC) (1= ¢ (ALS=h (1, 2))
X on (NSO (¢, 2)))|m,
TP = B|GT L (D) (e, w0+ 2), [IDFC 72 DF) (1= ¢ (A"S" (1, 2))
X on (ARSOR (L, 2)))lPr,
Ty = BIGT L7 XD (5,0 4 1) @, (NS5t 2)) 0 (APSOH (2, )
x (A" DS (t, ), ||DF||=2 DF) x 1pc|P,
Te™e" =BG Lf X (5,0 4 £) 0u (NS5 (1, 2)) i, (ARSO1 (¢, )
x (A" DS%M(t,2),[|[DF¢||7% DF¢) x lpge|P1.
Choose py1,q > 1 with p; ¢ = pg. Then, Holder’s inequality yields

sup Tfﬂ%(m < C sup H\I’f{n’p _ \Iﬁm,pugé 5 0.
EX Ne EX Ne nreo

Fix p > 1 and 2p € (0, 1] satisfying Propositions 3.6, 3.7. Let p1, ¢1, ¢2, 93 > 1
such that 1/¢1 + 1/g2 +1/¢3 = 1, p1 1 = p. Then, (3.26), (3.27), Holder’s
inequality, (3.30) and Propositions 3.6, 3.7 imply

1
sup Tism,c,n <C (P(Bfl))g, i=2,---,6.
£m,C

Thus (3.31) holds for k£ = 1 and (3.32) follows from (3.26), (3.27), Holder’s
inequality, (3.30), Propositions 3.6, 3.7 and the boundedness of ¢,, and its
derivatives.

For a general k we only give some remarks. First, from the definitions of
92’77;’(”)7 @2’77’(’0, we have

"@27727(70 _ @27”7(70”%2 S Aiﬂ%cﬂl _I_ A§7U7C7n7

22



with
Ai’“’” _ E|(®2T71C,;zp _ @27200) 5(HDFCH—2 DFC)|pk7

A;,n,g,n = E|(D (@2,2(7;5 _ 627?1“)7 |DF¢||=2 DF¢) 1pc|Px.

Hélder’s inequality and the inductive assumption yield sup,, Ai’”’c’n — 0

,U,C,TL

as n — oo. To study AJ we note

(D (O777 = OL77), [|IDFE||=* DFS))|

< exp(/\hSE’h(t,w))xgpﬁ(s,w—l— g) @i’”’c + exp(MSY (¢, ) @;’n’c,

with ®5¢ &5 uniformly in D™. Therefore, since lim,_., P(BS) = 0,
Hélder’s inequality and Propositions 3.6, 3.7 show that

lim (sup A;’”’C’n) =0.

N0 N e

This ends the proof. O

With less effort, using similar arguments as in the previous Proposition, we
can prove the next Proposition 3.9. Let F<,G" be as in Proposition 3.8.
Set

P71 = G exp(ASOR(t, 2)),

op = @, (3.33)

O7¢ = O1¢, (IDFE||72DF) — (DOJS,, | DFE||72DF¢),
n,¢e0,1], k> 1, heH.

Proposition 3.9 Assume (H1), (H2) and (H4). Let f € C;°(R). For every
integer k > 1 and n,¢ € [0, 1],

E {f<k>(F<) G exp(ARSON(t, 7)) } -5 (f(FC)GZ’C).

and SUPg<y c<1 H@Z’CHl < 00.

Let f : R — R be a C*™ function and assume ¢ — F* is a C*((0,1);R)
mapping. Leibniz’s formula yields, for any integer 7 > 1,

; () kj
= () =30 0 () T (3:3)
=1
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(9)
where the symbol Z is a shorthand for

> > ¢j(Bry- -y Br,)

k=1 BLt 45, =1

and F7 = d’F®/de’. The coefficients c;j(Biy. .-, Br,) are computed by
induction.
Let 6 € (0, p), p as in Proposition 3.7, and g € (6, 00). Define

0 = o (1550, (e 2) i (5530 )}

Notice that, by (3.6), pin(y) = e exp{—Hth/(% )} th( ).
Let ¢ be a nondegenerate random variable and % € D We set

f{0(¢7 ¢) = ¢7

(¢, ¢) = I:Ik—1§¢7¢) 3(De|| Do 7?)
_<DHk—1(¢7¢)7D¢HD¢H_2>7

loc

k>1.
We remark that the sequences O™ @7, defined in (3.28) and (3.33),
respectively, can be described in terms of the operator Hy.

Proposition 3.10 Assume (Hl)—(H4). Then, we have

2 — 1L,
=1
n > 0.
The coefficients p;  are null for odd i. For any even i € {0,---,n},

p?,x,ﬁ =F {1{X0’E(t x)>0} Hl( X?’h(t7$)7 exp(;\SOJL(tvx)))}v

‘ _ ki B o 0,h
pt,x,ﬁ - Z Z _] l Z Z /\ - E{ {Xf’h(t,x)>0} ij-l-l( Xl (tvx)v
Jj=1
0,h ki_ 0,h
box0 (t2) H  Xg (t,z)

< cOh Bi+1 By +2
(ST () = G+l 11:[1 (B +1)(Br +2) )}

(3.36)
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Furthermore ,

sup (7717 < C.
0< ? ?

Proof : Let f be a C™ function with compact support and symmetric. Set

. ; AN g
e _ e,h h " e,h
MW_E{eXp (/\S (t,x)) X&ﬁ(e,w—l— 8) f(X (t,x))}
The chain rule (3.34) and (2.11) yield the Taylor expansion

X)) = fXY ) + Zef Zf 7))

Ny [FA=9Y
8 Hml Xgha(te) + 4 |

(N+1) o Enta o
30 ek ) [T X5 (1 0) de. (3.37)
=1

Analogously, for each § and g,
5 h
Xgﬁ(e,w—l— 5) = 14N RN_H(t z), (3.38)

where {RN_H(t7 z),e € (0,1]} uniformly in D™, as can be easily checked.
In order to study the term exp(AS®"(t,2)) we use the Taylor expansion
et = Z;\f:o 27/ ryg () with [rygr(2)] < (7 4 1)|z|V T/ (N + 1)1, for
x = A(S=" — SO*) (¢, 2). Then, since S=* (¢, x) is C*° with respect to ¢, using
(2.12), (2.16), we obtain

Mz

exp(AS® (t z)) = exp(/\SOh t,x) {  + €N+1G§\7+1}
:0
+ N R (4 o),
(3.39)
kj 1
k OO €
where G Z A% H ﬁ[—|—1)(ﬁl‘|‘2)Xﬁl+2(t yx) € D, {Gyy,2 €

(0,1]} is uniformly in ]DOO and

|RN-|—1(t )|

< exp(ASO (1, 2)) BRYTL (1 @) + exp(AS="(t, x)) RATY ,(1 ),
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with {RJZ\’,?_?J(L z),e € (0,1]},1=1,2, uniform{y in D> )
From (3.39) it follows that RJQ\}il(t, 2) o (ASS(t,2)) ©n(ASO(t, 2)), with
¢n, defined (3.25), belongs to D*°. Moreover, on B,,,

|D*R?

20| < oxp(ASOh(ta)) BEL (12) + exp(AST(,2))

e,k e,k
X R]2V+1 (L) + R]2V+1 5t @),

with {R]z\f_l_ﬁ (t,z), e € (0,1]} uniformly in D* (L2(([0, 7] x [0, 1])*¥)) for any

v =1,2,3,k > 1. This inequality can be easily checked using induction on

k.
Putting together the expansions (3.37)-(3.39) yields

Mi, = E{f(XP"(t,2)) exp(AS(t,2))}

+ Z Z e {sz t2)) exp(AS” (1, ))

. 1
% Ak,_J G+

Gi+1 11:[1 (B + 1) (Br + 2)

T— 7];‘
ki x Ok (t,z) Fizs Xgl/+2(t,ac) }
=1

n 3,e
+ TR ().
Let (fn.)n>1 be a sequence of functions satisfying the same requirements
as [ and converging to 5{0} as n — oo. Proposition 3.9 applied to F¥ =
0,h ki_ 0,h
X0h 0 _ ykio £ K41 (1, 2) Nt )
DMt ), GO = N 11
o B+l e (B +1)(6r +2)
Since the Wiener sheet W has a symmetric law, the odd terms in (3.35) are
zero.
As for the rest, a detailed analysis of Rn—l—l( z) shows that it can be de-

ensures (3.36).
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scribed by means of a finite sum of terms of the following type:

RS = ) (XPM(t,2)) exp(ASOh(t,2)) G,

_ . _ B
R = JUD O 1 2)) G5 BY(62) Vg (=0 + <)),

Ry= [ flea)(Xth(t,2)) G5 G5 exp(ASON (1, 2))de,
[0,1]
e __ (a4) ( ¥ eé b e p2.e h Q
Ri= [ (X501 0) GF R (o) (2w + 2 ) de,
[0,1] £

with {G5,e € (0,1]},7=1,---,5, uniformly in D* and some positive inte-
gers a;, ¢ =1,---,4, Ny, Nao. Proposition 3.9 ensures supg..«; |F(R]+R5)| <
C, while Proposition 3.8 yields supyc.<; |E(R5+ R3)| < C. This completes
the proof. O -

As a Corollary of Propositions 3.1 and 3.10, we are now ready to state the
main result. Let us recall that in (H3), K™ = {hy, -+, hy,} and a = ||h;]|3,,
J=1- ne.

Theorem 3.11 Assume (H1)-(H4). Foranyy e R,y # \Ilg(o (t,z), ase ] 0,

1

1
Praly) ~ Zexp (= 559) Pl tepiatepie + o0 ), (3.40)

where p . are null for odd ¢ and for even ¢
?
no
pt,x - pt,x,hjv
7=1

where p. p, are defined in (3.36). The symbol ~ in (3.40) means

i sup pia(y) — Lexp (= 5za) (00, +epl, + -+ P00 .
<10 eh—1 exp (- %a)
for any k > 1.

Remark 3.12. The validity of (H4) can be ensured under assumptions
involving only the coefficients o, and the initial value Xo. Indeed, assume
for simplicity that K;/“in = h. Then, condition

t 1 t 1 _ 2
2 R 1
Jatols = [ [ [ [ (s tn . tam)) drdsidradss <
0 JO 0 JO
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yields (H4), where we have used the notation introduced before Proposition
3.6 and || - ||grs is the Hilbert-Schmidt norm.
From (3.24) and Lemma 4.2, it follows that

{ Bt 2);) = N D2 SOk ),

7')
2 . - (3.41)
1Bl = NAE|X" (8, 2) 232

The process {D2_ 8% (t,2), ((raz2), (r1, 1)) € ([0,7]x [0,1))%} is

2,22
deterministic and satisfies

D} VSOt @) = Gy (2, 21) 0 (W (11, 21)) Dry 2, X7 (1, 21)

(7’2722)(7’1 3%1

+ Grpy (2, 22) 0" (Ul (120 22)) Dy oy X7 (12, 22)

t 1 B .
[ [ o) W (5. DS 9) s sy
riVry JO

t 1 B _
‘|‘ / / Gt—s($7 y) O-”(\IISL(O (87 y)) D7’272’2 X?JL(S? y)
riVry JO

XDy, 2 X?’E(s7 Y) liz(s7 y)dsdy

t 1 _ _
[ G WO (5,)) Dy, S s )y
r 0

1Vra

t 1 _ _ _
[ G VO (510) Do XY (59) Dy X0 (s, sy,
r 0

1Vra

Moreover, (2.2) and the rules of Malliavin Calculus yield
0,k _ R
D7’1721X1 (tv $) - Gt—f’l (xv Zl)g(\pXo (7‘17 Zl))
trt R 0,k 7
+ [ Gt {0/ (W (s.0) Dy X (s s
r1 0
+ V(U (5,9)) Dryoy XD (s) pdsdy.

Thus, (3.9) and the standard method based on Hélder’s inequality and Gron-
wall’s lemma imply

t 1 _
| [ 10 axV e panas|" < ¢ esptciez + 1E).

sup
t,x
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Therefore,

t 1 t 1 _
D? SO (L, &) |Pdridzydradz '
‘/0/0/0/0| (raea)(rye) (L @) Pdrydzydrydz, (3.42)
< C{llo' 128+ Nlo"|IZ2 + 1071122} expip C ([lo"[122 + [[0']122)}-

Finally, a detailed analysis of the results proved in [Millet and Sanz-Solé (1996)]
(see, in particular, Proposition 1.4 and Lemma 2.5) shows that

; 1413

(A2 = <, (3.43)

EIX®" (1))

with C' depending on b, ¢ and the initial value Xy. Hence, the remark follows
from (3.41), (3.42) and (3.43).

4 Appendix

This section is devoted to the proof of some technical ingredients which have

been used in the previous sections.

The first Lemma is an exponential inequality for stochastic integrals in-

volving the Green kernel Gy_ (z,y). It is an extension of Lemma 2.3 in

[Rovira and Tindel (1997)], with a similar proof (see also [Rovira and Sanz-Solé (1996)]).
For the sake of completeness we sketch the main arguments.

We denote by F, t € [0,T] the o-field generated by {W, , (s, z) € [0,t] X

0, 1]},

Lemma 4.1 Let 7 = {7(s,y), (s,y) € [0,7] x [0,1]} be an Fi-adapted,
square integrable process. Set

J(t,z) = /Ot/ol Gis(z,y) T(s,y) W(ds,dy).

Fiz 3 € (3,00), R > 0 and let AT = {fOT fol |7(s,9)|* dsdy < R}. Then,

there exist positive constants Ky, Ky such that

R L2
P{||J||w > L, APF} < exp ( -7 1(2), (4.1)

for any R, L > 0 with % > K.
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Proof: Fix 0 <r <tin [0,T], 2,z €[0,1]. We have

J(t,z) — J(r, 2)
T 1
:/0 /0 (1{59} Gis(z,y) — Lis<ry Gr_s(z, y)) 7(s,y)W(ds, dy)

_ /rt/oth_s(x,y) r(s,y) W(ds, dy)
+/Or /01 (Grslo.y) = Gomaley) ) 7(s.9) W(ds, dy)
v 7” / (Goms(o15) = Grmale1) ) 7(519) W(ds, ).

Let 1/a+ 1/ = 1. Notice that o € (1,3/2). Then, by Lemma B.1 in
[Bally, Millet and Sanz-Solé (1995)], there exists a constant C such that

! ! 2 " ! 2a
max (/ / Gios(x,y)*dsdy , / / (Gt_s(ac, y) — Gr—s(x, y)) ds dy)
T 0 0 0

3—2a
1

< Co|t—7‘| 2

r 1 2a
/ / (Gr—s(wvy) _Gr—s(zvy)) dey < CO|$ - Z|3_2a'
0 0

Define p(u) = 2 Cé/(m) RYCB) 412y > 0, d((t7x)7 () Z))

— 2|t

r|(3—2a)/(20z) T |$ _ Z|(?>—20z)/oz7

_ 1{s§t} Gt—s(xv y) - 1{5§7’} Gr—s(Zv y) (s
o) = (it ). ) =)

and, for any 0 < u < T,
U 1
M, = / / 9(s,y) W(ds, dy) .
o Jo

Then, {M,; F,, u € [0,T]} is a continuous martingale with increasing pro-

<M>u=/0u/01 9(s,y)* dsdy.
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By Hélder’s inequality, on the set A%F
(M)r <1

Let W(z) = exp(2?/4), x € R. Then

a4 e L R e O

(4.2)
where {~Zul 0~§ u < 1} is a Brownian motion defined in some probability
space (€, F, P) such that M, = Zyy, -

Now, we proceed as in [Sowers (1992)], [Rovira and Tindel (1997)].

Let
i J(tvx)_‘](rvz) x drdz.
b= //([O,T]x[o,l])2 v (p(d((t,x), (r, z)))) Ao drd

It follows from (4.2) that

E (B 145r) < T?2Y2 (4.3)
By Garsia-Rodemich-Rumsey Lemma, for the trajectories in A% we have
1
1]l < C1 B2 ((log, B)V?+Cy).
Moreover, (4.3) yields
E(exp(log_l_ B) 1A5,R) <2472 212,

Finally, from Chebychev’s exponential inequality we obtain

P{|J]lo > L, A%}

1 1
< exp (‘W (g =7 ) —los+72 2 35)

and (4.1) follows whenever L/RY25) > C1Cy, with Ky = 1/(8C3) , K; =
max {2 CCy, 23/2 log(2 + T? 21/2)1/201}. O
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Lemma 4.2 Assume (H1) and (H2). Let h € K™, then there exists A" >
0, depending on h, such that

/t/l h(s,z) W(ds, dz) = A" XO"(t,2), (4.4)

where X?’h(t7 z) is defined in (2.2).

Proof: We apply the Lagrange multiplier method (see, for instance, Theorem
6.1.1in [Clarke (1990)]). Therefore there exists A; > 0 and Az > 0, not both
zero, such that

€ MaIRIIF + A20{vk, (t, 2) — y}]1(h), (4.5)

where @ denotes the generalized gradient.

The mappings b — ||h||3,, h — \Ilél(o (t,z) are continuously Gateaux dif-
ferentiable. Thus, the generalized gradients of these mappings reduce to a
singleton, the corresponding Gateaux’s derivatives, which are denoted by D
in the sequel. One easily checks that D||A||%, = 2k and D\Ilg(o (t,x) € H
satisfies

- t 1
Do s Wl (1, 2) = Goa(a, ) o (W (00, A oty + / / Gioal(,y)

% Do g0, (5, 1) {0 (W, (5, 9) (s, ) + V(W (5, ) pdsdy.
(4.6)
Now we prove that Ay Ay # 0.
Indeed, suppose that Ay = 0; then f)\IléL(O (t,z) = 0 which contradicts Lemma
2.5 in [Millet and Sanz-Solé (1996)]. If A, = 0 then A = 0 and h € K.
This is contradictory with the assumption \Ilg(o (t,z) # y. Therefore, by
(4.5) there exists A* > 0 such that

h(a,B) = N D, Uk (t, ).

Using (4.6) one has

/ / Dy Wl (1, 2)W (ds, d2) / / Gros(it,2) o (W (5,2)) Ler)

W (ds, dz) + ////Gta B)D, % (v, 3)

{ (W (e, B))h(a, B) + (U, (o, 5)) fda dB W (ds, d2).
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Then by Fubini’s Theorem and the uniqueness of solution of the involved
equations we obtain

t 1
XPMt2) = / / D, .Uk (a, 8) W(ds, dz)
0 0

and proves (4.4). O
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