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Abstract

This paper looks at the dynamic management of risk in an economy
with discrete time consumption and endowments and continuous trad-
ing. I study how agents in such an economy deal with all the risk in
the economy and attain their Pareto optimal allocations by trading in
a few natural securities: private insurance contracts and a common set
of derivatives on the aggregate endowment. The parsimonious nature
of the implied securities needed for Pareto optimality suggests that in
such contexts complete markets is a very reasonable assumption.
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1 Introduction

In January 1994 an earthquake of magnitude 6.7 shook Northridge, an urban
neighborhood of Los Angeles, causing over 13 billion dollars in damage. The
Northridge earthquake is one of a number of natural catastrophes to have
hit the U.S. in the recent past; many more will surely occur in the near
future. The risk presented by such phenomena has been analyzed from two
different perspectives: insurance and finance. I propose to construct a model
that allows me to combine both perspectives and better understand what it
takes to manage risks dynamically and how plausible it is for markets to be
complete.

From the insurance perspective, the main risk from an earthquake is that,
given any fixed insurance premium, actual fluctuations in claims will at some
point exceed the amount collected from the premia. From Malinvaud (1972,
1973), a significant part of the literature on insurance has dealt with how do
insurance markets work despite this risk. Malinvaud showed that this risk is
minimized in industries where there are a very large number of independent
individual risks and where, as we know from the Law of Large Numbers
(LLN), actual claims will differ very little from expected claims. Natural
disasters pose a challenge because the individual risks being covered are
intrinsically not independent. This problem is not exclusive to catastrophic
insurance but is a generic property of economic situations in which there
is a substantial component of risk in the aggregate. Cass, Chilchininsky,
and Wu (1996) proposed a way to deal with this risk by having additional
securities to deal with the aggregate component of risk as well as private
insurance contracts. Ellickson and Penalva (1997) deal with this by allowing
the possibility that accidents happen gradually as part of a process that
unfolds over time.

The second approach is the finance perspective. From this perspective
the risk posed by natural catastrophes is just another risk which appropri-
ately securitized and traded can be dealt with through optimal portfolio
diversification, as we know from Markowitz (1952) and the literature on
the Capital Asset Pricing Model (CAPM, Breeden (1979), Duffie and Zame
(1989)). From this perspective, earthquake risk is in no way different from
the risk of biotechnological innovation or movie-making: it is just an un-
likely event with a very high (or low) possible payoff. As such, it can easily
be incorporated as a small proportion of a well diversified portfolio. The key
aspect from the finance point of view is that there be enough securities to
deal with all the possible risks, i.e. markets are complete (Duffie and Huang
(1985), Duffie and Zame (1989)).



The approach I take in this paper builds on the insurance approach of
Cass, Chilchininski, and Wu, and of Ellickson and Penalva that looks at
the origin of the risk and its role at the level of the individual to extend
the results of the optimal risk sharing literature (Wilson, Diamond, Mace,
and Townsend) in the context of a continuous trading economy as in Duffie
and Zame. The main result is a very parsimonious description of optimal
trading behaviour, suggesting that markets will be complete.

2 The Framework

In this section I will describe the main elements that define the framework
and introduce the economic primitives and necessary notation that I will
use later to study how agents use markets to share risks.

2.1 Hybrid Time

I model time on two scales, a discrete one for consumption and a continuous
one for security trading. This approach combines the benefits of existing con-
tinuous time and discrete time models in a single framework, while avoiding
some of the problems with modeling time either as continuous or as discrete.

The approach I propose is a generalization of the framework first used to
study continuous pricing and trading (see the survey by Merton [1990]). The
framework they used is to have time defined over a finite interval. Consump-
tion and endowments would take place at two discrete dates, the beginning
(call it date 0) and the end of the period (date T'), and security trading and
pricing took place at any date within the period. These models describe
uncertainty as a stochastic process on the interval between 0 and T'. The
great advantage of these models is that uncertainty is revealed gradually.
This implies that agents can manage a great deal of uncertainty if they are
allowed to trade often even if it is in a finite number of securities. Also,
such models will have a Walrasian equilibrium and the equilibrium can be
implemented as a security market equilibrium. This is because of the special
properties of the VonNeumann-Morgenstern expected utility representation
of preferences. On the practical side, these models have been very useful for
pricing stocks and financial derivatives, such as options, which are traded
continuously in the stock exchange.

The two date consumption model cannot be used to study dynamic
economies. Among other things, such models are insufficient for the study
of the term structure of interest rates. A solution is to allow agents to
have endowments and consume at intermediate dates. New models were



introduced in which agents had endowments and could consume at every
intermediate date. These models have been extensively studied and used.
But introducing consumption and endowments over continuous time poses
serious problems for implementations, both in terms of the right preferences
to use and the interpretation of endowments as flows of commodities that
are totally ephemeral: commodities only exist during the instant in time at
which they arrive in the economy.

These problems do not arise in models that describe time using a dis-
crete scale. It is very easy to write down preferences for discrete time models
which are relatively easy to work with and their welfare properties are well-
understood. Also, endowments and commodities are very easy to interpret
using existing data. These advantages explain why discrete time models are
used to study many aspects of dynamic economies: growth, unemployment,
investment, inflation, ... It is fair to say that discrete models are the main
ingredient of down-to-earth applied work in economics. Unfortunately, it is
very difficult to use these discrete time models to study pricing and trad-
ing in financial markets that are continuously open. Also, agents lack the
trading opportunities available with continuous time models and hence the
assumption of complete markets is hard to justify.

In this paper I propose a particular way to combine discrete time with
continuous time finance in a coherent way and in a way that takes advan-
tage of the benefits of both continuous time finance models and discrete time
economic ones. The key is to take advantage of the separation of the op-
timal consumption problem and the wealth allocation problem. With this,
the economy can be defined on two time scales. The optimal consumption
problem is defined in discrete time (via preferences and consumption com-
modities) and agents make their wealth allocation decisions in continuous
time, via security markets that are open between consumption dates.

2.2 Marked Point Processes

The second main element I propose to use is Marked Point Processes (MPPs).
MPPs have been substantially used in the finance literature to describe the
dynamics of security prices and dividend process. I propose to use it as
the way to model the fundamental, underlying uncertainty in the economy.
Because security prices will reflect that uncertainty, their dynamics will be
determined by the properties of the underlying MPP, but they will also be
affected by economic considerations. This approach follows the tradition of
the general equilibrium treatment of asset prices, and departs from the more
pure mathematical approaches that take prices and price dynamics as given.



As I have described in the introduction, the discrete nature of the pro-
cesses | wish to study requires a different mathematical representation than
the more usual Brownian Motion. That is why I use MPPs. MPPs are
continuously revealing information but they differ from Brownian motion in
that for the most part the information being revealed is of the form: ‘nothing
new has happened’. MPPs have already been used in finance (Aase[1993],
Cox and Ross[1976], Merton[1990]) but the approach I take is slightly dif-
ferent in that instead of assuming that prices or dividends follow a marked
point process, I will assume that MPPs describe the primitive uncertainty
in the economy. The reason I wish to focus on MPPs is two-fold: they are
more practical and they are a better description of the kinds of shocks we
observe in real economies.

MPPs are a generalization of Poisson processes. The classic example is
the arrival of customers to a bank teller’s window. A customer can arrive
at the window at any point in time. Those random times are described by
a Poisson process. MPPs behave in much the same way, but they gener-
alize Poisson in two ways: first, the arrival rate does not have to be time-
independent, so that at any given time the probability of an arrival over the
next time interval can depend on what has happened up until the time of the
arrival; and second, MPPs allows coding additional information about the
arrival, such as whether the customer wants to make a deposit, withdraw
cash, open a new account, etc. The arrival times are called jump times and
the additional information describing an arrival time is called the mark of
the jump.

These properties of MPPs make them ideally suited for dealing with the
kind of information arrival needed in practical economic applications. The
main examples I will be working with in this paper are insurance markets.
In such a context, the kind of information described by an MPP is the oc-
currence of an accident: a car accident, the diagnosis of a malignant tumor,
an earthquake. In other contexts, the MPP can describe the discovery of a
new technology, the destruction of a harvest by a particularly strong storm,
changes in tax laws, the announcement of an interest rate increase, etc.
The uncertainty surrounding these kinds of applications is particularly well
suited to MPPs.

Also, MPPs are easier to work with than difussion processes like Brow-
nian Motion. The stochastic calculus of MPPs uses standard Lebesgue-
Stieltjes integration, and the paths followed by an MPP have very intuitive
descriptions: the path of a marked point process is entirely described by a
list of the times at which a jump took place and the type of jump that took
place.



MPPs combined with hybrid time provide the essential elements with
which to construct a theoretical framework that is both general and application-
friendly.

2.3 The Economic Primitives

In this section I will present the formal description of the framework. It con-
sists of a dynamic exchange economy with uncertainty, a single commodity?
at each date-event, and a finite number of agents.

Assumption 1 N is a MPP, where

N(t) = (N1(t), Na(t), ..., Nk(1)),

is a vector of counting functions, Ny(t), describes the number of jumps of
type k that have taken place up to and including time t € T :=[0,T] (T can
be either finite or infinite). N admits a bounded intensity, \. Let € be the
space of all possible paths of the MPP N. N describes a filtration on €2,

F = (ft)teTv

where? Fy := 0(N(s), s <t), and F = Uger Fy. Let P a probability measure
on (2,F). The fundamental uncertainty in the economy is described by
(Q,F,PF).

This assumption describes the kind of uncertainty facing the economy.
The main things to note are:

e Uncertainty is exogenous. This assumption is quite restrictive but is
the necessary starting point. It precludes problems that involve moral
hazard and adverse selection, but such issues are difficult for general
equilibrium frameworks more generally.

e By assuming that N admits an intensity, I am limiting the rate at
which accidents can take place. The very notion of a rate is intimately
linked to the intensity (see Bremaud[1981]).

e A bounded intensity means that accidents are spread out over [0, 7.
This ensures that with probability one, the number of jumps in any
finite time interval will be finite.

!The framework has been extended to deal with any finite number of commodities -
see Penalva[1997].

20 (x(s), s < t) denotes the o-algebra generated by the process z(t) up to and including
time ¢.



The following definition will be useful later. Denote
¢
Mi(t) = Ni(t) — /0 An(s) ds,

as the canonical martingales®. A process x(t) is a martingale with respect to
measure P and filtration (F;)s>0, if it is measurable with respect of (Fy)s>¢,

Epl|z(t)|]] < oo for all ¢, and for all s < ¢, Ep[z(t)|Fs] = z(s). My(t) is a

P-martingale and the A;’s form a basis for the space of P-martingales®.

Assumption 2 The commodity space, L, is the space of absolutely bounded
real-valued functions® on Qx'T, measurable on Fy for allt € T :={0,1,...,T},
the index set of consumption dates

L= LT ={z|2:Qx T — R, z(t) € F, bounded V¢ € T}.

The dual of L (the space of prices) is denoted L* := L1(Q)T as I use the
Mackey topology.

The MPP enters the description of the economy in the definition of the
commodity space, by making commodities be functions from the probability
space. Also the information revealed by the MPP affects the commodity
space because commodities at date ¢ € T have to be measurable with respect
to the filtration generated by N up to ¢, F.

Assumption 3 There are n < oo agents indexed by i € [ .= {1,2,...,n}.
Fach agent is described by a consumption set, X; = Ly, an endowment,
w; € Ly, and VonNeuman-Morgenstern preferences of the form

Ui(z) = BiEplus(x(1))],

te™T

where u;(x) is a monotone increasing, concave real-valued function. Denote
the aggregate endowment by w =) ,c;w;. w >0 P-a.s.

3In general, My (t) would be local martingales but they will be martingales for processes
that admit a locally bounded intensity.

4A set of martingales forms a martingale basis if the space of all linear combinations
of the martingales in the set is the space of all martingales. See Bremaud[1981] or Last
and Brandt[1995] and the Appendix for more formal definitions and the corresponding
martingale representation theorems.

SNaturally, I identify functions as being equal up to sets of measure zero, P a.s.



Note that I am assuming agents have common priors. This assumption
will be important in section 4. The assumptions on endowments, consump-
tion sets and preferences are quite standard.

This economy is completely described by & := (L, (U;, w;)icr). € is a
very simple, and well-behaved economy as we will see in the next section.

3 Existence of Equilibrium

This section looks at the welfare properties of the economy and establishes
that a Walrasian equilibrium can be implemented as a Radner equilibrium.
This is essential because it provides the link between Walrasian equilibrium
and a Radner equilibrium. In particular, it will characterize security prices
and trading which I need to establish the relationship between risk sharing
agreements in the Walrasian equilibrium and the way agents trade in a
security markets equilibrium to implement those agreements.

The discrete time economy has very well-understood properties, in par-
ticular, the two fundamental theorems of welfare economics hold and an
equilibrium exists. But what is most interesting from the point of view of
down-to-earth applications is the relationship between the results for the
state-contingent commodity economy and the one with financial markets. 1
will show that any Walrasian equilibrium of the state-contingent commodity
trading economy can be implemented as a security trading equilibrium. For
this T adapt the result in Duffie and Huang[1985] to deal with intermediate
consumption in the hybrid time framework.

3.1 Arrow-Debreu Equilibrium

When setting up a general modeling framework as I propose to do here,
one wants to ensure that the framework has certain properties. Key prop-
erties are whether the two fundamental theorems of welfare economics hold,
i.e., whether an equilibrium is Pareto optimal, whether a Pareto optimal
allocation can be decentralized as an equilibrium, and whether a Walrasian
equilibrium exists. These properties are generally well-understood but we
will need to refer to them when analyzing the economy with financial mar-
kets.

A Walrasian equilibrium is an allocation of resources and a price for
commodities such that each agent is assigned an allocation in her budget
constraint such that she cannot be better off by additional trading. Such
allocations are limited in that they cannot exhaust available resources. This
is defined formally as



Definition 1 An allocation, x = (x1,...,2zn) is attainable if z; € X; for
allt eI and Y ;crx; < w. Denote the set of all attainable allocations by Z.

With this one can define a Walrasian equilibrium

Definition 2 An allocation x and a price vector p € L* define a Walrasian
Equilibrium if p- w #£ 0, x is attainable, for allt € I, p-x; < p-w;, and
p-ah >p-w; for all ) such that U;(x}) > Ui(x;).

The two welfare theorems for the state-contingent commodity economy
follow from the standard result (the first welfare theorem) and from a the-
orem in Bewley[1972] (the second welfare theorem)®. Also, the Bewley’s
theorem ensures that a Walrasian equilibrium exists.

3.2 Radner Equilibrium

In general, state-contingent commodity markets are not observed in the real
world. The main motivation for this framework is its value for down-to-earth
applications. What we do observe are markets with financial sectors that
trade in securities so it is important to know whether the welfare implications
of the state-contingent commodity trading economy carry over to financial
markets. In particular, one would like that the Walrasian equilibrium, whose
existence and welfare properties we looked at in the previous section, can be
implemented as an equilibrium in security trading. The appropriate notion
of equilibrium is that of Radner[1972]: an allocation together with security
trades for each agent, such that the trades are feasible and they, together
with the allocations, satisfy the agents dynamic budget constraints. Also,
agents cannot improve their allocations by changing their trades in securities
at any time given security and spot commodity prices.

3.2.1 Security Markets

In order to study security markets I need to define what a security is and
what do I mean by trading in security markets.

Securities When one thinks of a security it is usually in the form of a
stock: a claim on a firm’s assets that receives dividends on a regular basis
(quarterly, biannually, or annually) which depend on the firm’s performance.
If the firm is doing well it will pay a higher dividend, if not a lower, maybe
a zero dividend. And when one thinks of trading in a financial market, the

5For more details see Mas-Collel and Zame[1991].
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stock market comes to mind, where these stocks (claims to future dividends)
are exchanged at some mutually agreed price. The idea behind stocks can
be generalized to model all kinds of financial contracts:

Definition 3 A security is a promise to deliver a fixed, possibly random,
quantity of real commodities at dates t € T. Securities are indexed by j €
J={1,...,J}. d;(t) € F is a random variable representing the dividends
paid by security j at date t € T and d;(0) = 0.

This abstract definition is broad enough to cover all financial instru-
ments’: stocks, bonds, options, futures, etc. It also covers insurance con-
tracts, for what are insurance contracts but

an exchange of money now for money payable contingent on
the occurrence of certain events. (Arrow[1984])

Hence I will refer to the securities in the context of insurance markets as
insurance contracts, where an insurance contract is a claim on commodities
at certain dates contingent on the occurrence of certain events.

Trading Trading of stocks takes place in stock exchanges and are de-
scribed in terms of units of stocks involved in an exchange. In this frame-
work I wish to allow agents to trade freely at any date, even at times for
which no commodities are defined - in between consumption dates. This is
quite standard in finance models and is usually modeled by describing stock
holdings as a function of time: 0;- : QO x T — R, where 0§(t) is a random
variable representing the number of shares of security j held by agent 7 at
date ¢t € T := [0,7T] (where trading is the change in stock holdings). But
describing trades just as a stochastic process is not enough to accurately
characterize stock holdings:

Definition 4 The set of feasible trading strategies, ©, is the set of P-locally
integrable, predictable processes on ¥, such that their discounted value at any
date t is finite.

This defines trading as dynamic plans that imply stock holdings (6 € ©)
that do not anticipate future news (are predictable and measurable with
respect to F) and that do not create money from nothing (are P-locally

“Note that the securities I will be using in this paper are securities written on exogenous
events. Many financial instruments traded in stock markets are written in a way that
depends also on prices. Such securities can be included and be priced as redundant
securities once a complete markets equilibrium has been established.
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integrable and have finite discounted value). The discounted value of a
portfolio between consumption dates is the stochastic integral of the trading
process with respect to the discounted gains process:

V(s) :v<t)+/:0<u)da*<u), [<s<t+1,teT,

where V(¢) is the initial value of the portfolio at date ¢, and G*(s) is a
stochastic process representing the discounted gains from the security (the
price plus the accumulated dividends) at date s. The combination of allow-
ing stock holdings to be locally integrable and have finite value in discounted
terms strikes a balance between allowing agents enough flexibility to attain
consumptions that may require trades bounded away from zero into the
infinite horizon, while ruling out money-making strategies such as Ponzi
schemes.

3.2.2 Security Pricing

Having defined the main elements of security markets, I wish to look at
how securities would fare within the state-contingent commodity market
of the previous section. This will give us an idea of how security markets
and state contingent commodity markets are related, and start us on how
and if a Walrasian equilibrium can be implemented as a security market
equilibrium?.

The first result I need is that the state-contingent value of a security’s
dividends can be expressed as the expected discounted value of the divi-
dends. This involves a change of probability measure (from P to @), where
Q is called the martingale measure). The new measure, @, will turn out to
be very important when it comes to proving that a Walrasian equilibrium
can be implemented as a security market equilibrium. Nevertheless, this
result is of interest in itself as it relates two important notions: one is the
intuitive economic notion of pricing an investment today as the expected dis-
counted value of its future returns, and the other, the price of those returns
in the context of a global economy-wide equilibrium.

Theorem 1 Given any m > 0, there exists a measure () and an interest
rate process, r(t), t € T, such that

prd=7_ Eqld (), (1)

te™T

8Here I am following the approach in Ellickson and Penalva[1997].
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where d*(t) denotes the discounted dividend
d(t)
[Too1 L+7(s)
Proof: 1 will proceed by constructing ¢) and r and showing that @ is a
probability measure and that Equation (1) holds.

First, note that L* = L', and hence p € L* can be represented by a
vector of random variables, w(t) € F; such that Ep[n(t)] < oo, and for all

z €L,
prx=Y_ Epr(t)z(t)]

d(t) =

Define the interest rate process r(¢) as

1+r(t):%, vie{1,2,...,T}

As >0, r(t) is well-defined. Construct the martingale measure using the
functions £ : TxQ—-R,2: TxQ—R

_lbw)
BEp[r(t)|Fe] vie{l,2,....T}
§(tw) = Mier2(sw)

Let £(0) = 2z(0) = 1. &(¢) defines the Radon-Nikodym derivative of an
absolutely continuous measure Q(¢) with respect to P on the filtration F.

z(t,w) =

For any event A € J;

Qt, A) = / t)dp = / H - Epl 7r7(T§ ) Fo-1] ar

Q(t) is a probability measure

QLY = /HEPET (8)]Fs—1]
[ (s)ar
= o)1l EP[W(S)IFH]]
B [ ¢ 7(s)dP
= e | LHI T (o) 7]

B = 7(s)dP
= belll EP[W(S)IFH]]

]
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By repeatedly conditioning on Fs, s =¢—2,...,1,0, inside Ep[-], we obtain
Q(1.0) =

As the Q(t)s are consistent, by the Kolmogorov Extension Theorem there
exists a measure @ such that for all A € F, t € T: Q(A) = Q(¢, A).

All that is left to show is that Equation (1) holds. Start with

EP[7T<t)d<t)]7
for an arbitrary ¢ € T.
Bplr(t)d(t)] = Fp leg 1 ?D[Z(z)’?ﬂ ( : i ;2 ] ) i
i ol Ep fs 1 t71 S
= DIp [ ()| Fi-1] 1;[1 ’ l_IlEp W(S)l)fs 0

(1)
Ep[w)rf_tﬂd“)}

= FEp :Hgll_ip[ll iil’)fsl] f(f)d(t)]

As 7(0) =1,

Eplr(d(t)] = Fr [H Mf@)d@]

So that

3.2.3 Implementing a Walrasian Equilibrium

In this section I will show how a Walrasian equilibrium can be implemented
as a security trading equilibrium.

14



As with the Walrasian equilibrium, I need to introduce a couple of defi-
nitions to formalize two concepts: what the budget constraint is for an agent
in an economy that only has security markets, and what is an equilibrium
in that economy.

First, denote an agent’s net trades at date ¢ € T by Ayz;(t,w) =
(i (t,w) —w;(t,w)).

Given an interest rate process, denote the cumulative discounted value
of past dividends at date s € 7 :=[0,T], s € [t,t + 1), t € T, by D*(t),

D)= Yo' (w),

the undiscounted cumulative dividends as

and the cumulative discounted value of future dividends as
T
D*t(s) = Z d*(u).
u=t+1

Define the gain process of a security with cumulative dividends D(¢) and
security price process S(t) as

G(t) = S(t) + D(t) VteT.

Definition 5 An agent’s budget constraint, B;(S, w;), is the set of consump-
tion bundles the agent can obtain given security prices, and using feasible
trades

30 € O,
Z Ayzi(s) + Z 01 (1) (S;(1) + d;(1))

Bi(S,w;) = S € X;

oo
:Z/eg(t)dc:j(t), Vi eT, P-—as.
i=070

With this definition I can define an equilibrium in security trading.

Definition 6 A Radner equilibrium is a triple of security prices, trading
strategies, and consumption allocations, (S,0,xz*), such that

15



1. Foralli€ I, x} € B;(S,w;)

2. For alli € I, Ui(x;) > Ui(xf) implies x; & B;(S, w;)

(2
3, 226101207 andx GZ,

Given the differences between a Radner equilibrium and a Walrasian
one, it is a bit surprising that one can be transformed into the other.

Theorem 2 Given a Walrasian equilibrium pair (p,x) for economy &, there
exists K + 1 securities, and a triple (S,0,x*) such that

1. (S,0,z*) is a Radner equilibrium
2. x* =z P-a.s.

Proof:®  This proof proceeds as follows: first I will use previous results
to construct a pricing scheme. This pricing scheme is constructed from
Walrasian equilibrium prices, p. It also takes into account that trading
takes place at intermediate dates, s € [t,¢ + 1], ¢ € T. Then, I describe the
properties of the ‘right’ kind of securities needed and construct the trading
plans. Finally, I show that the prices of the dividends constructed from the
announced pricing scheme, together with the trading plans and the Pareto
optimal allocation form a Radner equilibrium.

The interiority of w and monotonicity of preferences implies that p > 0.
Hence, by Theorem 1, there exists a martingale measure ¢} and interest
rates r(t) that describe the value of a stream of dividends as the expected
discounted value of those dividends.

Define the following pricing scheme: for any dividend process (d(?))teT,
and any s € [t,£+1), ¢ € T, let the discounted value of the stream of future
dividends be

S'(s) = Eo[D™"(t+ 1|7,

and the undiscounted price be

t

S(s) = 8"(s) [T (0 +r(w)),

u=1

where for s € [0,1), S(s) = S*(s). Note that the discounted gains process,
G*(t) = S*(t) + D*(t) is a martingale. For any t € T, s € [t — 1,1)

9This proof is a modification of the proof of similar results in Duffie and Huang|[1985]
and Duffie and Zame[1989].
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EQ[S*(t) + D*(t)|Fs] = Eq |Eq| Y. d*(u)|Fs| +>_ d*(u) J—"5]
u=—t+1 u=0
= By | Y @)\ A + Eld IR+ Y d*(w)
| u=t+1 u=0

= §*(s) + D*(s)

In order to be able to decentralize the Pareto optimal allocation, I need
to have a set of securities such that trading in them will be sufficient to
attain the desired allocation. Following method of Duffie and Huang[1985],
construct a sequence of riskless bonds and K securities as follows:

1. Each riskless bond exists for a single period: at each date ¢ € T a new
bond is created which pays 1+ r(¢ + 1) units of consumption at date
t+ 1 and is valueless thereafter. Its price So(s) at any s € [t, £+ 1) is
1.

2. The gains processes of the other K securities, G} (t), form a basis for
the space of Q)-martingales.

Note that 1 have given the exact number of securities needed. This is
because the space of martingales defined by a marked point process with K
marks has martingale multiplicity K which guarantees that such securities
exist (see the Appendix).

Given these securities and their prices, define the (-martingale X; for

alli € I\ {1} as
f5‘| 1
Ayxi(t)

[Tii L +7(s)’
and the x;’s are agent ¢’s Pareto optimal allocation from the statement of
the theorem.

By the martingale representation theorem!® there exists 03- € 0O such
that

Xi(t) = Eq lz Ayri(s)

where

Ay (t) =

X(t) = Z/Ot 0i(s) dG(s).

108ce Appendix.
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A great benefit of using MPPs is that these ;s are the solutions to a system
of stochastic differential equations which can be used using the standard
Stieltjes-Lebesgue calculus. The #%s solve

> (GhOANK(E) — gi(s)Mi(s) ds) = (3)

kecK

zjj ( () AN(s) — 04(5) f(5) Ar(s) ds),

j=1lkeK

where ANy(s) = Ny(s + ds) — Ni(s), and gi(s) and the f/s are the repre-
sentations of X;(¢) and the discounted security gains processes.

Let those 0;- be the trading plans for all but the first agent, ¢ € I. In
order for these trading strategies to be budget feasible, define the agents’
trade in the riskless bond, 63, as follows: for all s € [t,t + 1), t € T,

Oo(s) = X(s) — g [Z Ayt (u)] - Z 0;(s)G

This ensures that the agents’ plans will be budget feasible by construction
(note that dG§(s) = 0 for all s € 7, the change in the gains from the bond
is always zero). To show 03(s) € O, I refer to Lemma A.1 in Duffie and
Huang[1985]. The outline of the proof is that by the left limit property of
martingales:

K

Z/ 0%(s) G (s Zel HGH(t
_Z/t 0i(s) dCi(s Zel £) + 0i(s) AGE(t)

Using,
05 (1) G5 () = 05(1)Gi(t—) + 0%(s) AGH(2),

demonstrates 0} is predictable. 6} is now obviously locally integrable and
has finite discounted value.
For the first agent, let

01 € © because O is closed under finite sums.
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I claim that ((S;)1, (67, 2:)icr) is a Radner equilibrium for £. By con-
struction, x; is agent #’s optimal allocation from the Walrasian equilibrium
for all 2 € I. zq is also agent one’s optimal allocation from the statement of
the theorem. This follows from the fact that 3, 6° = 0, the budget equalities
for all 7 € I'\ {1}, and monotonicity of preferences.

I need to show that z; will also be optimal for the sequence of Radner
budget constraints. To show that this allocation together with the given
trades is optimal one makes use of the Pareto optimality of x, the definition
of feasible trading strategies, and the derivation of () from equilibrium prices:
if there is a feasible trading pattern 6 € © such that for all i € I, U;(x}) >
Ui(x;), and there is some agent j such that U;(«x);) > U;(x;) then it will be
more expensive, p~$;- > p-x;, and any feasible trading strategy implementing
it will have the property that

2 (%) | [zt
Fg | ————— Eg | —/——2———]|.
;‘ “ L +7(s) >;‘ Y1 +7(s)

From the budget constraint at date zero,

ZEQ i z;(t) ] _ ZEQ i w;(t)

teT _HZ:I 1+ T(S)_ tcT _HZ:I 1+ T(S)_ ‘

Substituting this into the previous equation we obtain

2.1 lHZl 1+ T(S)] "2t ngl bt T<5)] |

teT teT

But this last line contradicts ' being budget feasible at date zero. m

4 Risk Sharing and Trading Patterns

In this section I will show that the risk-averse agents in £ would optimally
wish to pool their risks and look at what this risk sharing implies about
the way agents behave in security markets. Risk pooling is a standard
and intuitive property of the contingent commodity equilibrium. The main
questions I wish to answer is how this risk-sharing rule is implemented in a
security trading equilibrium and whether agents’ trading patterns will look
anything like observed trading patterns. The main result of this paper is that
this model predicts agents will optimally share risks by buying insurance on
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themselves and participating in others’ risks by buying securities that pool
those risks: derivatives writhen on the aggregate endowment process such as
mutual funds, catastrophe bonds, etc. In order to characterize the portfolio
of securities traded, I introduce the concept of a risk class, where a risk class
describes a set of shocks that can be pooled as a single one in terms of their
effect on the aggregate endowment. I also describe how agents’ idiosyncratic
risks have to be related to the risk class, the pool, so that agents would only
need to trade on one personal insurance contract per risk class. Putting
these two together I obtain a full characterization of the agents’ trading
portfolios.

4.1 Risk Sharing

The first step is to look at how agents would behave if markets for all
commodities were available. As we saw in the second section, in such a
circumstance agents will attain first best Pareto optimal allocations. In this
section I wish to characterize these first best allocations to see if they could
be attained when the economy uses financial markets rather than state-
contingent commodity markets.

It will be useful to make an additional assumption. I will assume that
endowments ignore the exact timing of the jumps. Define the filtration on
T:

Gi=0(N(s),s<t, seT) teT.

Assumption 4 For all i € I, w;(t) is measurable with respect to G, for all
teT:={0,1,..., T}, the index set of consumption dates.

Let & represent the economy £ but with endowments described by As-
sumption 4. The main consequence of this assumption is that G, can be
described by a countable partition, Gy := {G},G?,...}, so that consump-
tion at date ¢ can be represented by z(t) = (z(G}), x(G?),...), where x(GY)
is a constant for all j (a similar representation holds for endowments and
prices). With this one can show that agents will wish to pool their risks in
equilibrium.

Theorem 3 ! There exists a Walrasian equilibrium (p,x) for £ such that
the Walrasian equilibrium price, p € L*, can be represented by g(t,w) where

HThis result is a corollary of Huang[1987]’s representative agent. construction itself an
extension of earlier results by Wilson[1968], and Diamond[1967].
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for any x € L
p-z = Eplg(t,w)x(t)],
teT
and the corresponding equilibrium allocations, (x});c; can be represented by
the sequence of vectors

zf = (fill; w) e -

Proof:  First note that an equilibrium will exist (Bewley[1972]) so all
I need to show is that equilibrium consumptions and prices will have the
desired property.

Let us look at consumption and prices for an equilibrium at each con-
sumption date separately. First note that the price functional p can be
represented by the sequence of random vectors, 7(t), such that

Given that G;, can be described by a partition, take the consump-
tion allocation for an arbitrary agent, 7, at date ¢ implied by the allo-
cation z, z;(t), and two disjoint events G¥ Gl € Gy, k # 1, with the
same aggregate endowment, w(t, GF) = w(t,Gt), and with positive prob-
abilities, P(GF), P(GLY) > 0. T want to show that for any agent, i € I,
z;(t, G¥) = x;(t,G%). The first-order conditions for agents i and j at date
t € T imply:

PGt GF) _ PGPt GF)) _ PG (s(t GF))

P(Ga(t,GY) — P(Guj(wa(t, GY)) — P(GHuj(;(t GY))

Note that the rate of time preference, 3;, cancels from the top and the bot-
tom for both agents. From strict concavity: w}(x;(t, GF))/ul(z:(t,GL)) = 1 if
and only if z;(¢t, G¥) = z;(t, GL) (and similarly for agent j), so that this con-
dition together with the previous equation imply that if z;(¢, G¥) > x;(t, G),
it will also be the case for j (and all other agents). By monotonicity
of preferences, this would lead to an allocation that is not feasible (as
w(t, G¥) = w(t,GL)), so that the only feasible allocation that satisfies the
first-order conditions is z; (¢, GF) = z;(T, GL) for all agents. As for the repre-
sentation of prices: x;(t, GF) = z;(t, G), implies 7 (¢, G¥) /7(t, GL) = 1. The
existence of the functions, ¢g; and f, is now merely an issue of representation.
u
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What I have shown is that agents’ optimal allocations will ignore what
happens to each agent’s endowment and give each agent a share of the
aggregate endowment. Note that this risk sharing agreements are the gen-
eralization of insurance to situations with aggregate endowment risk. In
such cases, it is physically impossible to provide ‘full insurance’ to every
agent and eliminate uncertainty completely. If there is aggregate uncer-
tainty, agents will participate in the aggregate risk and they will do so in
an optimal way: letting the less risk-averse agents carry a higher proportion
of the risk. Ideally, this is what insurance contracts should do, and we see
some of this with coinsurance and partial insurance, specially at the level of
major economic enterprises such as trade (the risk stemming from currency
fluctuations) where insurance takes the form of hedging.

4.2 'Trading Patterns

Risk pooling is interpreted in financial markets as insurance and hedging.
The aim of this section is to make this link explicit and see how risk pooling
is translated into optimal trading strategies that have the interpretation of
taking insurance and hedging.

Let us look at the earthquake example: suppose that you have an econ-
omy in which all agents have fixed but when an earthquake happens the
economy loses a fixed amount L. The risk sharing result from the previ-
ous section tells us that for purposes of optimally allocating consumption it
does not matter who was hit: whether the earthquake destroyed two hun-
dred homes in Bel Air where each house costs one million dollars or whether
it destroyed two thousand homes in Inglewood each costing one hundred
thousand dollars. In a sense, agents consume as if they had full insurance
conditional on the number of earthquakes.

The question I want to address is how would this optimal allocation be
implemented. In a small isolated and relatively homogenous economy, such
as a rural village in India or in medieval Furope, one can imagine that it
would relatively straight-forward to set up institutions that would enforce
such outcomes. On the other hand, as the economy develops and becomes
larger and more complex, the kind of institutions that enforced risk sharing
in small isolated communities would not function well. What one can observe
is that such economies tend to develop financial and insurance markets to
share risks. How would an insurance market deal with this earthquake
risk? If one is to judge by the experience in California, insurance companies
will claim that they are not willing to be exposed to such risks and would
demand the government to put up a reserve fund to help mitigate their
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exposure, and the government would agree. This suggests that insurance
markets are somehow unable to deal with this risk. But, looking back to
the risk sharing optimal allocations, it seems that there is no reason for the
government and insurance companies to bear all this risk. Agents would
optimally participate in this risk as long as the idiosyncratic component
(fluctuations in their private endowments) was taken care off.

So let us look at how this intuition can be formalized within the model
I am using. First, we have a result about risk sharing in a Walrasian equi-
librium, Theorem 3, which establishes the property of optimal risk sharing,
xi(t) = fi(w(t),t), and tells us something about state-contingent commodity
prices, 7(t) = g(w(t),t). Then, we also have a result on how a Walrasian
equilibrium can be implemented as a Radner equilibrium so that the op-
timal allocations with security trading will be the same as those from the
Walrasian equilibrium. A key part of the proof of that result is that the
value of the agent’s net trades, X;(t), is given by the @Q-martingale

.

_ i B [ 20w (o) — ws(o)| 7).

Xi(t) = Eq lzﬁwxf(s)

s=0

and that this martingale can be represented as a linear combination of other
martingales. The weights in this linear combination represent stock hold-
ings and the other martingales are the cumulative discounted gains of some
existing securities. Putting these two results together we obtain

Xi(t):ZT:Ep[gW() )

s), s

~ g<w<0)70) (fz<w<5)75) _wz<5))‘}—t} (4)
So the key is to realize that agents only care about two things: how
shocks affect them directly by changing their endowments, and how those
shocks affect them indirectly by altering the aggregate endowment and
prices. The way agents will deal with these effects through trades is re-
flected in the martingales needed to represent X;(¢) in equation (4). From
staring at this equation it seems that all that is needed is to have some se-
curities that take care of the aggregate endowment part and some that take
care of the agent’s endowment. The question then remains as to what these

securities are and how many does one need.
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In the particular earthquake example I am using, there seems to be
no special reason why the economic consequences of leveling two hundred
houses in Bel Air should be the same than leveling two thousand homes in
Inglewood. But, the fact that all earthquakes have the same consequences
on the aggregate endowment seems to suggest that one could take care of
the effect of earthquakes on the aggregate endowment by buying a single
security that pools all the individual earthquakes - those that hit Bel Air
and those that hit Inglewood. This pooling idea can be generalized to all
shocks that affect the aggregate endowment in the same way, and for which
I define the concept of a risk class. Two types of shocks (represented by
the marks k and j) belong in the same risk class if one can tell what the
aggregate endowment will be just be knowing the sum of the number of
shocks of these two types that have taken place and not how many of jumps
of each type, k and j, have occurred.

First let me introduce a bit of notation. From above, Ny (), denotes the
number of jumps of type k& that have taken place up to time ¢. I want to
generalize this by allowing N to be subscripted by an index set, C, such
that N¢(f) denotes the number of jumps of types indexed by C

No(t) = > Ni(t).

keC

I will also need the following technical result

Lemma 1 If N is a K-marked point process, that admits intensities
A=A, k),

then

N(t) = ZNk(f%

18 a univariate point process with intensity

A1) = Z Ak (2).

Proof:  See Bremaud[1981], p.34.
This result ensures that Ng (%) is a univariate point process as long as C
represents indeces of the original marked point process N.
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Assumption 5 The marks of the underlying point process N, {1,2,..., K},
can be partitioned into m disjoint, subsets, C1,Cy,...,Cy,, such that the
aggregate endowment, w(t), is measurable with respect to the filtration gen-
erated by the univariate point processes, Ng; t),j=1,...,m:

w(t) € FU(t) := 0 (Ney(8), Noy(s), ..., Ne, (s);8 <t) Vie{0,1,...,T}.

Definition 7 Ifi,k € C; for any j = 1,...,m, then we say that N; and N;
are in the same risk class.

Remark I  The marked point process of economy & is described by m
risk classes, where m < K. This follows from the observation that in a worst
case scenario, each mark can be a class of its own.

Now let us look at fluctuations in the agent’s private endowment, w;. One
can approach this problem in the same way as I did the fluctuations in the
aggregate endowment and define accident classes for agent ¢. I do not wish
to follow that path because it implies no relationship between fluctuations in
the aggregate endowment and in the agent’s private endowment, while in fact
fluctuations in the aggregate endowment are due to fluctuations in agent’s
private endowments - the loss of L due to an earthquake is decomposed into
L;’s spread over the population, agents losing their homes, forgone income,
etc. In order to retain this link between private and aggregate endowment
fluctuations, I introduce the following assumption

Assumption 6 For every agent, 1 € I, and every risk class, C;, the marks
of the jumps in C; can be partitioned into two subsets, A;(C;) and C\ A;(Cj),
such that the univariate point processes

Naycp = Z Ni(®),

kEAi(Cj)

have the property that the agent’s endowment is measurable with respect to
the filtration they generate

wi(t) € F'(t) =0 (NAi(C1)<5)7 NAi(02)<8)7 XX NAi(Cm)<8); 5§ < t) ]
vt e{0,1,...,T}.
What I intend with this assumption is to say that agent’s endowments are
associated with a single type of private shock for every aggregate shock

(risk class). This private shock need not take place every time there is
an aggregate shock in the same risk class, so the agent distinguishes the
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earthquakes that affect him and those that do not, i.e., every time houses
in Bel Air are destroyed, Bruce Willis’ house may or may not be destroyed,
but if it is it is totally destroyed. What this implies is that agent i (Bruce
Willis) does not care who else was affected by the earthquake just whether
there was one, and whether it destroyed his house or not.

Note that shocks need not be negative. In the same way I describe shocks
as accidents (earthquakes, etc) I could also describe them as discoveries or
announcements of good news, such a plentiful future harvest. The definition
of risk classes and the results that follow below all go through with either
interpretation. The content of the information represented by the marks is
arbitrary.

Now the characterization of trading:

Theorem 4 Let the uncertainty in economy &' be described by m risk classes,
then given a Walrasian equilibrium and any complete markets Radner equi-
librium that implements it, every agent i’s trades can be described by a port-
folio that contains at most m personalized insurance contracts, m derivatives
on the aggregate endowment and a bond.

Proof: As we have seen, given a complete markets Radner equilibrium
that implements a Walrasian equilibrium, what I need to do is construct a
portfolio of securities for every agent that represent X;(¢) in Equation (4).

But first, I want to define what the securities will be that these agents
will trade in. The filtration F“(¢) has martingale multiplicity of at most
m. Hence there are (at most) m securities whose cumulative discounted
gains processes form a basis for the space of ()-martingales with respect to
F¥. These securities must be measurable with respect to F%, so they can
be described as derivatives on the aggregate endowment. Denote the price
process of such securities at date ¢ by S¢ (f) and their dividends by d (¢).

Now for all i € I, X;(t) is made up of prices, the agent’s consumption and
the agent’s private endowment. Both the prices and the agent’s consumption
are functions of the aggregate endowment and hence measurable with respect
to F¥. Also, the agent’s endowment is measurable with respect to F°.
Hence, X;(t) is measurable with respect to F¥ U F*. F* has martingale
multiplicity of at most m, so, like 7%, there are at most m securities that
form a basis for the space of Q-martingales with respect to F*. These
securities have to be measurable with respect to F? so they can be described
as personalized insurance contracts for z. Denote the gains processes of such
securities at date ¢ by Séj and their dividends by dicj.

Hence, X;(¢) is in the span of the (at most) m personalized insurance
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contracts and (at most) m derivative securities on the aggregate endowment.
As the X;(1) is the same as in the original Radner equilibrium, one can use
the same holdings of the riskless bond as before. So the agents’ optimal
portfolio can be fully described by holdings of at most one personalized
insurance contract on himself and one common security per accident class,
and a riskless bond, where the m common securities are derivatives on the
aggregate endowment such as mutual funds, catastrophe bonds, etc. At date
t, the value of agent #’s security holdings

will be

((#t50.00,0)" i),

> [ 1058, )+ it ) + 0

i
Jj=1 !

(O5E, O+ ey ()] + 050 ©)

Remark IT  Also, note that if all the accidents in a risk class affect the
agent in the same way, i.e. if 4;(C) = C or A;(C) = (), then the agent will
only need to trade in one security to deal with that risk - be it a mutual
fund or an insurance contract.

Note that, as in CAPM, one could not have a Radner equilibrium with
the securities implied by the portfolio holdings in this theorem (the insurance
contracts and the mutual funds) because no agent is holding the personalized
insurance contracts other than the agent on which they are written. Security
holdings would then not add up to zero. If one was to count how many
securities are being traded one may get more than K securities. What
this result is saying is that every agent may be selling a different kind of
insurance contract, but they will not be trading directly on each other’s
insurance contracts; Bruce Willis will not be selling insurance on Arnold
Schwarzenegger’s house (or on any house in Inglewood for that matter)
but will just buy insurance on his own home and an aggregate security
on the pool of everybody’s risk such as a catastrophe bond. Each agent
provides coverage for the others only as part of a pool, and each agent
obtains coverage from that pool. This insight is key to understand why
insurance and reinsurance companies exist and what their role is: eliminate
the agent’s idiosyncratic risk by pooling lots of them together. A similar
interpretation applies to mutual fund companies, whose role in this model is
to purchase individual stock holdings and sell them as a pool to individual
investors.
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5 Conclusion

The main result in this paper illustrates the link between risk pooling in
consumption as an optimal state-contingent commodity equilibrium, and
insurance and hedging as the optimal trading strategies in a financial market
equilibrium. I have looked at how risk-averse agents would use financial
markets to share risk. I have shown that agents’ trades can be described by
portfolios that include a riskless bond, a common set of derivatives (written
on the aggregate endowment), and personalized insurance contracts.

The link between risk pooling in consumption and security trading be-
haviour requires the classification of idiosyncratic shocks into groups or ‘risk
classes’. Each of these risk classes represents a different shock on the aggre-
gate endowment and must be treated separately from the others. But within
each risk class, these idiosyncratic shocks are all equivalent and are indepen-
dent of the wealth of the individual, their preferences, etc. The symmetry
imposed accross agents in previous models that have studied idiosyncratic
and aggregate shocks is not a necessary requirement for a parsimonious fi-
nancial market. Hence one would be more willing to accept the validity of
the complete markets assumption.
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6 Appendix

6.1 The Canonical Basis

A special property of the canonical martingales, A}, is that they form a
basis for the space of P-martingales'?, M. It also establishes the minimum
number of securities needed to span the space, as every other bases for M
will have the same number, K, of orthogonal elements. This can be shown
as follows:

Definition 8 Two martingales, M and N are orthogonal if their product
MN = { MyN, } is a martingale with mean 0.

Also, for any process, X, let AX(¢) denote the jump of the process at date
t.

Lemma 2 (Elliott 1991, 9.25) For M a martingale of integrable varia-
tion and any bounded corlol'® martingale N

E[M(T)N(T)l = E |Y_ AM(s)AN(s)

The lemma describes the expected value of the product of two processes
as the expected value of the sum of the product of their jumps. Naturally,
a martingale of integrable variation and a bounded corlol martingale both
have at most a countable number of jumps, hence the use the summation
sign rather than an integral. Nevertheless note that the jump times will be
random, hence the use of the index s > 0 for notational convenience. This
lemma was constructed for 1" = co and it naturally applies if T" < co.

Theorem 5 The canonical martingales for K finite

Mi(t) = Ny (£) — /0 "\ (5)ds,

k € K form a martingale basis under P, so that M has dimension K.

2Note that the space of square-integrable martingales, M?, with the norm E[A*(T)?] <
oo, where A*(t) = sup,, |A(s)|, and A(t) is an adapted process, can be identified with
the Banach space L2(Q,F,P) by the map that associates the martingale A(t) € M?
to its terminal value A(T) € L, (Elliott [1982], Remark 9.8). This is the key property
exploited by DH in their 1985 paper to guarantee and construct their implementation of
an Arrow-Debreu equilibrium as a security market equilibrium.

Beorlol := ‘cadlag’ - continuous on the right, left limit.
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Proof  Define
M(T) =lim M (¢
(1) =1im M(t),
For all k € K, the set {AN,(¢) >0, AN;(t) > 0, j # k} has probability
0, 1. e., IV} does not charge a common jump time with any N;, 7 € K, j # &,
by definition, so that
BN (T) N (T)] = 0,

So that applying Elliott’s lemma on any two martingales, My, A;, ¢ # j in
(M, ..., Mg) we obtain

EMy(T)M;(T)] = E|), AMk(S)AMj(S)]
s>0
= 0
So that M}, is orthogonal to every other canonical martingale, M;. As the in-
dex k is arbitrary, the vector of martingales (M, ..., M) consists of orthog-
onal martingales. As F is the filtration generated by N := (Ny,..., Ng),
(Mjy, ..., Mg) form a martingale basis for M. As all martingale basis have
the same dimension, the dimension of M is K. m

6.2 Martingale Representation

There is a second property associated with the canonical martingales which
sets marked point processes apart from continuous processes such as Brow-
nian Motion. This has to do with the way the canonical martingales can be
used to represent all adapted, right-continuous processes, of which martin-
gales is a subset.

Theorem 6 '* Let {G(t) : t > 0} be an adapted and right-continuous pro-
cess. Assume the existence of a sequence t,, n € N, of stopping times
satisfying

tn, T oo Q — a.s.
such that {G(t Aty) : t > 0} is for all n € N a uniformly integrable martin-
gale. Then there exists a predictable vector [ such that

Z /Ot’fk<5)’/\k(8)ds < 0 P — a.s.

kecK

4This theorem is adapted from Last and Brandt [1995]
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and

G(t)=G0)+ > /Ot fr(s) dMy(s) P —as.

keK

where the integral is standard Lebesgue-Stieltjes integral.

See Last and Brandt [1995, p.343] for the proof.
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