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Abstract

We introduce a variation of the proof for weak approximations that is suitable for studying

the densities of stochastic processes which are evaluations of the ow generated by a stochastic

di�erential equation on a random variable that maybe anticipating. Our main assumption is that

the process and the initial random variable have to be smooth in the Malliavin sense. Furthermore

if the inverse of the Malliavin covariance matrix associated with the process under consideration is

su�ciently integrable then approximations for densities and distributions can also be achieved. We

apply these ideas to the case of stochastic di�erential equations with boundary conditions and the

composition of two di�usions.
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1 Introduction

Starting as early as Milshtein [22] and due to its many applications the area of weak approximations

for stochastic di�erential equations (sde's) has been growing rapidly (e.g. see Kloeden and Platen [16]).

To explain what are the issues in this area of study, let's consider a simple case �rst. De�ne �t(x)

as the solution of the following one dimensional stochastic di�erential equation:

�t(x) = x+

Z t

0

�(�s(x)) � dWs +

Z t

0

b(�s(u; x))ds; t 2 [0; 1]: (1)

Here W is a one dimensional Wiener process and b; � : IR! IR are smooth with bounded derivatives.

The above stochastic integral is the Stratonovich integral.

The main problem of study in the area of strong and weak approximation theory is how to ap-

proximate � and what is the error of approximation. For this we de�ne the Euler approximation. Let

� = f0 = t0 < ::: < tN = 1g be a partition of [0; 1] such that k�k := maxftk+1�tk; k = 0; :::; N�1g � �.

De�ne the shift operator

�(t) = tk if tk < t � tk+1;

where tk and tk+1 are in �: We set �(0) = 0: Let � denote the Euler-Maruyama scheme de�ned by

�t(x) = x+

Z t

0

�(��(s)(x))dWs +

Z t

0

m(��(s)(x))ds: (2)

Here m = b+ 1
2�

0�.

A well known result (see e.g. Theorem 10.2.2 in [16]) establishes that

E( sup
t2[0;1]

j�t(x) ��t(x)jp) � C(x)�p=2: (3)

Here, p > 1 and C(x) is a positive function that has polynomial growth in x and is independent of �

and the partition �.

This type of result measures the path-by-path di�erence between the solution of (1) and its Euler-

Maruyama approximation (2). For this reason this type of result is usually called strong approximation

theorem. Its method of proof is based on Gronwall's lemma.

A di�erent way of measuring the di�erence between � and � is through their laws and in particular

the following result holds (see, e.g. Theorem 14.1.5 in [16]):

jE(f(�t(x))) �E(f(�t(x)))j � C(x)�; (4)

where f 2 C1p (IR) (that is, f is a real valued, smooth function with polynomial growth at in�nity).

This type of result is di�erent from (3). In fact, if f above were Lipschitz ( with Lipschitz constant K)

using (3) we could only obtain that

jE(f(�t(x)))� E(f(�t(x)))j � KE(j�t(x)� �t(x)j) � KC(x)�1=2;

while (4) establishes that the rate of convergence is of order �. Results like (4) are known as weak

approximation theorems. The method of proof is centered on the fact that if we de�ne u(t; x) =
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E(f(�t(x))) then u satis�es the following PDE:

@u

@s
(s; x) +m(x)

@u

@x
(s; x) +

1

2
�2(x)

@2u

@x2
(s; x) = 0

u(0; x) = f(x):

Having de�ned u, one rewrites (4) in terms of u and applies Itô's formula. At some point during the

proof the Markov property of the process �t(x) is used.

Due to its connections with partial di�erential equations the area of weak approximations has

recently been of increasing interest. Also this type of results give information about many functionals

of the solution process. In particular, the moments and the law of the process �t(x). For example,

Bally and Talay [3], [4], widened the class where f belongs to have a result like (4) hold. In particular,

one can obtain approximations for the distribution and density functions of �. Other related results

were developed by Hu and Watanabe [14] and Kohatsu-Higa [17].

Another direction of development has been to consider other stochastic di�erential equations of a

type di�erent from (1). For example, Bossy and Talay [5] and [6] considered stochastic di�erential

equations related to the Burgers and McKean-Vlasov equations. These stochastic equations are of a

type di�erent from (1). In particular the law of the solution process is also part of the coe�cients in

the equation.

In all these variants the essential technique to obtain a result like (4) is to �nd an appropiate

modi�cation of the basic argument that uses u (which also needs to be modi�ed), the adaptedness and

the Markov property of the underlying stochastic process.

Until recently, it was common to believe that anticipating stochastic di�erential equations were not

amenable to this type of argument to study the numerical approximations due to the lack of adapted

properties and the Markov property. In Ahn and Kohatsu-Higa [2], we de�ned and analyzed the weak

and strong rate of convergence for a Euler type scheme in the case of �t(X0) where X0 is a smooth

random variable (in the Malliavin sense) but not necessarily adapted to F0. We assumed that the joint

distribution of the vector (X0;Wt1; :::;WtN) is known and therefore possible to simulate. These results

proved that one could use simulations to study the path and probabilistic properties of such anticipating

processes.

Nevertheless, the proof of weak approximation was complicated and required stringent conditions

on the random variable X0. Here the problem comes from the fact that although �t(X0) satis�es an

stochastic di�erential equation of anticipative type, there is no partial di�erential equation associated

to it. Furthermore the Markov property is not satis�ed.

In this article we propose to continue this study. We want to concentrate our e�orts in ordinary

stochastic di�erential equations with boundary conditions. As many high order sde's with boundary

conditions can be reduced to �rst order ones, we will start studying the weak approximations for �rst

order stochastic di�erential equations with boundary conditions. In the future we will handle the second

order equations.

Here, we consider approximations for the density of the solution to a sde with boundary conditions.

These equations arise naturally as extensions of ordinary di�erential equations with boundary condi-
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tions. The solutions of such equations can be written as �t(X0). There are various added complications

to the de�nition and the analysis of approximations in this case.

First, one has to approximateX0, through a procedure that resembles the classical shooting method.

This method is not well de�ned in the whole sample space therefore we will need a localization procedure.

Secondly, the approximation to X0 does not satisfy the requirements of the weak approximation results

in [2]. Third, we are interested in approximating the density of a process with the possible complication

that the approximating process may not have a density in itself, although the limit may have one.

To solve these problems, we propose a variant of the classical proof of weak rate of convergence.

In order to give a clear proof of our �nal goal ( see Theorem 4.3), we will gradually introduce this

modi�cation to the classical proof. The �nal goal is to �nd rates of convergence for approximations to

the densities of random variables of the type �t(X0).

First, we study the case when X0 is a random variable such that the joint law of (X0;Wt1; :::;WtN)

is known beforehand. Although this is not the case for sde's with boundary conditions this will be an

important step towards our �nal goal. In the second step, we study the case when X0 also has to be

approximated. First, in the case X0 is generated by another di�usion and then in the case of stochastic

di�erential equations with boundary conditions.

Instead of using the Markov property and u(t; x) we use the integration by parts of Malliavin calculus.

Therefore the variant we introduce to prove these results requires the use of ow properties, techniques

of Malliavin calculus and the smoothness of the processes involved.

With these tools we will prove weak approximation results of the type (4) for the cases mentioned

above. Furthermore one can also obtain extensions when f belongs to a wider class that includes the

indicator function and the delta function. This type of results will provide a way to approximate the

distribution and density functions of the processes involved through the use of appropiate Monte Carlo

methods.

The study of approximations for density functions has the added di�culty that one has to show that

the Malliavin covariance matrix of the approximating process is uniformly bounded with respect to the

step size. We prove in the Appendix that something close to this happens (see Lemma 7.2) which will

be enough for our approximation result.

After some preliminaries we will discuss in Section 3 our method of proof for weak approximations

in the case of di�usions composed with an anticipating random variable. In this section we suppose

that X0 is a smooth random variable in the Malliavin sense. Then we apply this result to the case when

X0 is the �nal point of another di�usion. This example provides a �rst case where the initial random

variable also needs to be approximated.

Then we start to consider our approach in a more di�cult anticipative setting such as in the case

of stochastic di�erential equations with boundary conditions. This study is carried out in Section 4

and is divided into two parts. First for the one dimensional case (Section 4.1) and then in the general

multidimensional case (Section 4.2).

In the �rst, the approximation can be considered as the natural generalization of the shooting method

for ordinary di�erential equations with boundary conditions. Here, we have the added complication
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that a localization technique is needed. We show that our method of proof also works under the

appropiate localization. Therefore, the main di�erence with Section 3 is the fact that X0 is only locally

smooth and that it also has to be approximated. Finally we consider the approximation of densities

for the one dimensional case. In this case besides the localization procedure we also need to start

considering when the density of the solution to the sde with boundary conditions exists. This involves

further calculations related to the Malliavin covariance matrix and the added problem of considering a

non-degenerate approximation.

At the beginning of Section 4 we also give a brief introduction to stochastic di�erential equations

with boundary conditions.

Then at Section 5 we give a short description of a possible real application of these equations

together with a general result of di�usion approximation. We �nish with some conclusions and possible

generalizations of our method. At the end of this article in Section 7, we have collected a series of

auxiliary results that are used throughout the text.

In this article, C will denote positive constants that may change from one line to the next. Further-

more these constants are always assumed independent of � and the partition � unless it is explicitely

stated otherwise.

2 Preliminaries

Now we introduce some basic tools from Malliavin calculus that will be used throughout the text. For

further reference see [23]. Let (
;F ; P ) be the canonical Wiener space which supports a d-dimensional

Wiener process W . Let C1b (IRdn) be the set of C1 functions f : IRnd ! IR which are bounded and

have bounded derivatives of all orders. The class of real random variables of the form f(Wt1 ; : : : ;Wtn);

f 2 C1b (IRnd); t1; : : : ; tn � 0, (the class of in�nitely di�erentiable functions with bounded derivatives)

is denoted by S: ID1;p designates the Banach space which is the completion of S with respect to the

norm:

kFk1;p = fEjF jpg1=p + (

dX
j=1

E[f
Z 1

0

jDj
sF j2 dsgp=2])1=p;

where (1IA denotes the indicator function of the set A)

Dj
sF =

nX
i=1

@f

@xji
(Wt1 ; : : : ;Wtd) 1I[0;ti] (s):

ID�;p is de�ned analogously and its associated norm is denoted by k�k�;p. Also, let ID�;1 = \p�1ID�;p

and ID1 = \p�1 \��1 ID�;p: The localization of ID�;p is denoted by ID
�;p

loc . That is, ID
�;p

loc is the set of

random variables F such that there exists a sequence f(
�; F �); 0 < � < 1g � F � ID�;p such that

(i) 
� " 
; a:s:

(ii) F = F � a:s: on 
�.

Then one de�nes Dj1
s1
:::Djk

sk
F = Dj1

s1
:::Djk

sk
F � on 
� for k � � , j1; :::; jk 2 f1; :::; dg and we say that

(
�; F �) localizes F .
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The adjoint of the closed unbounded operator D : ID1;2 ! L2([0; 1] � 
) is usually denoted by �

and is called the Skorohod integral. Its domain can be characterized as the set of measurable processes

u 2 L2([0; 1]� 
) such that there exists a positive constant C that may depend on u such that

jE(
Z 1

0

DtFutdt)j � CkFk2;

for all F 2 ID1;2. Then the Skorohod integral for u an element of its domain, is the square integrable

random variable determined by the duality relation

E(�(u)F ) = E(

Z 1

0

DtFutdt); (5)

for all F 2 ID1;2. The Skorohod integral turns out to be an extension of the classical Itô integral and it

allows the integration of processes that are not necessarily adapted.

In order to avoid confusion we will use D for the derivative de�ned above and r or the 0 notation

for classical derivatives of functions.

When considering densities of random variables we will use the concept of Malliavin covariance ma-

trix. For this, de�ne for F 2 (ID1;1)mloc the Malliavin covariance matrix of F as �
ij

F
= hDF i; DF jiL2[0;1].

If F 2 ID1 and det ��1
F 2 \p>1L

p(
), then F has a smooth density.

A measurable process u with integrable paths a:s: is said to be Stratonovich integrable with respect

to W j if for any increasing sequence of partitions f�n = f0 = tn0 < ::: < tnn = 1gg of [0; T ], such that

j�nj ! 0; the sequence
n�1X
i=0

1

tni+1 � tni
(

Z tni+1

tn
i

usds)(W
j

tni+1
�W

j

tni
);

converges in probability. In such a case we will denote the limit by
R 1
0 ut � dW

j

t . It is well-known that

if u 2 1L
1;2
C;loc

(for a de�nition of this space, see [23]), then u is Stratonovich integrable with respect to

W j , for j 2 f1; :::; kg.
Now we give some notation related to stochastic di�erential equations. From here onwards we reduce

our study to one dimensional sde's for convenience.

Let �t(s; x) be the stochastic ow (sometimes also denoted by �(t; x) or �t(x) in the case s = 0)

de�ned as the solution of

�t(s; x) = x +

Z t

s

�(�u(s; x)) � dWu +

Z t

s

b(�u(s; x)) du; s � t 2 [0; 1];

where b; � : IR! IR are smooth functions with bounded derivatives. Now we de�ne the Euler approx-

imation for �. For this, let � = f0 = t0 < ::: < tN = 1g be a partition of [0; 1]: As before we de�ne the

shift operator �(t) and we take k�k � �. Let � denote the Euler-Maruyama scheme de�ned by

�t(s; x) = x+

Z t

s

�(��(u)(s; x))dWu +

Z t

s

m(��(u)(s; x))du: (6)

Here m = b+ 1
2
�0�. In the particular case that s = 0 we simplify the notation and use �t(x) and �t(x)

instead of �t(0; x) and �t(0; x).
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We will also use some terminology related to the high order Itô-Taylor formula as stated in [16].

That is, let M = f(j1; :::; jl); ji 2 f0; 1g; i 2 f1; :::; lg; for l = 1; :::g[ fvg where v denotes the multi-

index of length 0. For a multi-index � = (j1; :::; jl) de�ne the length of � as l(�) = l, also de�ne n(�)

as the number of zeros in �, �� = (j2; :::; jl) and �� = (j1; :::; jl�1). Then for f : [0; T ]� IR! IR de�ne

the following operators:

L1f(s; x) = �(x)
@f

@x
(s; x);

L0f(s; x) =
@f

@s
(s; x) +m(x)

@f

@x
(s; x) +

1

2
�2(x)

@2f

@x2
(s; x):

For � = (j1; :::; jl) de�ne by induction

g� =

8<
: g ; l = 0

Lj1g�� ; l � 1:
(7)

In the case that the function g is not explicitely stated we shall always take it to be the identity function

g(t; x) = x. Also de�ne the following Wiener functionals for an adapted process f :

I�[f(�)]s;t =

8<
: f(t) ; l = 0R t

s
I��[f(�)]s;udW jl

u ; l � 1:

Here dW 0
u = du and I�;s;t = I�[1]s;t. Also let �� = f� 2 M; l(�) � �g and B(��) = f� 2

M� ��; �� 2 ��g.
Also the space of di�erentiable functions with polynomial growth at in�nity is de�ned for k = 0; 1; :::

as

Ck
p (IR

d) � Ck
p (IR

d; IR) = ff 2 Ck(IRd; IR); 9K � 0; r 2 IN such that j@jyf(y)j � K(1 + jyjr);

for any l(j) � k; y 2 IRg:

Here, j denotes a multi-index from f1; :::; dgl(j), l(j) denotes the length of the multi-index and @jyf(y)

denotes the high order partial derivative of f with respect to the indices in j. In the case d = 1 we

write Ck
p � Ck

p (IR).

3 Weak approximation for the composition of two di�usions

In this section we will study the weak approximation of �t(X0) by �t(X0), where X0 is an ap-

propiate smooth random variable. Therefore we will be assuming that one knows how to simulate

(X0;Wt1 ; :::;WtN). Although we work with one dimensional sde's, the results in this section have

straightforward generalizations to the multidimensional case.

We start with a preliminary result on the generalized strong rate of convergence of the Euler scheme.

This is a necessary step in order to prove the weak rate of convergence.

Proposition 3.1 Assume that for k 2 IN, X0 2 IDk;1 with sups2[0;1]EjDsX0jp < 1 for all p > 1.

Then �t(X0); �t(X0) 2 IDk;1 and furthermore there exists a positive constant depending on p and k,

C(k; p) such that

k�t(X0)� �t(X0)kk;p � C(k; p)�
1
2 :
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Proof: �t(X0); �t(X0) 2 IDk;1 are proved using Lemmas 7.3, 7.4 in the Appendix and the chain rule

for Malliavin calculus.

We assume in the rest of the proof that k = 1, the general case is left for the reader. In this case,

one needs to estimate

k�t(X0)� �t(X0)k1;p = fEj�t(X0) � �t(X0)jpg1=p + (E[f
Z 1

0

jDs(�t(X0)� �t(X0))j2 dsgp=2])1=p:

First, we have that due to Lemma 7.3 in the Appendix, that there exists a positive constant C(p) such

that

Ej�t(X0)� �t(X0)jp � C(p)�
p
2 :

It is not di�cult to compute Ds�t(X0) and Ds�t(X0). This gives for s � t

Ds(�t(X0)) = Ds(�t)(X0) +r(�t)(X0)DsX0

= r(�t)(s;�s(X0))�(�s(X0)) +r(�t)(X0)DsX0:

Analogously, we have for s � t

Ds(�t(X0)) = r(�t)(�1(s);��1(s)(X0))�(��(s)(X0)) +r(�t)(X0)DsX0:

Here, �1(s) := minftk; tk � sg and r(�t)(�1(s); x) = 1 if s � t < �1(s). Now consider

E(jDs(�t(X0) � �t(X0))jp) � C(p)fE(jr(�t)(s;�s(X0))�(�s(X0))�r(�t)(s;�s(X0))�(�s(X0))jp)

+E(jr(�t)(s;�s(X0))�(�s(X0)) �r(�t)(s;�s(X0))�(��(s)(X0))jp)

+E(jfr(�t)(s;�s(X0)) �r(�t)(�1(s);�s(X0))g�(��(s)(X0))jp)

+E(jfr(�t)(�1(s);�s(X0))�r(�t)(�1(s);��1(s)(X0))g�(��(s)(X0))jp)

+E(jr(�t)(X0)�r(�t)(X0)jpjDsX0jp)g = e1 + e2 + e3 + e4 + e5:

We have that sups2[0;t](e1 + e2 + e4 + e5) � C(p)�p=2 due to Lemma 7.4 in the Appendix.

To �nd the rate of convergence to 0 of e3 it is enough to note that the processes �t = �t(s; x) �
�t(�1(s); x) and �t = r�t(s; x)�r�t(�1(s); x) are the solution of linear stochastic di�erential equations.

For example, �t solves the following equation

�t =

Z �1(s)

s

m(��(u)(s; x))du+

Z �1(s)

s

�(��(u)(s; x))dWu

+

Z t

�1(s)

Z 1

0

rm((1� v)��(u)(�1(s); x) + v��(u)(s; x))dv�udu

+

Z t

�1(s)

Z 1

0

r�((1� v)��(u)(�1(s); x) + v��(u)(s; x))dv�udWu:

From here it follows using Gronwall's Lemma that E(sup0�t�1 j�tjp) � C(p)�p=2: In the same manner

one proves that �t satis�es the same property. Then one can conclude that e3 � C(p)�p=2: 2

This proof can actually be used to prove even stronger statements than the ones proven here (see

Lemma 7.4 in the Appendix).
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Theorem 3.1 Let � be a partition of size � and � be de�ned as in (6). Suppose that f 2 C4
p(IR). Also

assume that b and � are smooth functions with bounded derivatives. Finally, suppose that X0 2 ID2;1

and sup
s

EjDsX0j4 <1, sup
s;u

EjDsDuX0j2 <1. Then for any t 2 [0; 1], there exists a positive constant

C that depends on f such that

jE[f(�t(X0))� f(�t(X0))]j � C�:

Proof: First assume without loss of generality that t 2 �. We then have

Ef(�t(X0))� Ef(�t(X0)) =

n(t)X
i=1

E[f(�t(ti;�ti(X0))) � f(�t(ti�1;�ti�1(X0)))]

=

n(t)X
i=1

E

"
f(�t(ti;�ti(X0))) � f(�t(ti;�ti�1(X0)))

+f(�t(ti;�ti�1(X0)))� f(�t(ti;�ti(ti�1;�ti�1 (X0))))

#

=

n(t)X
i=1

E

"
@

@x
f(�t(ti; x))

�����
x=�ti�1

(X0)

(
�ti(X0) ��ti�1(X0)

�(�ti(ti�1;�ti�1(X0)) � �ti�1 (X0))

)
+Ri(�ti(X0))

�Ri(�ti(ti�1;�ti�1(X0)))

#
(8)

where n(t) = maxfj; tj � tg and

Ri(U ) =

Z 1

0

Z s2

0

@2

@x2
f(�t(ti; �))(U + s1(U � �ti�1(X0)))(U � �ti�1(X0))

2ds1ds2: (9)

To shorten the proof we will select some terms to show how the proof is done.

For example in (8) one has to analyze the term (this is a particular form of the Itô-Taylor formula,

see Theorem 5.5.1 in [16]) 
�ti(X0)� �ti�1 (X0)� (�ti(ti�1;�ti�1(X0)) ��ti�1 (X0))

!
=

X
�2B(�1)

I�;ti�1;ti

 
g�(�;��(ti�1;�ti�1(x)))

!�����
x=X0

: (10)

Here g(x) = x and g(0;1) is de�ned in (7). Some of these terms will involve stochastic integrals that have

to be plugged into (8). For example, the expectation of one of these terms will generate for � = (0; 1)

E

8<
: @

@x
f(�t(ti; x))

�����
x=�ti�1

(X0)

I(0;1);ti�1;ti(g(0;1)(�;��(ti�1;�ti�1(x))))

�����
x=X0

9=
; :

Next, this equals

Z ti

ti�1

E

0
@ @

@x
f(�t(ti; x))

�����
x=�ti�1

(X0)

Z s

ti�1

G(�u(ti�1;�ti�1(x)))dWu

�����
x=X0

1
A ds; (11)
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where G(x) = m(x)�0(x) + 1
2�

2(x)�00(x). Then applying the formula (51) one has that the above

expression becomes

Z ti

ti�1

Z s

ti�1

E

8<
: @

@x
f(�t(ti; x))

�����
x=�ti�1

(X0)

DuX0

@G(�u(ti�1;�ti�1(�)))
@x

(X0)

+Du

@

@x
f(�t(ti; x))

�����
x=�ti�1

(X0)

G(�u(ti�1;�ti�1(X0)))

9=
; duds: (12)

To �nish one obtains (using Lemmas 7.3 and 7.4) that the above integrand is smaller than C�2 uniformly

in f(s; u) 2 [ti�1; ti]2; u � sg. Here C is a positive constant independent of the partition �, �, s and

t. The treatment of the other terms in (10) is similar.

For example, we will bound in the �rst term in (12). That is, we will prove that there exists a

positive constant independent of the partition � and � such that

sup
u2[ti�1;ti]

������E
0
@DuX0

@

@x
f(�t(ti; x))

�����
x=�ti�1

(X0)

@G(�u(ti�1;�ti�1 (�)))
@x

(X0)

1
A
������ < C: (13)

In fact, we have DuX0 2 Lp(
), for any p � 2, uniformly in u by hypothesis. As f has poly-

nomial growth at in�nity and using ow properties together with Lemma 7.3, we also have that

d
dx
f(�t(ti; x))

�����
x=�ti�1

(X0)

2 Lp(
), for any p > 1 uniformly in f(ti; ti�1) 2 [0; t]2; ti�1 < tig.

Now note that G(x) is smooth with polynomial growth at in�nity. Therefore we have as before that

@

@x
G(�u(ti�1;�ti�1(X0))) 2 Lp(
), for any p > 1 uniformly in ti�1 2 [0; t]. Therefore the result follows.

2

Remark 3.1 1. When dealing with the residues in (9) it is necessary to repeat some of the steps shown

in the proof above. In fact, for example we will have a term of the type

(�ti � �ti�1 (X0))
2 =

 
m(�ti�1 (X0))(ti � ti�1) + �(�ti�1 (X0))(Wti �Wti�1 )

!2

:

Here one expands the square and uses again (51) whenever increments of the Wiener process appear.

2. The condition sup
s;u

EjDsDuX0j2 <1. is used in (13) in the case � = (1; 1).

3. Note that the conditions on the derivatives of X0 can be relaxed if one uses the appropiate H�older

inequalities in (13). This weaker condition is of the form: There exists � > 0 such that

sup
s2[0;1]

EjDsX0j2+� + sup
s;u2[0;1]

EjDsDuX0j1+� <1:

4. Theorem 3.1 is an improvement of Theorem 4.2 in [2]. The method of proof is di�erent. Theorem

4.2 in [2] is strongly based in some generator of a highly complex process which in spirit resembles the

classical proofs that one can �nd in e.g. [16], Chapter 14.

We will now give a �rst application of this theorem. Consider the weak approximation problem for

f(�t(X0)) where X0 is generated by a di�usion. Up to the previous theorem it was assumed that the

10



vector (X0;Wt1; :::;WtN) had a known joint law that can be simulated. Now we consider the case when

X0 also needs to be approximated through an Euler-Maruyama approximation. For this, let Z be the

di�usion de�ned by

Zt = Z0 +

Z t

0

B(Zs)dWs +

Z t

0

A(Zs)ds: (14)

Here Z0 is any F0-measurable random variable in Lp(
) for any p > 1. Analogously de�ne the Euler

approximation scheme Z for Z using a partition �0 := f0 = s0 < ::: < sM = 1g with j�0j � �0. Note

that the noise that generates Z is the same to the one that generates X. Therefore, in general, X and

Z are not independent.

Assume that A and B are smooth with bounded derivatives then Z1 2 ID2;1 and furthermore

sup
s1;:::;sk

E[sup
t

jDs1:::Dsk(Zt � Zt)jp] � Ck(�
0)

p
2 ;

for any k 2 IN (this is done using essentially the same proof as in Proposition 3.1). Therefore by

Theorem 3.1 we obtain that if f 2 C3
p there exists a positive constant C that may depend on f and t

but it is independent of �, �0, � and �0 such that

jEf(�t(Z1)) �Ef(�t(Z1))j � C�:

A realistic case is to consider that Z1 can not be simulated exactly and that we have to use an Euler

approximation of it. The following Lemma will give a weak approximation result for of �t(Z1).

Lemma 3.1 Let f 2 C4
p(IR). Assume that A, B, b and � are smooth with bounded derivatives, then

there exists a positive constant C that may depend on f and t such that

jEf(�t(Z1))� Ef(�t(Z1))j � C�0:

Proof: We start like in the proof of Theorem 3.1. Denote by �t(x) the stochastic ow de�ned by (14)

and assume without loss of generality that sM = 1.

Ef(�t(Z1)) �Ef(�t(Z1)) =

MX
i=1

E[f(�t(�1(si; Zsi))) � f(�t(�1(si�1; Zsi�1 )))]

=

MX
i=1

E

"
f(�t(�1(si; Zsi)))� f(�t(�1(si; Zsi�1 )))

+f(�t(�1(si; Zsi�1 )))� f(�t(�1(si; �si(si�1; Zsi�1))))

#

=

MX
i=1

E

"
@

@x
f(�t(�1(si; x)))

�����
x=Zsi�1

(Zsi � Zsi�1

�(�si(si�1; Zsi�1 )� Zsi�1)) + Ri(Zsi) �Ri(�si(si�1; Zsi�1))

#

where

Ri(U ) =

Z 1

0

Z �2

0

@2

@x2
f(�t(�1(si; x)))(U + �1(U � Zsi�1 ))(U � Zsi�1 )

2d�1d�2:

11



From here we can continue with the argument as in the proof of Theorem 3.1 (in particular the argument

after (8)). Therefore the result follows. 2

Therefore one obtains that if one approximates the initial condition with a degree of accuracy �, the

new approximation �t(Z1) is also of order at least �.

Note that in the proof of this theorem was essential that Z is a di�usion in order to be able to use

the Itô-Taylor formula as in Chapter 14 of [16]. This will not be the case in the next section.

Resuming the previous calculations we have the following result.

Theorem 3.2 Assume that f 2 C4
p(IR

d), A, B, b and � are smooth with bounded derivatives. Then

there exists a positive constant C such that it depends on t and f but it is independent of the partitions

� and �0 as well as � and �0 and it satis�es

jE[f(�t(Z1))� f(�t(Z1))]j � C(� + �0):

One can also extend this result to high order weak approximations. A previous result of this type

was quoted in [2], Theorem 4.2. In that result the hypothesis on X0 were much more restrictive than

the ones presented here. In particular one required that some type of trace for DtDtX0 existed. The

argument was to use approximations for X0 that belonged to S.

4 An Euler type scheme for solutions of stochastic di�erential

equations with boundary conditions

Stochastic di�erential equations with boundary conditions arise naturally in the study of perturbations

of ordinary di�erential equations with boundary conditions as well as stochastic models for many phys-

ical phenomena. The behaviour and numerical approximation in the ode case is well understood (see

e.g. [7] or [15]).

Stochastic di�erential equations with boundary conditions have a history that may have started

with Kwakerwnaak [21]. Later they have been studied by Ocone-Pardoux [27], Nualart-Pardoux [25],

Donati-Martin [8], Garnier [13], among others. These are equations of the type

dXt = �(Xt) � dWt + b(Xt) dt; 0 � t � 1; (15)

with a boundary condition of the form

h(X0; X1) = h: (16)

Most of the studies on these equations concern existence and uniqueness of solutions and the Markov

�eld property.

These equations are anticipative in nature due to the boundary condition. Their solutions are

evaluations of ows at random variables. That is, the solution to (15) and (16), when it exists, can be

written as Xt = �t(X0), where f�t(x) t 2 [0; 1]g is the stochastic ow associated with (15) and X0

is the unique solution to (16).

12



A general type of sde with a given anticipating initial condition was �rst studied by Ocone-Pardoux

[28]. They proved existence and uniqueness for solutions by means of an Itô-Ventzell type formula.

Here we are interested in the rate of convergence for a weak approximation to the solution of

(15)-(16). That is, we will de�ne an approximation for the solution of (15)-(16) and prove that the

approximation converges at some rate to the solution.

We will consider two cases. First, when the boundary condition is linear and the equation is one

dimensional. Existence and uniqueness for this type of equations was considered by Donati-Martin [8].

As in the previous section we want to �nd an approximation for E(f(�t(X0))). Theorem 3.1 is

applicable in this case because X0 2 ID1 as will be stated later. The added complication here is the

fact that X0 also needs to be approximated. This approximation is not as smooth as in the case studied

in Lemma 3.1. In fact, it is only locally smooth as it will be proved in Lemma 4.1. This introduces a

new ingredient to this problem that will be solved through an appropiate localization procedure. We

will carry this argument to analyze approximations of densities for �t(X0) when they exist.

In the second case we consider a multidimensional equation with � � B, a constant matrix and a

boundary condition of a general type. In this case one can consider as examples some periodic boundary

conditions. Existence and uniqueness was obtained by Nualart and Pardoux [25].

In all the cases considered here it is known (see, [25]) that solutions of (15)-(16) are seldom Markov

processes. Therefore the idea of using the classical method of analysis (see e.g. Chapter 14 in [16])

through PDE problems can not be applied here.

In other articles (see [19], [10]), we have considered the necessary preliminaries to study this problem.

That is, the existence and smoothness of the density and the strong approximation for the solution of

(15)-(16) in the two cases mentioned above. These results are used throughout the text so we will recall

them when necessary.

Although here we only consider approximations for the densities one could also have considered

approximations for the distribution functions. With these results in hand one could approximate these

type of processes using the appropiate Monte Carlo methods.

4.1 The one dimensional case

In this section we will study approximations for densities of solutions to (15) and (16) in the one

dimensional case with linear boundary conditions. Existence and uniqueness of solutions for this case

was studied in [8]. That is, let � and b be real functions, F0, F1, h0 2 IR. Consider the equation

dXt = �(Xt) � dWt + b(Xt) dt; 0 � t � 1; (17)

F0X0 + F1X1 = h0: (18)

Assume from now on that � and b are smooth functions with bounded derivatives and F0 F1 > 0.

Without loss of generality we will always take F0 > 0 and F1 > 0. In [8] it is proved that under these

assumptions, there exists a unique solution to (17) belonging to the space IL
1;1
C;loc

: Furthermore, this

solution can be written as �t(X0), where X0 is the unique solution to (18).

13



Next we consider a theorem that states when a smooth density of (17)-(18) exists.

Theorem 4.1 (Kohatsu-Higa and Sanz-Sol�e [19]) De�ne

�0 = f�g

�j =

�
[�; V ]; [b; V ] +

1

2
[�; [�; V ]] ; V 2 �j�1

�
; j � 1;

where [�; �] denotes the Lie bracket. Suppose that there exist j0 � 0 and V 2 �j0 with (V (X0))
�1 2

\p�1Lp(
). Then, for any t 2 [0; 1] the law of Xt has a C
1 density.

Furthermore there exists a �nite positive constant Cp(t) such that k(��t(X0))
�1kp � Cp(t), where

�F denotes the Malliavin covariance matrix associated with the random variable F .

We will denote the density of Xt at the point y by p(t; y).

Let C := k�0k1 + kb0k1. Choose �;M > 0 satisfying � _M <
1

4C
and let W (�k) denote

W (tk+1)�W (tk). With this notation one obtains using a recursive argument that �t(x) is di�erentiable

in x and that �
0
0(x) = 1,

�
0
tk+1

(x) =

kY
i=0

�
1 + �0

�
�ti(x)

�
W (�k) + b0

�
�tk(x)

�
�
�
:

Then, on the set LM =

�
sup

0�k�N�1
jW (�k)j < M

�
, one has that j�0

�
�ti(x)

�
W (�k) + b0

�
�tk(x)

�
�j �

1=2 and therefore �
0
1(x) is strictly positive. Consequently, if ! 2 LM , the function G(x; !) given by

G(x; !) = F0x + F1�1(x)(!)

is monotone. We denote by eX0(!) the unique solution to G(x; !) = h0, ! 2 LM . Obviously one has

that the probabilty of the set LM is small (the bar denotes the complement of the set LM ). That is for

q � 2

P (LM ) �
CN
q �

q
2

M q
(19)

CN
q = E( sup

0�k�N�1

jW (�k)jp
�

)
q
2

=
2

�

Z 1

0

vqN (

Z v

�v
exp(�u

2

2
)du)N�1 exp(�v

2

2
)dv:

Furthermore sup�2(0;1] �C
N
q <1.

Remark 4.1 The following procedure provides approximations for eX0(!). Assume F0F1 > 0. To

simplify the notation we skip the dependence on !. Fix eX2;0
0 � eX1;0

0 such that G( eX2;0
0 ) � h0,

G( eX1;0
0 ) � h0. We proceed inductively as follows. Let eX2;i

0 � eX1;i
0 be such that G( eX2;i

0 ) � h0,
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G( eX1;i
0 ) � h0, i � 0. Consider

eX2;i
0 + eX1;i

0

2
. Then,

if G

 eX2;i
0 + eX1;i

0

2

!
< h0 ; set eX2;i+1

0 =
eX2;i
0 + eX1;i

0

2
; eX1;i+1

0 = eX1;i
0 ;

if G

 eX2;i
0 + eX1;i

0

2

!
> h0 ; set eX2;i+1

0 = eX2;i
0 ; eX1;i+1

0 =
eX2;i
0 + eX1;i

0

2
;

if G

 eX2;i
0 + eX1;i

0

2

!
= h0 ; set eX0 =

eX2;i
0 + eX1;i

0

2
:

Notice that
��� eX2;i

0 � eX1;i
0

��� �
��� eX2;0

0 � eX1;0
0

���
2i�1

, i � 1.

Let X0 = eX0 1LM . The integer M plays the role of a stability index. When the increments of the

Brownian motion are too big, then a solution to G(x; !) = h0 may not exist.

Therefore X0 is an approximation of X0, de�ned through (15)-(16) using an Euler approximation

(with step size �) instead the ow � in X = �(X0). In deterministic settings this is known as the

shooting method to approximate ordinary di�erential equations with boundary conditions.

Now we study some stochastic di�erentiability properties of X0 and X0. For this, let � be a random

variable such that �1(X0)��1(X0) = �
0
1(�)(X0�X0). Then, de�ne for ! 2 LM , Z(�) = F0+F1�

0
1(�) =R 1

0
(F0 + F1�

0
1(X0 + u(X0 �X0))du 6= 0. This gives

X0 �X0 = �(Z(�))�1F1(�1(X0)� �1(X0)); (20)

if ! 2 LM : For ! =2 LM we de�ne Z(�) = 1. We will need the following stochastic di�erentiability

properties of X0 and X0.

Lemma 4.1 We have that X0 2 ID1, X0 2 ID1loc; (Z(�))�1 2 ID1loc. Also we have for all p > 1,

k = 0; 1; :::

sup
�

sup
(t1;:::;tk)2[0;1]k

kDt1 :::DtkX0kp + sup
�

sup
(t1;:::;tk)2[0;1]k

kDt1 :::DtkX0kp

+sup
�

sup
(t1;:::;tk)2[0;1]k

kDt1 :::Dtk(Z(�))
�1kp <1:

Proof: In Kohatsu-Higa and Sanz-Sol�e [19] it is proven that X0 2 ID1 and that

DtX0 = � F1Dt�1(X0)

F0 + F1�
0
1(X0)

: (21)

Given that F0F1 > 0 we have that jDtX0j � CjDt�1(X0)j. Therefore one obtains that suptkDtX0kp <
1 applying Lemma 7.3. The proof of supu;tkDuDtX0kp <1 is similar.

Now we will prove the properties about X0 and (Z(�))�1 for k = 1.

We use the following localizing sequence: The sets

L�M := f max
0�k�N�1

j!(�k)j < M � 2� or max
0�k�N�1

j!(�k)j > M + �g " 
 as �! 0 (22)
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and let hM;� : IR
N ! [0; 1] be a bounded smooth function with bounded derivatives such that

hM;�(x1; :::; xN) =

8<
: 1 ; if maxfjx1j; :::; jxNjg �M � 2�

0 ; if maxfjx1j; :::; jxNjg �M � �:
(23)

Then the localizing random variable is de�ned byX0
�
= X0hM;�(!(�0); :::; !(�N�1)) and (Z(�)�1)� =

(Z(�))�1hM;�(!(�0); :::; !(�N�1)) + (1�hM;�(!(�0); :::; !(�N�1))). Now in order to prove the di�er-

entiability of X0
�
and (Z(�)�1)� consider !n = ! + n�1

R �
0
gsds for g 2 L2([0; 1]), n 2 IN. To simplify

notation we will write hM;�(!) for hM;�(!(�0); :::; !(�N�1)). Then consider

n(X0
�
(!n) �X0

�
(!)) �DgX0(!)hM;�(!) �X0(!)DghM;�(!) =

n(X0(!
n) �X0(!) � n�1DgX0(!))hM;�(!

n) +DgX0(!)(hM;�(!
n) � hM;�(!)) +

n(hM;�(!
n)� hM;�(!)� n�1DghM;�(!))X0(!): (24)

Here,

DgX0(!) = � F1(Dg�1)(X0)(!)

F0 + F1�1
0
(X0)(!)

1ILM (!) (25)

DghM;�(!) =

NX
j=1

@hM;�

@xj
(!(�0); :::; !(�N�1))

Z tj

tj�1

g(s)ds:

If we take n big enough so that

p
�kgk2
n

<
�

4
and suppose that hM;�(!

n) 6= 0, then using the

de�nition of hM;� we have that

max
0�k�N�1

j!(�k)j � max
0�k�N�1

j!n(�k)j+
p
�kgk2
n

� M � 3�

4
:

Therefore we only consider the case !; !n 2 LM . In such a case, both X0(!) and X0(!
n) satisfy

the boundary condition. Subtracting these boundary conditions we obtain

n(X0(!
n)�X0(!)) = �F1n

��1(!
n; X0(!)) ��1(!;X0(!))

F0 + F1�
0
1(!

n; �n(!))

�
;

where �n(!) is a random point between X0(!) and X0(!
n). Therefore due to the stochastic di�eren-

tiability of �1 and as �n(!) converges to X0(!) in L
p(
) for any p > 1 as n ! 1 and using Lemma

7.3, it follows that

E

�����
 
F1n

��1(!
n; X0(!)) � �1(!;X0(!))

F0 + F1�
0
1(!

n; �n(!))

�
� F1(Dg�1)(X0)

F0 + F1�1
0
(X0)

!
hM;�(!

n)

�����
p

! 0:

The other terms in (24) are dealt in a similar fashion. The property supt;�kDtX0kp <1 is obtained

through (25) using Lemma 7.3 and properties of the ow de�ned by Dt�s(x).

The proof of the stochastic di�erentiability of (Z(�)�1)� uses the same techniques. In fact, consider

n((Z(�)�1)(!n) � (Z(�)�1)(!))hM;�(!
n) = hM;�(!

n)F1R 1
0
(�

0
1(!

n; [X0 + u(X0 �X0)](!
n)) � �

0
1(!; [X0 + u(X0 �X0)](!))du

(F0 + F1
R 1
0
(�

0
1(!

n; [X0 + u(X0 �X0)](!n))du)(F0 + F1
R 1
0
(�

0
1(!; [X0 + u(X0 �X0)](!))du)

:
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Here, we again have that X0(!
n) and X0(!) satisfy the boundary condition if hM;�(!

n) 6= 0. Therefore

the di�erentiability of (Z(�)�1)� follows from the di�erentiability properties of X0
�
and �

0
1. 2

Lemma 4.2 For t 2 [0; 1] �xed, k; p 2 IN and for every � 2 (0; 1) there exists a positive constant

C(�; k; p) such that

kX0 �X0
�kk;p � C(�; k; p)�1=2:

Proof:

X0 �X0
�

= (X0 �X0)hM;� +X0(1� hM;�)

= (�Z(�))�1F1(�1(X0)��1(X0))hM;� +X0(1� hM;�):

Lemma 4.1 and Proposition 3.1 give

k(�Z(�))�1F1(�1(X0)� �1(X0)))hM;�kk;p � C(�; k; p)�1=2:

The second estimate kX0(1� hM;�)kk;p � C(�; k; p)�1=2 follows from (19). 2

Now we give the result that shows that the weak rate of convergence for our approximation method

is �. Its proof will give us some important steps to consider later approximations for the density of the

solution process.

Theorem 4.2 Let f 2 C4
p(IR) . Then we have that for any t 2 [0; 1] there is a positive constant C

depending on f but independent of �, t and � such that

jEf(�t(X0)) �Ef(�t(X0))j � C�:

The method of proof shown here has the advantage that it allows the extension to consideration of

non-smooth functions in cases where one has some estimations of the Malliavin covariance matrix of

the process involved. In order to avoid a long proof with long expressions we will sketch the proof of

the above Theorem using analogies with some of the steps taken in the proof of Theorem 3.1.

Sketch of the proof of Theorem 4.2: First, we have that Theorem 3.1 is applicable due to Lemma 4.1

and therefore

jE(f(�t(X0)) � f(�t(X0)))j � C�

Now we consider the term

jE(f(�t(X0)) � f(�t(X0)))j � jE(f(�t(X0))� f(�t(X0));LM)j

+jE(f(�t(X0))� f(�t(X0));LM )j:

The second term on the right is smaller than C� due to (19), Cauchy-Schwarz inequality and the

fact that sup�2(0;1]Ejf(�t(X0))� f(�t(X0))jp <1 for any p.
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To deal with the �rst term note that for ! 2 LM , we have using the mean value theorem and (20)

that

f(�t(X0)� y) � f(�t(X0)� y) =

Z 1

0

d

dx
f(�t(� � y))(X0 + u(X0 �X0))du(X0 �X0)

=

Z 1

0

d

dx
f(�t(� � y))(X0 + u(X0 �X0))du(�Z(�))�1F1(�1(X0)� �1(X0))): (26)

Therefore,

E(f(�t(X0)) � f(�t(X0));LM ) =

NX
i=1

E

"Z 1

0

d

dx
f(�t(X0 + u(X0 �X0))� y))du(�Z(�))�1F1

 
@

@x
�t(ti; x)

�����
x=�ti�1

(X0)

(
�ti(X0) ��ti�1 (X0)

�(�ti (ti�1;�ti�1(X0)) ��ti�1(X0))

)
+Ri(�ti(X0))

�Ri(�ti(ti�1;�ti�1 (X0)))

!
;LM

#

This is the analogue to formula (8). The residues Ri are de�ned considering f(x) = x in (9). As

in Theorem 3.1 we arrive at the consideration of terms that are similar. For example, the analogous to

(11) is

Z ti

ti�1

Z 1

0

E

0
@ d

dx
f(�t(X0 + v(X0 �X0))� y))(�Z(�))�1F1

@

@x
�t(ti; x)

�����
x=�ti�1

(X0)Z s

ti�1

G(�u(ti�1;�ti�1(x)))dWu

�����
x=X0

;LM

!
dvds

Denote the expression inside the above expectation by �. Then, we have that for a �xed � > 0,

E(�;LM) = E(�hM;2�) + E(�(1ILM � hM;2�))

� E(��hM;2�) + C(�)(E(�2))1=2P (M � 4� � sup
0�k�N�1

jW (�k)j < M )1=2

where C(�) is a positive constant that depends only on �. �� is the localization of � to the set L�M .

That is, we put X0 = X0
�
and Z(�)�1 = (Z(�)�1)� in the formula for �.

Due to (19), we have that P (M � 4� � sup0�k�N�1 jW (�k)j < M ) � C(q)�
q
2
�1:

For E(��hM;2�) one can apply integration by parts. That is,

E(��hM;2�) = E(
d

dx
f(�t(X

�

0 + v(X0 �X
�

0)) � y))((�Z (�))�1)�F1
@

@x
�t(ti; x)

�����
x=�ti�1

(X0)Z s

ti�1

G(�u(ti�1;�ti�1 (x)))dWu

�����
x=X0

hM;2�):

Now we can procceed applying Lemma 7.5 to obtain that is enough to �nd a bound for a series of

terms one of which is

sup
u2[ti�1;ti]

j
Z 1

0

E(DuX0f(�t(X0 + v(X0 �X0))� y))(�Z (�))�1F1
@

@x
�t(ti; x)

�����
x=�ti�1

(X0)
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@G(�u(ti�1;�ti�1(�)))
@x

(X0)hM;2�): (27)

Given the bounds for all the processes involved one has that the above expression is bounded by a

constant that depends on �. For example, j((�Z(�))�1)�j � F�10 and f(�t(X
�

0 + u(X0 �X
�

0)) � y)) 2
Lp(
) for any p > 1, � > 0, uniformly in u 2 [0; 1], � 2 (0; 1] and in the partition �.

Therefore the result follows. 2

Now we give the main result of this subsection:

Theorem 4.3 Suppose that � and b are smooth functions with bounded derivatives, F0F1 > 0 and that

there exist j0 � 0 and V 2 �j0 with (V (X0))
�1 2 \p�1Lp(
). Then

sup
y

jp(t; y)� E�
�
1
2
(�t(X0) � y)j � C�:

Here �r denotes the density of a Gaussian random variable with mean 0 and standard deviation r and

C is a positive constant independent of � and the partition �.

Sketch of the proof of Theorem 4.3

First, one considers

p(t; y) �E�
�
1
2
(�t(X0)� y) = p(t; y) � E�

�
1
2
(�t(X0)� y)

+E�
�
1
2
(�t(X0)� y) �E�

�
1
2
(�t(X0)� y)

:= A +B:

Now we prove that

sup
y

jAj � C�: (28)

Note that if Z is a random variable with continuous density q(z) one has that

q(z) = lim
n!1E[�n�a(Z � z)]:

Therefore,

A = p(t; y)� E�
�
1
2
(�t(X0)� y)

= lim
n!1E[�n�a(�t(X0)� y) � �n�a(�t(X0) + �

1
2W 1 � y)];

where n 2 IN and a > 0 is �xed. W is a Wiener process independent of W and E still denotes the

expectation on the extended Wiener space supporting (W;W ). Here we apply a Taylor expansion

argument

E[�n�a(�t(X0) � y) � �n�a(�t(X0) + �
1
2W 1 � y)] = E[�00n�a(�t(X0) � y)]

�

2

+

Z 1

0

E[�000n�a(�t(X0)� y + u�
1
2W 1)W

3

1]du
�
3
2

3!
: (29)
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The proof of (28) �nishes if we prove that each of the expectations on the right hand side of (29) is

bounded. Using Lemma 7.1 we have that for some universal constants a; b; e; k and w

jE[�00
n�a(�t(X0) � y)]j = jE[	n�a(�t(X0)� y)H3(�t(X0); 1)]j

� kH3(�t(X0); 1)k1 � Ck��1
�t(X0)

kkak�t(X0)kwe;b:

	r denotes the distribution function of a N (0; r) random variable. The right hand of the above

equation is bounded due to Theorem 4.1 and Proposition 3.1. Analogously we obtain

sup
n

sup
u2[0;1]

sup
�2(0;1]

E[�000n�a(�t(X0) � y + u�
1
2W 1)W

3

1] <1

This �nishes the proof of (28).

Now we procceed to prove that supy jBj � C�. Assume without loss of generality that t 2 � and let

n(t) denote the integer j such that tj = t. Consider

B := E[�
�
1
2
(�t(X0)� y) � �

�
1
2
(�t(X0)� y)]

= E[�
�
1
2
(�t(X0)� y) � �

�
1
2
(�t(X0)� y)]

+E[�
�
1
2
(�t(X0) � y) � �

�
1
2
(�t(X0) � y)]

=: B1 +B2

Lets start with B1. De�ne '�(x) = �
�
1
2 =
p
2
(x) and Z = �

1
2p
2
W 1 First, apply (8) for f = '� to obtain

E�
�
1
2
(�t(X0)� y) � E�

�
1
2
(�t(X0)� y) = E

�
'�(�t(X0) + Z � y) � '�(�t(X0) + Z � y)

�

= �
n(t)X
i=1

E

"
d

dy
'�(�t(ti; x) + Z � y)

d

dx
�t(ti; x)

�����
x=�ti�1

(X0)

(
�ti(X0)

��ti�1(X0) � (�ti(ti�1;�ti�1(X0)) ��ti�1 (X0))

)
+Ri(�ti(X0))

�Ri(�ti(ti�1;�ti�1 (X0)))

#

where

Ri(U ) =

Z 1

0

Z s2

0

d2

dx2
'�(�t(ti; �) + Z � y)(U + s1(U � �ti�1(X0)))(U � �ti�1(X0))

2ds1ds2:

Here the analysis goes as in the proof of Theorem 3.1. That is, one �nds the expansion of �ti(X0)�
�ti�1 (X0)� (�ti(ti�1;�ti�1 (X0))� �ti�1(X0)) using the Itô-Taylor formula.

Now we procceed to �nd uniform bounds for the expectations of the integrands as in (13). The

additional problem that appears in this case is that the derivatives of '� start to appear. Here we apply

the integration by parts formula, enough number of times so that we recover the function 	 which is

bounded by 1.

That is, consider for example the term analogous to the one obtained in (13). In such a case we

have to prove that there exists a positive constant C independent of the partition � and � such that

� = sup
u2[ti�1;ti]

�����E
 
DuX0

@G(�u(ti�1;�ti�1(�)))
@x

(X0)
d

dy
'�(�t(ti;�ti�1 (X0))
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+Z � y)
d

dx
�t(ti; x)

�����
x=�ti�1

(X0)

!����� � C: (30)

To prove the above inequality we will use Proposition 7.1 which applied to � gives that there exists

appropiate constants such that

� = sup
u2[ti�1;ti]

�����E
 
	
�1=2=

p
2(�t(ti;�ti�1(X0)) + Z � y)H2

 
�t(ti;�ti�1(X0)) + Z;DuX0

@G(�u(ti�1;�ti�1 (�)))
@x

(X0)
d

dx
�t(ti; x)

�����
x=�ti�1

(X0)

!1
A
������

� sup
u2[ti�1;ti]

H2

0
@�t(ti;�ti�1(X0)) + Z;DuX0

@G(�u(ti�1;�ti�1(�)))
@x

(X0)
d

dx
�t(ti; x)

�����
x=�ti�1

(X0)

1
A

1

� C sup
u2[ti�1;ti]

�
k��1

�t(ti;�ti�1
(X0))+Z

kakk�t(ti;�ti�1(X0)) + Zkwe;b
DuX0

@G(�u(ti�1;�ti�1 (�)))
@x

(X0)
d

dx
�t(ti; x)

�����
x=�ti�1

(X0)


e0;b0

:

9>=
>; (31)

The proof of (30) is �nished if we prove the following assertions:

(i) sup
ti�1<ti�t

k�t(ti;�ti�1(X0)) + Zkd;b <1; for any d; b 2 IN:

(ii) sup
ti�1<ti�t

k(��t(ti;�ti�1
(X0))+Z

)�1kp <1, for all p > 1:

(iii) For all d; b 2 IN,

sup
u2[0;t];ti�1<u<ti�t


0
@DuX0

@

@x
G(�u(ti�1;�ti�1(X0)))

d

dx
�t(ti; x)

�����
x=�ti�1

(X0)

1
A

d;b

<1:

(i) and (iii) follow from ow properties, (21), Lemma 7.3 and Lemma 4.1. (ii) follows from Lemma 7.2

in the Appendix.

Now consider the other term in B, B2. We have

B2 = E[('�(�t(X0) + Z � y) � '�(�t(X0) + Z � y))(1LM + 1
LM

)] = B21 + B22

In the case of B22, using (19), one has for �xed q � 5

B22 = E['�(�t(X0) + Z � y) � '�(�t(X0) + Z � y);LM ]

� C��1=2P (LM )

� C��1=2
�
q
2
�1

M q

� C�; (32)
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where C is a positive constant that only depends on q and M . Now consider B21. For ! 2 LM , we

have using (26)

'�(�t(X0) + Z � y) � '�(�t(X0) + Z � y) =

Z 1

0

d

dx
'�(�t(X0 + u(X0 �X0)) + Z � y)du (33)

(�Z(�))�1F1(�1(X0)� �1(X0))):

Therefore the problem of considering the rate of convergence of B21 goes through applying (8) localized

on the set LM for �1(X0)� �1(X0). That is, f(x) = x and t = 1 in (8). Then one continues with like

in the proof of Theorem 4.2. For example instead of (27) we will have for � 2 (0; 1) �xed

sup
u2[ti�1;ti]

����
Z 1

0

E

�
DuX0

d

dx
'�(�t(X

�

0 + v(X0 �X
�

0)) + Z � y))((�Z (�))�1)�F1

@

@x
�t(ti; x)

�����
x=�ti�1

(X0)

@G(�u(ti�1;�ti�1(�)))
@x

(X0)hM;2�)dv

������ < C(�):

Here one can apply integration by parts and obtain the necessary properties as we have done in (31)

(in particular, Lemma 7.2). Therefore the result follows. 2

As in the proof of Theorem 3.1 one has to deal with the residues Ri(U ) using the integration by

parts formula (5).

With the same techniques as in this proof one can obtain results for approximations of distribution

functions.

4.2 Weak approximation for general boundary conditions in the multidi-

mensional case

We will now briey indicate how to obtain a weak approximation result for the multidimensional sde

with boundary condition considered in [25]. In this section we will consider the stochastic di�erential

equation

dXt + F (Xt) dt = B dWt; t 2 [0; 1]; (34)

with boundary condition

h(X0; X1) = h; : (35)

for h : IR2d ! IRd. Here fXt ; t 2 [0; 1]g is an IRd- valued continuous stochastic process and fWt ; t 2
[0; 1]g is a IRk- valued Brownian motion with k � d, F : IRd ! IRd takes the form

F (x) = Ax + B ef (x);
where A is a d� d matrix, ef : IRd ! IRk is measurable and locally bounded and B is a d� k matrix. In

[25] a theorem on existence and uniqueness of solution for this kind of equations has been established.

More explicitely, let C0
�
[0; 1]; IRk

�
be the set of continuous, IRd- valued functions vanishing at 0; set

� =

�Z 1

0

eAtB d'(t) ; ' 2 C
�
[0; 1]; IRk

��
, where the integrals are de�ned using integration by parts.

Assume
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(H1) For any z 2 � the equation h
�
y; e�A(y + z)

�
= h has a unique solution y = g(z).

In order to �nd the solution of (34), (35) we consider the linear equation

dYt + AYt dt = B dWt; t 2 [0; 1];

with boundary condition (35). This equation has a unique solution given by

Yt = e�At
�
g

�Z 1

0

eAsB dWs

�
+

Z t

0

eAsB dWs

�
:

Let � =
n
� 2 C

�
[0; 1]; IRk

�
; �t � �0 +

Z t

0

A�s ds 2 ImB; 0 � t � 1; h(�0; �1) = h
o
. Then there

exists a bijection  : C0
�
[0; 1]; IRk

�
! � such that Yt = ( (W ))t. Finally we de�ne the mapping

T : C0
�
[0; 1]; IRk

�
! C0

�
[0; 1]; IRk

�
by

T (�) = � +

Z �

0

ef (( (�))s) ds:
Theorem 4.4 (Nualart and Pardoux, [25]) Assume T is a bijection and (H1). Then equation (34)

with boundary condition (35) possess a unique solution in C([0; T ]; IRd) given by

X =  
�
T�1(W )

�
:

Momentarily assume that T is a bijection, then one can give a di�erent way of expressing the solution

to (34), (35). For this let � = T�1(W ), �t =
R t
0
eAuB dWu and 't =

Z t

0

eAuB d�u. Then,

Xt = e�At
�
g

�Z 1

0

eAuB d�u

�
+

Z t

0

eAuB d�u

�

= e�At [g ('1) + 't] :

In [10], it was proved that 't = �t + ut, where

ut = �
Z t

0

eAsB ef �e�As [g (�1 + u1) + (�s + us)]
�
ds:

Fix y 2 IR and assume

ut(y) = �
Z t

0

eAsB ef �e�As [g (�1 + y) + �s + us(y)]
�
ds (36)

has a unique solution. Moreover, suppose that the mapping y 7! u1(y) has a unique �xed point Y .

Then, clearly

't = �t + ut(Y ):

Let jM j denote the norm of a matrixM , that is, jM j = sup
jxj=1

jMxj. We need the following assumption:

(H2) g; ef 2 C1(IRd; IRd) and

K
�
Lef ; Lg

�
= Lg

�
exp

��
e2jAj � 1

� jBj
2jAj Lef

�
� 1

�
< 1; (37)
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where ef and g are Lipschitz functions with Lipschitz constant Lef and Lg, respectively. Under (H2) T

is a bijection and therefore there is a unique solution to (34) and (35).

Here we will work with the same approximation scheme as introduced in [10]. That is, de�ne �t; ut(y)

by

�t =

Z t

0

eA�(s) B dWs;

ut(y) = �
Z t

0

eA�(s)B ef �e�A�(s) hg ��1 + y
�
+ ��(s) + u�(s)(y)

i�
ds:

In Section 3 of [10] it is proven that under (H2) y 7! u1(y) has a unique �xed point, say Y . Let

't = �t + ut(Y ) and

Xt = e�At [g ('1) + 't] : (38)

Now we introduce some preliminary lemmas.

Lemma 4.3 Assume (H2). Then I � u01(y) and I � u01(y) are invertible matrices for all y 2 IRd a.s.

Proof: We will sketch the proofs for I � u01(y).

It is enough to prove that the maximum eigenvalue of u01(y) is strictly smaller than 1.

For this is enough to prove that ju1(y1)�u1(y2)j � K
�
Lef ; Lg

�
jy1� y2j < jy1� y2j. This is exactly

(3.16) in [10]. 2

The following result is an extension of Lemma 3.2 in [19]. The proof is obtained through standard

methods of calculation for stochastic derivatives.

Lemma 4.4 Assume (H2). Then

(i) ut(y); ut(y) 2 ID1;1, for all y 2 IRd and t 2 [0; 1].

(ii) Y; Y 2 ID1;1 with DsY = (I � u01(Y ))
�1(Dsut)(Y ) and DsY = (I � u01(Y ))

�1(Dsut)(Y ).

(iii) ut(Y ); ut(Y ) 2 ID1;1 and the chain rule is satis�ed for both processes for all t 2 [0; 1].

(iv) sup
s

E[sup
t

jDs(ut(Y ))jp] <1 sup
s

E[sup
t

jDs(ut(Y ))jp] <1 for all p > 1.

The following result gives the rate of convergence for the weak approximation. Strong approximations

where studied in [10].

Theorem 4.5 Assume (H1), (H2) and that f , ef and g are in C2
p . Then there exists a positive constant

C independent of � and �

jE(f(Xt)� f(X t))j � C�:

Proof: First, note that

f(Xt) � f(X t) = �1
t [�

2
t ('1 � '1) + 't � 't]:
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where

�1
t =

Z 1

0

f 0(X t + �(Xt �X t))d�e
�At

�2
t =

Z 1

0

g0('1 + �('1 � '1))d�:

Due to Lemma 4.4, we have that �1 and �2 2 ID1;1.

Therefore we consider 't � 't = �t � �t + (ut(Y )� ut(Y )): The di�erence �t � �t can obviously be

written as an expression of order �. That is,

�t � �t =

Z t

0

( eAs � eA�(s)) B dWs;

where j eAs � eA�(s)j � e2jAj� and therefore supt2[0;1] k�t � �tkp � C(p)� for a positive constant C(p)

independent of � and � but dependent on p > 1.

To simplify the notation de�ne

k(x1; :::; x5) = �eAx1B ef �e�Ax1 [g (x2 + x3) + x4 + x5]
�
: (39)

Now consider

ut(Y ) � ut(Y ) =

Z t

0

k(s; �1; Y; �s; us(Y ))� k(�(s); �1; Y; ��(s); us(Y )) ds

+

Z t

0

k(�(s); �1; Y; ��(s); us(Y )) � k(�(s); �1; Y ; ��(s); us(Y ))ds

+

Z t

0

k(�(s); �1; Y ; ��(s); us(Y )) � k(�(s); �1; Y ; ��(s); us(Y ))ds

+

Z t

0

k(�(s); �1; Y ; ��(s); us(Y )) � k(�(s); �1; Y ; ��(s); u�(s)(Y ))ds

= I1(t) + I2(t) + I3(t) + I4(t): (40)

Lets start with I4. Consider

jI4(t)j �
Z t

0

e2jAj�(s)BLef jus(Y )� u�(s)(Y )jds

� �BLef
Z t

0

e2jAj�(s)jk(�(s); �1; Y ; ��(s); u�(s)(Y ))jds

Therefore it follows from Lemma 7.6 in the Appendix that k sups2[0;t] jI4(s)jkp � C(p)� for a positive

constant C(p) independent of � and � but depend on p > 1. Now consider I1. We will divide it into 4

terms

I1(t) =

Z t

0

k(s; �1; Y; �s; us(Y )) � k(�(s); �1; Y; �s; us(Y ))ds

+

Z t

0

k(�(s); �1; Y; �s; us(Y ))� k(�(s); �1; Y; �s; us(Y ))ds

+

Z t

0

k(�(s); �1; Y; �s; us(Y )) � k(�(s); �1; Y; �s; us(Y ))ds

+

Z t

0

k(�(s); �1; Y; �s; us(Y ))� k(�(s); �1; Y; ��(s); us(Y )) ds

= I11(t) + I12(t) + I13(t) + I14(t):
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As in the case of I4 and using the hypotheses on ef and g one obtains that k sups2[0;t] jI1i(s)jkp � C(p)�

is satis�ed for i = 1; 2; 3. I14 can be written as (using the mean value theorem)

I14(t) = �3
s(Ws �W�(s)): (41)

where

�3
s = eA�(s) B

Z 1

0

ef 0(e�A�(s) hg ��1 + Y
�
+ ��(s) + �(�s � ��(s)) + us(Y )

i
) d�eA�(s)

Note that due to Lemma 4.4, one has that �3 2 ID1;1

Now we analyze the term I3. We have by the mean value theorem

I3(t) = �
Z t

0

s(us(Y )� us(Y ))ds

where

s = eA�(s)B

Z 1

0

ef 0(e�A�(s) hg ��1 + Y
�
+ ��(s) + us(Y ) + �(us(Y )� us(Y ))

i
)e�A�(s)d�:

Similar calculations are applied to I2 to obtain

I2(t) = �
Z t

0

�s(Y � Y )ds

where

�s = eA�(s)B

Z 1

0

ef 0(e�A�(s) hg ��1 + Y + �(Y � Y )
�
+ ��(s) + us(Y )

i
)e�A�(s)g0(�1 + Y + �(Y � Y ))d�:

Resuming these calculations we have that we can write (40) as:

ut(Y )� ut(Y ) =

Z t

0

�sds+

Z t

0

�s(Y � Y )ds+

Z t

0

s(us(Y )� us(Y ))ds: (42)

This is a linear equation in ut(Y )� ut(Y ) where � is de�ned so that

Z t

0

�sds = (I1 + I4)(t):

Using classical results (see Dunford and Schwartz [9], vol II, page 1282) we solve (42):

ut(Y )� ut(Y ) =

1X
j=0

	jG(t); (43)

where G(t) =

Z t

0

�sds +

Z t

0

�sds(Y � Y ) and (	Z)(t) =

Z t

0

sZ(s)ds:Here one has that sup
s2[0;1]

jsj <1

a.e. (see the proof of Lemma 7.7 in the Appendix) and therefore the series above converge uniformly

for t in compact sets.

In order to solve for Y �Y in (43) for t = 1 one proves by induction (see Lemma 7.7 in the Appendix)

that for j = 1; 2; :::

j	j�1B(1)j � (e2jAj � 1)j

j!2jjAjj jBjjLjefLg ; (44)
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therefore by (37) one has that j
1X
j=0

	jB(1)j < 1 and therefore the inverse of I �
P1

j=0	
jB(1) (45)

exists.

Replacing t = 1 in (43), we have that using (37),

Y � Y = (I �
1X
j=0

	jB(1))�1
1X
j=0

	jA(1); (45)

where A(t) =

Z t

0

�sds + I1(t) + I4(t) and B(t) =

Z t

0

�sds.

Using (45) in (43) we also have

ut(Y )� ut(Y ) =

1X
j=0

	jA(t) +

1X
j=0

	jB(t)(I �
1X
j=0

	jB(1))�1
1X
j=0

	jA(1): (46)

Note that k supt2[0;1] jA(t)� I14(t)jkp � C�. Now if we put all these estimates together, we have:

E[f(Xt)� f(X t)] = E[�1
t [�

2
t (�1 � �1) + �t � �t]]

+E[�1
t�

2
t (Y � Y )] +E[�1

t (ut(Y )� ut(Y ))] = A1 +A2 + A3

First it is easy to see that jA1j � C� given that supt2[0;1] k�t � �tkp � C� and �1 and �2 2 ID1;1.

Next, as A2 and A3 are of the same nature we only consider A3 leaving A2 to the reader. Using

(46) one has

A3 = E[�1
tf

1X
j=0

	j(A� I14)(t) +

1X
j=0

	jB(t)(I �
1X
j=0

	jB(1))�1
1X
j=0

	j(A� I14)(1)g]

+E[�1
tf

1X
j=0

	jI14(t) +

1X
j=0

	jB(t)(I �
1X
j=0

	jB(1))�1
1X
j=0

	jI14(1)g] = A31 +A32

In Lemma 7.8 in the Appendix it is proven that jA31j � C�. To prove jA32j � C� one needs to apply

the integration by parts formula (5) because the rate is being carried by (Ws �W�(s)) in the de�nition

of I14 in (41). This is done in Lemma 7.9 in the Appendix. This �nishes the proof. 2

Further re�ning this proof one could consider the approximations for densities or distribution func-

tions of solutions to (34). The hypothesis will require further smoothness of ef and g. The study of

existence and smoothness of densities for multimensional stochastic di�erential equations with boundary

conditions was carried out in [19]. The statement in the case of density approximations is

Theorem 4.6 Assume (H1) and (H2). Also assume that g and ef are elements of C1p and that g0(x)

(respectively I+g0(x)) has an inverse for all x 2 IRd and that its inverse has at most polynomial growth

at in�nity. Then, if detBBT 6= 0 one has

sup
x

jp(t; x)� E��1=2(X t � x)j � C�;

for a positive constant C independent of � and the partition � and for t 2 [0; 1) (respectively t 2 (0; 1]).
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5 An Example

In this section we will discuss informally an example of stochastic equation with boundary conditions.

There are various examples were the methods introduced here can be applied. These include the

smoothing problem (see [30]), the problem of estimation of maximum a posteriori for trajectories of

di�usions processes (see [32] and [33]) and the study of some classes of reciprocal processes (see [20]).

These equations also appear in the asymptotical study of waves in random media (see [11] and [29]) and

in the study of second order stochastic di�erential equations (see [26]). In general, most of the control

systems where di�erential equations with boundary conditions appear will have an associated stochastic

di�erential equation with boundary conditions when noise is introduced into it. Usually the boundary

conditions appear from using a space variable instead of a time variable. We will briey discuss one

of the possible applications where this is exactly the case. A more detailed account will be given in a

future publication.

As a simple example we will give a description of the equation considered in [29]. In this article

they considered a transmission-reection problem for a one dimensional equation in a random slab. The

coe�cients are assumed to randomly uctuate in a small scale therefore producing a limit equation which

will be a linear stochastic di�erential equation with linear boundary conditions. This limit equation

is obtained using techniques of di�usion approximation. To describe the situation, let L > 0 be �xed.

The one dimensional acoustic wave equation in the interval [0; L] is

�(x)
@u

@t
+
@p

@x
= 0

1

K(x)

@p

@t
+
@u

@x
= 0

with some boundary conditions which will be described later. Here u(x; t) is the velocity, p(x; t) is the

pressure, �(x) is the density and K(x) is the bulk modulus. Then one considers that �(x) = 1+ �(Z�
x)

for some smooth function taking values in [�c; c] for c < 1 and Z�
x is a Markov processes with certain

properties. One also assumes that K � 1 which corresponds to the homogeneous case. Then one de�nes

A = u+p and B = u�p called the right and left going wave respectively. The boundary conditions are

then set for A(0; t) and B(L; t). These conditions correspond to entering pulses at time t = 0 at x = 0

and at x = L. A combination of conditions in x = 0 and x = L can also be considered. As described in

[29] the general problem is given these boundary conditions what can we say about the medium if we

have small-scale inhomogeneities present? (these being represented by Z�
x).

In order to transform the above problem into a stochastic di�erential equation with boundary

conditions one considers the Fourier transform of A and B which are random and will depend in

general of �. Under certain conditions the limit equation for the Fourier transforms is given by

d

dx

 
~A�

~B�

!
=
iw

2�
�(Z�

x)

 
1 e�2iwx=�

�e�2iwx=� �1

! 
~A�

~B�

!
;

where ~A�(x;w) = A�(x;w)eiwx=� and ~B�(x;w) = B�(x;w)eiwx=�. A� and B� being the Fourier trans-

forms of A and B. Some of the physical quantities of interest are R = ~B�= ~A�, the reection coe�cient
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and T = 1=
�~A� the transmission coe�cient.

These problems fall into a general category of di�usion approximation theorem from [13] which we

quote here. In our case we will have f = 0, L = 1 and �k(t=�2) = �(Z�
t ).

Theorem 5.1 Let X� be the smallest solution of the system

dX�
t

dt
= f(t;X�

t ) + �k(t;X�
t )
1

�
�k(

t

�2
);

H0X
�
0 +H1X

�
1 = V0

Here �k(t) are independent Markov processes with a unique invariant probability measure under which

they are ergodic and ful�ll Doeblin's condition. Denote �k =
R1
0
E[�k(0)�k(t)]dt 2 (0;1). Let X be

the solution of

dXt = f(t;Xt)dt+ �k�k(t;Xt) � dW k
t (47)

H0X0 +H1X1 = V0: (48)

Then under conditions (H1 and (H2 (see [13]) there exists a unique solution X in 1L
1;8
C;loc and further-

more X� converges weakly to X in the uniform topology.

Therefore according to the properties of the process � one will �nd a whole array of processes X

which satisfy Equations (47) and (48) which according to our results can be approximated. As in

the example considered, it is common that stochastic di�erential equations with boundary conditions

appear when the variable t represents a space variable rather than a time variable.

The conditions we have required in Theorem 4.3 are su�cient to obtain that (H1) and (H2) are
satis�ed. In the multidimensional case there are cases that we have considered here were (H2) is not
satis�ed.

6 Conclusions

We have considered an alternative method of proof for weak approximations of solutions of stochastic

di�erential equations. This method should be useful in many cases, in particular, when non-adapted

processes are considered or when we are interested in approximating the distribution or the density

function of a locally smooth process.

Many variations of this argument can be implemented. For example, one can obtain with some

further work an expansion of the error in terms of powers of the step size. One possible disadvantage of

this method is that the calculation of the constants in this expansion is quite cumbersome. It does not

seem to have a nice expression like in the case of di�usions (see e.g. [31]). Another problem of interest

is to consider the generalization of Theorem 4.3 to many dimensions using the technique of stochastic

invariant imbedding introduced in [13].

Another argument to approach the analysis of numerical schemes in non-linear problems has been

used to study the McKean-Vlasov equation (see [18]) and the author is currently considering applying

a combination of both techniques to the case of the Burgers equation.
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Further extensions of this method can be investigated in order to obtain weak approximation results

for higher order schemes and to develop the error in powers of the step size of the approximation which

should help the design of interpolation schemes.

Also these ideas should give some light about the behaviour of weak approximations to higher

order sde's with boundary conditions as well as stochastic partial di�erential equations with boundary

conditions. These problems need to be studied further.

7 Appendix

In this section we will prove accesory results used in other sections.

The following Proposition is the basic result to obtain properties about the densities of smooth

random variables.

Proposition 7.1 Let F = (F 1; :::; F d) 2 (ID1)d such that (det �F )
�1 2 \p�2Lp(
). Let G 2 ID1

and let g 2 C1p (IRd). Then (det�F )
�1 2 ID1 and for any multi-index � 2 f1; :::; dgk; k � 1, there

exists an element H�(F;G) 2 ID1 such that:

E[(@�g)(F )G] = E[g(F )H�(F;G)]:

Furthermore for any multi-index �, integers p and q there exists constants C(p; q; �), e, b, e0, b0, a, k

and w such that

kH�(F;G)kp;q � C(p; q; �)k��1
F kakkFkwe;bkGke0;b0 :

Proof: The proof of this proposition can be obtained by performing some aditional calculations to the

usual proof (see for example, Proposition 3.2.2 in Nualart [24]).

For example, let � = (1). Then it follows that

H(1)(F;G) =

dX
j=1

�(G(��1
F )1jDF j):

Now using the continuity of the adjoint operator � and some standard properties of the norms k � kp;q
we have that

k
dX

j=1

�(G(��1
F )1jDF j)kp;q � k

dX
j=1

G(��1
F )1jDF jkp+1;q

� Ck��1
F kp+1;b; kFkp+2;b0kGkp+1;b00

for some integers b; b0; b00. To �nish the proof is enough to note that

D[(��1
F )ij] = �

dX
k;l=1

(��1
F )ik(��1

F )jlD[�kl
F ]:

2
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In the one dimensional case (d=1) we write H(F;G) = H(1)(F;G). By induction also de�ne

Hj(F;G) = Hj�1(F;H(F;G)).

Now we give some results on the estimation of Malliavin covariance matrices. In the following Fu
�

and Fu denote measurable random �elds.

Lemma 7.1 Let Fu
�
, Fu 2 (ID1;1)m and suppose that

(i) there exists  > 0 such that sup
u

kFu
� � Fuk1;p = O(�); for all p > 1:

(ii) sup
u

k(det�Fu)�1kp <1, for all p > 1:

(iii) For all p, there exists �(p) > 0 such that sup
u

k(det�Fu
�
)�1kp = O(���(p)).

Then we have sup
�

sup
u

k(det �Fu
�
)�1kp <1 for all p > 1.

Proof: Consider A = [j det�Fu
�
� det �Fuj � 1

2 j det�Fu j]. Then,

E(j(det�Fu
�
)�1jp;A) � 2pE(j(det �Fu)�1jp) <1:

E(j(det�Fu
�
)�1jp;Ac) � E(j(det�Fu

�
)�1j2p)1=2P (Ac)1=2: (49)

The proof �nishes by noting that

P (Ac) � 2kE(j(det �Fu)�1jkj det�Fu
�
� det�Fu jk) = O(�k);

for any k. Taking k big enough, one obtains that (49) is bounded. 2

As an application of this Lemma we consider:

Lemma 7.2 Let X0 and X
�

0 be as de�ned in Section 4.1. Also let Z = �
1
2p
2
W 1 where W is a Wiener

process independent of W . Then, for �xed t > 0,

(I) sup
ti�1<ti�t

k(��t(ti;�ti�1
(X0))+Z

)�1kp <1, for all p > 1:

(II) sup
u2[0;1]

k(�
�t(X

�

0+u(X0�X�

0))+Z
)�1kp <1, for all p > 1:

Proof: In both cases we only need to check that the conditions in Lemma 7.1 are satis�ed. For (i)

we have that due to Proposition 3.1 and Lemma 4.2:

k�t(ti;�ti�1 (X0)) + Z � �t(X0)k1;p � C�1=2

k sup
u2[0;1]

�t(X
�

0 + u(X0 �X
�

0)) + Z � �t(X0)k1;p � C�1=2;

where C is a positive constant that does not depend on � or the partition �. (ii) follows from Theorem

4.1. (iii) is similar in both cases so we will only do the �rst:

��t(ti;�ti�1
(X0))+Z

=

Z 1

0

jDs�t(ti;�ti�1(X0))j2 + jDsZj2ds �
Z 1

0

jDsZj2ds

� �

2
:

From here the proof follows. 2
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Lemma 7.3 Let fFt(x); t 2 [0; 1]g; x 2 IRk; be a family of stochastic processes such that there exists

� � 1 with

sup
t2[0;1]

E( sup
jxj�1

jFt(�; nx)jp) � K(p)n�p; (50)

for any p � 1, where K is a constant depending on p and �. Let Y : 
 ! IRk be a random vector

belonging to \p�1Lp(
). Then

sup
t2[0;1]

E(jFt(Y )jp) � 2K(pr)1=r(1 + EjY j(�p+1)s) 1s ; for any p � 1 and
1

r
+
1

s
= 1 r; s > 1:

This result is Lemma 2.1 in [19]. The above bound can be obtained from the proof. As an application

one has the following result.

Lemma 7.4 Suppose that � and m have bounded derivatives up to order k: Also let Y : 
 ! IR be a

random variable belonging to \p�1Lp(
). Then, for each p � 2; there exist a constant Ck;p such that

sup
s�1

E sup
t2[s;1]

k 5k �t(s; Y )kp � Ck;p;

sup
s�1

E sup
t2[s;1]

k 5k �t(s; Y )kp � Ck;p;

sup
s�1

E sup
t2[s;1]

k 5k (�t(s; Y ) ��t(s; Y ))kp � Ck;p�
p=2:

The proofs of the above statements are obtained as in the proof of Proposition 3.1. That is, one applies

Lemma 7.3 after checking that the condition (50) is satis�ed. This is done for every k using the Fa�a di

Bruno formula (see [12]).

In the next lemma we obtain a formula to evaluate the expectations of products of random variables

with stochastic integrals. The main ingredient of the proof is the integration by parts formula of

Proposition 7.1.

Lemma 7.5 Let Y be a random variable such that Y 2 \p�2Lp(
) and Y 2 ID1;4.

Also let fut(x); t 2 [0; 1]g, x 2 IR, be a family of measurable adapted random �elds such that ut(x)

and @
j
ut

@xj
satisfy (50) for j = 1; 2.

Then for a; b 2 [0; 1] and X0 2 ID1;1, the following formula holds:

E(

Z b

a

u�t (x)dWt

�����
x=X0

Y ) = E(

Z b

a

Y DtX0
@u�t
@x

(X0) +DtY u
�
t (X0)dt): (51)

Sketch of the proof: Let �r(x) denote the density of a normal random variable with standard

deviation r. The proof is obtained through the justi�cation of the following steps:

E(

Z b

a

ut(x)dWt

�����
x=X0

Y ) = lim
r!0

E(

Z
IR

Z b

a

ut(x)dWt�r(x�X0)Y dx) (52)

= lim
r!0

Z
IR

E(

Z b

a

ut(x)dWt�r(x�X0)Y )dx (53)
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= lim
r!0

Z
IR

E(

Z b

a

(��0r(x�X0)DtX0Y + �r(x�X0)DtY )ut(x)dt)dx (54)

= lim
r!0

E(

Z b

a

Z
IR

�r(x�X0)(DtX0Y u
0
t(x) +DtY ut(x))dxdt)

= E(

Z b

a

Y DtX0
@ut

@x
(X0) +DtY ut(X0)dt):

First the term on the left hand side of (51) is well de�ned due to the hypothesis and the application

of Lemma 3.2.2 in [23] and Lemma 7.3. (52) follows because
R
IR

R b
a
ut(x)dWt�r(x �X0)Y dx converges

pointwise to
R b
a
ut(x)dWt

�����
x=X0

Y and this sequence is uniformly integrable. That is, one uses the

hypothesis and Lemma 7.3 to prove that

sup
r

E(

Z
IR

Z b

a

ut(x)dWt�r(x�X0)Y dx)
2 <1:

To prove the above one follows the following steps

E(

Z
IR

Z b

a

ut(x)dWt�r(x�X0)Y dx)
2=

1X
n=0

E(1I(n � jX0j < n+ 1)Y 2(

Z
IR

Z b

a

ut(x)dWt�r(x�X0)dx)
2)

�
1X
n=0

E(1I(n � jX0j < n+ 1)Y 2(

Z
fjx�X0j� jxj

2
g

sup
jxj�2(n+1)

j
Z b

a

ut(x)dWtj�r(x�X0)dx

+

Z
fjx�X0j> jxj

2
g
j
Z b

a

ut(x)dWtj�r(
x

2
)dx)2)

� C((EY 4)1=2(EjX0jk)1=4(
1X
n=0

1

nk=4
(E sup

jxj�2(n+1)
j
Z b

a

ut(x)dWtj8)1=4

+

1X
n=0

1

nk=4
(

Z
IR

Ej
Z b

a

ut(x)dWtj8�r(
x

2
)dx)1=4); for any k > 0:

From here using the Sobolev embedding theorem and the hypothesis, one �nds bounds for the ex-

pectations above. These bounds are polynomials in n. Therefore taking k big enough the uniform

integrability follows.

(53) follows by Fubini theorem. (54) is a consequence of the integration by parts formula. The last

two steps in the proof are a repetition of the arguments used in (52) and (53). 2

Lemma 7.6 Let k : [0; 1]2 � (IRd)4 ! IRd�d be de�ned by (39). Then the following properties are

veri�ed:

(i) The function k belongs to C2
p([0; 1]

2�(IRd)4) and furthermore the following inequalities are satis�ed

jk(x; x2; :::; x5) � k(y; x2; :::; x5)j � e2jAjBjx� yjfj ef �e�Ax [g (x2 + x3) + x4 + x5]
�
j

+Lef jg (x2 + x3) + x4 + x5jg

jk(x1; x; x3; :::; x5) � k(x1; y; x3; :::; x5)j � e2jAjBLefLgjx� yj

jk(x1; :::; x; x5) � k(x1; :::; y; x5)j � e2jAjBLef jx� yj
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(ii)

E sup
s2[0;t]

jk(�(s); �1; Y ; ��(s); u�(s)(Y ))jp � C(p);

E sup
s2[0;t]

jk(s; �1; Y; �s; us(Y ))jp � C(p);

for a positive constant C(p) independent of � and �

Lemma 7.7 Under the conditions of Theorem 4.5 we have for j = 1; 2; ::

j	j�1B(t)j � (e2jAjt � 1)j

j!2jjAjj jBjjLjefLg;
Proof: Note that

jsj � e2jAj�(s)BLef
j�sj � e2jAj�(s)BLefLg

Therefore for j = 1 we have

jB(t)j �
Z t

0

j�sjds �
(e2jAjt � 1)BLefLg

2jAj :

Now assume that the assertion is true for j. Then

j	jB(t)j �
Z t

0

j	j�1B(s)jjsjds

� jBjjLjefLg
Z t

0

(e2jAjs � 1)j

j!2jjAjj e2jAj�(s)BLef ds
�

(jBjLef )j+1Lg
j!2j jAjj

Z t

0

(e2jAjs � 1)je2jAjsds

�
(jBjLef )j+1Lg
j + 1!2j+1jAjj+1 :

2

Lemma 7.8 For A(t) = I1(t) + I4(t), we have

jE[�1
t

1X
j=0

	j(A � I14)(t) +

1X
j=0

	jB(t)(I �
1X
j=0

	jB(1))�1
1X
j=0

	j(A � I14)(1)]j � C�

for some positive constant C independent of � and the partition �.

Proof: Given that �1
t 2 Lp(
) for any p > 1, and j

P1
j=0	

jB(t)j < 1 it is enough to prove that

E(

1X
j=0

j	j(A � I14)(t)j)p � C(p)�p

Ej(I �
1X
j=0

	jB(1))�1
1X
j=0

	j(A� I14)(1)jp � C(p)�p (55)
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To prove the �rst inequality one proves by induction that

j	j(A� I14)(t)j � sup
s2[0;t]

j(A� I14)(s)j
(e2jAj � 1)j

j!2jjAjj jBjjLjef ;
for j = 0; 1; :::. From here the inequality follows because

E( sup
s2[0;t]

j(A� I14)(s)jp) = E( sup
s2[0;t]

jI11(t) + I12(t) + I13(t) + I4(t)jp) � C(p)�p:

The second inequality in (55) is analogous except one also needs (I �
P1

j=0	
jB(1))�1 2 Lp(
) for any

p > 1. This follows from (44) as

j(I �
1X
j=0

	jB(1))�1j � 1

1�K
�
Lef ; Lg

� :
2

Lemma 7.9

jE[�1
t

1X
j=0

	jI14(t) +

1X
j=0

	jB(t)(I �
1X
j=0

	jB(1))�1
1X
j=0

	jI14(1)]j � C�;

where C is a positive constant that does not depend on � or the partition �.

Proof: Consider �rst for j � 1, the term

E[�1
t	

jI14(t)] =

Z t

0

Z sj�1

0

:::

Z s2

0

E[

j�1Y
l=1

sl�
1
t�

3
s1
(Ws1 �W�(s1))]ds1:::dsj�1

=

Z t

0

Z sj�1

0

:::

Z s2

0

Z s1

�(s1)

E[Du(�
1
t�

3
s1
)

j�1Y
l=1

sl

+

j�1X
k=1

Du(sk)

j�1Y
l=1;l6=k

sl�
1
t�

3
s1
]duds1:::dsj�1

� C(1 + C1(j � 1))�
(e2jAj � 1)j�1

j � 1!2j�1jAjj�1 jBj
j�1Lj�1ef : (56)

The above calculation follows from (5) and previous estimates on �1, �3 and . Also note that a

calculation gives that supu�s kDuskp � C(p)e2jAj�(s)B.

A calculation for the other terms is done noting that we have to prove some di�erentiability properties

of
P1

j=0	
jB(t)(I �

P1
j=0	

jB(1))�1. Given that �s 2 ID1;1 uniformly in s 2 [0; 1] one can obtain the

same property for
P1

j=0	
jB(t) as we have shown in (56). Similarly for (I �

P1
j=0	

jB(1))�1 if one

uses the inversion formula (I �M )�1 =
P1

j=0M
j for a matrixM with norm smaller than 1. 2
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