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Abstract

This paper presents a classical Cournot oligopoly model with some

peculiar features: it is non{quasi{competitive as price underN{poly is

greater than monopoly price; Cournot equilibrium exists and is unique

with each new entry; the successive equilibria after new entries are sta-

ble under the adjustment mechanism that assumes that actual output

of each seller is adjusted proportionally to the di�erence between ac-

tual output and pro�t maximizing output. Moreover, the model tends

to perfect competition as N goes to 1, reaching the monopoly price

again.

Keywords: Cournot equilibrium, non-cooperative oligopoly, quasi{competitive-

ness, stability.
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1 Introduction

The classic model of Cournot oligopoly equilibrium was designed bearing

in mind the mathematical modeling of the \e�ects of competition". Chang-

ing from a monopoly to an oligopoly situation, one of these e�ects should

be, as any reasonable person would agree, the reduction in the price of the

commodity. This e�ect is called quasi{competitiveness in the specialized lit-

erature. There exist models in which this e�ect is not the expected one; in

a di�erent scenario to classical Cournot's oligopoly, we may mention Salop

(1979), Satterthwaite (1979) and Rosenthal (1980). As for Cournot oligopoly

proper, Frank Jr. and Quandt (1963) o�er a model in which duopoly price

is greater than monopoly price; their inverse demand function is somewhat

\kinked" though and the feeling that these kinks are responsible for the rise

in price is unavoidable. McManus (1962) and later in McManus (1964) o�ers

more general models in which this situation may happen. In this last paper,

McManus (1964), McManus relates quasi{competitiveness with the unique-

ness of the equilibrium. Ru�n (1971) presents a classic Cournot equilibrium

in which a new entry breaks the quasi{competitiveness, violating at the same

time the stability of the model. Ru�n, in fact, directly relates a condition

for stability established by Hahn (1962) with quasi{competitiveness. Hahn's

condition requires the uniqueness of the equilibrium; Okuguchi and Suzu-

mura (1971) prove that Hahn's stability condition ensures uniqueness of the

equilibrium. Lastly, Okuguchi (1974) proves that the uniqueness of Okuguchi

and Suzumura proves quasi-competitiveness despite losing stability.
1
A very

good summary of results can be found in Okuguchi (1976) and, from a more

general point of view, Daughety (1988).

In this paper, we build a model in which, starting from any linear de-

creasing inverse demand function and given any number of oligopolists, N ,

we �nd an increasing piece{wise linear cost function in two pieces such that

the model has the following features:

1. Monopoly price, p1, is lower than the successive equilibrium prices for

duopoly, p2, 3{poly, p3, : : : , N{poly, pN . That is to say, p1 < pj; (j =

2; : : : ; N):

2. After each new entry, a unique Cournot equilibrium point is reached.

3. The successive equilibria are stable in a sense that will be seen presently.

1The models dealt with by these authors vary slightly in their assumptions concerning

demand and cost functions: some require di�erentiability, others only continuity or even

semi{continuity. Others consider increasing marginal costs, others not. Some consider all

the �rms identical and others consider di�erent costs for each �rm, etc.
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We hope our model may add some information to the clari�cation of the

interdependence of the three aspects of Cournot oligopoly: uniqueness of

equilibrium, stability and quasi{competitiveness.

In section 2, after building the model, we discuss monopoly and duopoly

maximizing outputs, the reaction curves and the necessary assumptions re-

quired to achieve our results. We prove the existence and uniqueness of

a Cournot solution and, lastly, we study its stability under an adjustment

mechanism proportional with the di�erence between actual �rm output and

pro�t maximizing output. In section 3 we extend the validity of our model

to an N{poly situation, N � 2 in which the new �rms enter the market

one after the other. We prove the existence and uniqueness of the Cournot

equilibrium. The stability of the solution for each new entry under the same

adjustment mechanism as before is proved in section 4. Speci�cally, we prove

that for any N{poly at the Cournot equilibrium point, if a new �rm joins the

industry with an output at the most the same as its competitors, the whole

(N + 1){poly readjust its outputs to reach the new Cournot equilibrium. In

section 5 we exhibit a numerical example of our model and, in the conclusions

we examine the limiting case of perfect competition as N !1.

2 The model

We assume a linear market demand function for the industry of our homo-

geneous commodity, p = a� b q; a; b > 0 and a continuous, piece{wise linear

cost function:

C(q) =

�
c1 + d1 q if 0 � q < qm
c2 + d2 q if qm � q � a=b;

(1)

where c1; c2; d1; d2 > 0, d1 6= d2, and qm is a given point in the interval

(0; a=b). The continuity of C(q) at q = qm requires that

c2 = c1 + (d1 � d2) qm:(2)

2.1 Monopoly

In a monopoly situation, the pro�t function of our sole �rm is:

�(q) =

�
�b q2 + (a� d1) q � c1 if 0 � q < qm
�b q2 + (a� d2) q � c2 if qm � q � a=b;
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that can be written as

�(q) =

8>>>><
>>>>:

�1(q) = �b

�
q �

a� d1

2b

�2

+

�
(a� d1)

2

2
2b

� c1

�
if 0 � q < qm

�2(q) = �b

�
q �

a� d2

2b

�2

+

�
(a� d2)

2

2
2b

� c2

�
if qm � q � a=b:

(3)

The pro�ts are thus denoted separately: �1(q) in the output interval [0; qm)

and �2(q) in the interval [qm; a=b]. The global pro�t function, �(q), has a

derivative for each q in (0; a=b) except for q = qm.

Equation (3) represents two parabolas: �1(q) on the left of qm and �2(q)

on the right of qm. They both connect at qm (see Figure 4 at the end of the

paper). By (3) it is obvious that under the assumption (a� d1)=(2b) < qm <

(a� d2)=(2b) the vertex of �1(q) is found at

qc1 =
a� d1

2b
taking the value �

c
1 =

(a� d1)
2

2
2b

� c1 = b(qc1)
2
� c1;(4)

and the vertex of �2(q) is at

qc2 =
a� d2

2b
taking the value �

c
2 =

(a� d2)
2

2
2b

� c2 = b(qc2)
2
� c2:(5)

In order to have qci > 0; (i = 1; 2), we require that 0 < di < a; (i = 1; 2).

Notice that by equations (4) and (5) we get di = a� 2b qci ; and from 0 < d2
we have qc2 < a=(2b). In this way, we impose on our model:

0 < qc1 < qm < qc2 <
a

2b
:

Introducing the parameters � = qc1=q
c
2 and � = qm=q

c
2 the previous expression

becomes:

Assumption 1: 0 < � < � < 1.

2.2 Duopoly

Let us now suppose that a new �rm with the same cost function enters the

industry. We are now in a situation of duopoly in which �j, the pro�t of

�rm j; (j = 1; 2) depends on the output vector q = (q1; q2) :

�1(q) =

�
�1;1 = �b q

2
1 + ((a� d1)� bq2) q1 � c1 if 0 � q1 < qm

�1;2 = �b q
2
1 + ((a� d2)� bq2) q1 � c2 if qm � q1 � a=b;
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�2(q) =

�
�2;1 = �b q

2
2 + ((a� d1)� bq1) q2 � c1 if 0 � q2 < qm

�2;2 = �b q
2
2 + ((a� d2)� bq1) q2 � c2 if qm � q2 � a=b:

As above, using (4) and (5), these pro�t functions can be written as

�1 =

(
�1;1 = �b

�
q1 � (qc1 �

1
2
q2)
�2
+ b
�
qc1 �

1
2
q2
�2
� c1 if 0 � q1 < qm

�1;2 = �b
�
q1 � (qc2 �

1
2
q2)
�2
+ b
�
qc2 �

1
2
q2
�2
� c2 if qm � q1 � a=b

�2 =

(
�2;1 = �b

�
q2 � (qc1 �

1
2
q1)
�2
+ b
�
qc1 �

1
2
q1
�2
� c1 if 0 � q2 < qm

�2;2 = �b
�
q2 � (qc2 �

1
2
q1)
�2
+ b
�
qc2 �

1
2
q1
�2
� c2 if qm � q2 � a=b:

(6)

2.3 Reaction curves and reaction functions

By equation (6), the local maxima of �2(q) in each of the intervals separated

by qm are

�
max
2 =

(
b
�
qc1 �

1
2
q1
�2
� c1

b
�
qc2 �

1
2
q1
�2
� c2;

(7)

and these are reached for values of q2 that depend on q1. This dependence is

the reaction curve of �rm 2 respect to the output of �rm 1:

R2(q1) =

�
qc1 �

1
2
q1 if 0 � q2 < qm

qc2 �
1
2
q1 if qm � q2 � a=b:

(8)

In the same way we have the reaction curve of �rm 1 respect to the output

of �rm 2:

R1(q2) =

�
qc1 �

1
2
q2 if 0 � q1 < qm

qc2 �
1
2
q2 if qm � q1 � a=b:

The graph of each reaction curve (see Figure 1) is, in general, the graph of a

correspondence and not the graph of a function. R2(q1) = qm for q1 = 2(qc2�

qm) and thus, by (8), if q1 2 [0; 2(qc2 � qm)], R2(q1) takes two values. From

these two possible values of R2, �rm 2 will choose the one that maximizes its

pro�t. Using this value as the only image, we will change R2 into a proper

function.

Consequently, we are interested in �nding the q1 2 [0; 2(qc2�qm)] for which

we have �2;2(R2(q1)) � �2;1(R2(q1)). By (7) we get:

c2 � c1 � b

 �
qc2 �

1

2

q1

�2

�

�
qc1 �

1

2

q1

�2
!
:(9)
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From (2), (4) and (5) we have

c2 � c1 = 2b(qc2 � qc1)qm;(10)

and replacing this value of c2 � c1 in (9), after some algebra we reach

2b(qc2 � qc1)qm � b(qc2 + qc1 � q1)(q
c
2 � qc1);

which duly simpli�ed takes us to

q1 � qc2 + qc1 � 2qm � qh:

Notice that qh < 2(qc2� qm): After the correct reaction has been chosen, each

q2

q1

2(qc
2
�qm) 2qc

1

qc
1

qc
2

qm

q2 = R2(q1)

6 6

Figure 1

q2

q1
2

3
(2qc1�q

c
2)

2

3
(2qc2�q

c
1)2

3
qc
2

2

3
qc
1

2qc
1

qc
2

qh

F1(q2)
F2(q1)

6 6 6 66

qh

I1

I0

I2

I
10

Figure 2

reaction curve becomes a function (see Figure 2),

F2(q1) =

�
qc2 �

1
2
q1 if 0 � q1 � qh

qc1 �
1
2
q1 if qh < q1 � a=b;

(11)

and

F1(q2) =

�
qc2 �

1
2
q2 if 0 � q2 � qh

qc1 �
1
2
q2 if qh < q2 � a=b:

(12)

The intersections of the reaction functions (11) and (12) are the Cournot

points of the model. The possible intersections are

I0 =

�
2

3

qc1;
2

3

qc1

�
; I1 =

�
2

3

(2qc1 � qc2);
2

3

(2qc2 � qc1)

�
;

I2 =

�
2

3

qc2;
2

3

qc2

�
; I10 =

�
2

3

(2qc2 � qc1);
2

3

(2qc1 � qc2)

�
:

Not all of these intersections will take place at the same time. Depending

on the value of the parameter qh some of them will not be feasible. Let us

classify the di�erent possibilities in terms of qh and, consequently, in terms

of qm.
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2.4 Conditions for the existence of Cournot points

For stability reasons, which will be explained in subsection 2.6, we will impose

that qc2 < 2qc1. Recalling that � = qc1=q
c
2, the previous imposition may be

written as:

Assumption 2: � >
1

2

.

The function F2(q1) presents a single discontinuity at qh = qc2 + qc1 � 2qm.

From Figure 2 and from the possible positions of qh, we infer:

� If
2
3
(2qc2 � qc1) � qh � qc2 or, equivalently,

1
2
qc1 � qm �

1
6
(�qc2 + 5qc1), the

only feasible intersection is I2.

� If
2
3
qc2 � qh < 2

3
(2qc2 � qc1) or, equivalently,

1
6
(�qc2 + 5qc1) < qm �

1
2
(
1
3
qc2 + qc1); then I2, I1 i I10 are feasible intersections.

� If
2
3
qc1 � qh <

2
3
qc2 or, equivalently,

1
2
(
1
3
qc2+ qc1) < qm �

1
2
(qc2+

1
3
qc1); then

I1 and I10 are feasible.

� If
2
3
(2qc1�q

c
2) � qh <

2
3
qc1 or, equivalently,

1
2
(qc2+

1
3
qc1) < qm �

1
6
(5qc2�q

c
1);

then we have I0, I1 i I10 as feasible points.

� Lastly, if 0 < qh < 2
3
(2qc1 � qc2), or, equivalently,

1
6
(5qc2 � qc1) < qm <

1
2
(qc1 + qc2), we will only have I0.

2.5 Duopoly vs. monopoly

Let us turn now to the case we are interested in, the case in which the optima

outputs
2
make the duopoly non{quasi{competitive as p1 < p2. In order to

have this situation, we need that the total industry output under duopoly,

Qd, be less than the total output under monopoly, Qm. This last one can

only be Qm = qc2 or Qm = qc1, whereas the possible values for Qd are:

Qd =

8>>>><
>>>>:

4
3
qc2 at I2;

2
3
(qc1 + qc2) at I1 and I10;

4
3
qc1 at I0:

2In monopoly, the optimum output will be the pro�t maximizing output. In duopoly,

the optima outputs are, ex ante, those of the Cournot equilibrium points: I0, I2, I1 and

I10 .
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From qc1 < qc2 we have the following inequalities

qc1 <
4

3

qc1 <
2

3

(qc1 + qc2) <
4

3

qc2;

and from our second assumption, qc2 < 2qc1 we infer

qc2 <
2

3

(qc1 + qc2):

Consequently, the only chance of having Qd < Qm is to have a unique

Cournot equilibrium point at I0: In this case, necessarily, Qd =
4
3
qc1 and

Qm = qc2: We have
4
3
qc1 < qc2; which, in terms of our parameter � becomes the

third assumption of our model:

Assumption 3: � <
3

4

.

To guarantee the requirement that Qm = qc2, monopoly pro�t for output qc2
has to be greater than for output qc1. Using (4) and (5), that means

b(qc1)
2
� c1 < b(qc2)

2
� c2;

which combined with equation (10) leads to

2b(qc2 � qc1)qm < b(qc1 + qc2)(q
c
2 � qc1);

or, simplifying,

qm <
1

2

(qc1 + qc2):

Recalling that � = qm=q
c
2, this last inequality becomes:

Assumption 4: � < 1
2
(1 + �).

Now, we have just seen that in order to have Qd < Qm we require that

a unique Cournot equilibrium point exists at I0. From subsection 2.4 this

requirement is guaranteed if, and only if,

1

6

(5qc2 � qc1) < qm <
1

2

(qc1 + qc2);

that, using our parameters � and �, can be written as:

Assumption 5:
1

6

(5� �) < � <
1

2

(1 + �).

It is worth noticing that by the double inequality in Assumption 5, the param-

eter � has room to exist only if � > 1=2, which is precisely our Assumption

2. Moreover, the second inequality in Assumption5 is exactly Assumption 4.
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It is also clear that Assumption 3, which is needed to ensure Qm = qc2, makes

qh > 0 as can be seen from Figure 2. This last condition, makes it possible

for �rm 2 to maximize its output at q2 = qc2 if q1 = 0:

Assumptions 1, 2, 3, 4, and 5 can be summarized in the following two

double inequalities:8<
:

1
2

< � < 3
4

max

�
�; 1

6
(5� �)

�
< � < 1

2
(1 + �):

(13)

2.6 Stability of the model under duopoly

We will study the stability of our duopoly model assuming that each �rm

adjusts its output proportionally with the di�erence between its actual pro�t

and its pro�t maximizing output, a common adjustment system in the liter-

ature, see Hahn (1962); Fisher (1961); Quandt (1967). We consider that the

second �rm enters the market when �rm 1 is already maximizing its pro�t

producing qc2. We will prove that, under the assumptions of our model, the

Cournot equilibrium point I0 is stable no matter the entry output of �rm 2

within the range [0; qc2]. We will see that Assumption 2 is essential for the

stability of the process as allowing qc2 > 2qc1 breaks the stability for some

productions entries q2(0) 2 [0; qc2] See (16) farther down.

The adjustment mechanism which we consider is8<
:

_q1 = k1 (F1(q2)� q1)

_q2 = k2 (F2(q1)� q2) ;

(14)

where k1 and k2 are the `speeds' of adjustment, k1; k2 > 0; and t = 0 is the

moment �rm 2 enters the market. If we consider as possible outputs all the

q2

q1

Region III

Region II

Region I'

Region I

qh

6

-

qh

I1

I0

I2

I
10

Figure 3. Stability study: The four regions
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points (q1; q2) 2 [0; a=b] � [0; a=b], the reaction of each �rm will depend on

the position of the actual outputs (q1(t); q2(t)) in each of the four regions

we can divide the square [0; a=b]� [0; a=b]: Figure 3 shows these four regions

which we will call I, I', II and III according to the following description:

� Region I: 0 � q1 � qh and qh < q2 � a=b.

� Region I': qh < q1 � a=b and 0 � q2 � qh.

� Region II: 0 � q1 � qh and 0 � q2 � qh.

� Region III: qh < q1 � a=b and qh < q2 � a=b.

In this way, the system of di�erential equations (14) can be split in four

systems, one for each region above, in which the corresponding reaction

functions are continuous and linear. To cover these four possibilities, we

introduce A1 and A2 to denote either qc1 or qc2 depending on the region we

are in. Thus, in Region I, A1 = qc1; A2 = qc2; in Region I', A1 = qc2; A2 = qc1;

in Region II, A1 = qc2; A2 = qc2 and, lastly, in Region III, A1 = qc1; A2 = qc1.

Using this convention, each of the four linear systems in (14) can be written

as 8<
:

_q1 = k1
�
A1 �

1
2
q2 � q1

�
_q2 = k2

�
A2 �

1
2
q1 � q2

�
:

The general solution is:8>>><
>>>:

q1(t) = D1e
��1 t

+ E1e
��2 t

+

2

3

(2A1 � A2)

q2(t) = D2e
��1 t

+ E2e
��2 t

+

2

3

(2A2 � A1);

(15)

where �1 and �2 are real and positive

�1 =
(k1 + k2)�

p
(k1 + k2)2 � 3k1k2

2

;

�2 =
(k1 + k2) +

p
(k1 + k2)2 � 3k1k2

2

;

and D1, E1, D2 i E2 real constants that depend on k1, k2, and the initial

conditions q1(0) and q2(0). The stationary solution is obviously�
2

3

(2A1 � A2);
2

3

(2A2 � A1)

�
;
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that is to say, each of the four points I0; I1; I10; I2; depending on the region

in which the motion starts.
3

The fact that �1 and �2 in (15) are strictly positive ensures the global

stability of each of the attractors if the motion of (q1(t); q2(t)) stays within

the region of validity of the system of di�erential equations. If the motion

of our output vector takes it from one region to another, the values of A1

and A2 change and the stationary solution with them. It is then required a

more detailed study of the motion of our output vector (q1(t); q2(t)).

If q2(0) > qh, the initial point (q1(0); q2(0)) is located in Region III where

A1 = qc1; A2 = qc1 and the attractor is I0. If q2(0) � qh, then (q1(0); q2(0)) is

located in Region I' but the corresponding attractor is also placed in Region

III and the orbit of (q1(t); q2(t)) eventually will enter Region III. When this

happens, the system of prevailing equations will be the one whose attractor

is I0. The actual orbits may enter or leave di�erent regions depending on

the sign of _qi. To be more speci�c, if (2qc1 � qc2)=2 < qh < 2(qc1 � qc2)=3 there

would be orbits going from Region III into Region I' through a point on the

segment �
q1(t) 2 (2qc1 � 2; qc2)

q2(t) = qh:

It is easy to see that, in this case, the second component of the orbit, q2(t),

must attain a minimum value exactly on the line q2 = qc2� (1=2)q1; and then

will re{enter Region III through a point on the segment�
q1(t) 2 (qc2 �

1
2
qh; 2q

c
1 � 2qh)

q2(t) = qh:

After that, the orbit does not enter Region I' again. A similar behavior may

occur when we start from an initial point q2(0) very near to qc2 and a value

for k1 � k2. In this case, the orbit could move from Region III to Region I

behaving in a similar way as before.

To complete the stability study, let us mention that in the case qc2 �

2qc1, proceeding as we did in subsection 2.3, we would have as one of the

intersections

I10 =

�
2

3

j2qc2 � qc1j ;�
2

3

jqc2 � 2qc1j

�
:(16)

Consequently, in this case, the attractor of an initial state in Region I' would

be placed in the non{positive zone for q2. That would mean that the output

of �rm 2, q2(t), would decrease till become zero. Firm 2 would leave the

market and I0 would not be stable.

3Let us recall that we are under the assumptions of our model as summarized in (13).

That means that qc
2
< 2qc

1
, and that the Cournot point I0 is unique.
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3 Oligopoly

Let us extend the validity of our model allowing the entry of new �rms in

the market. We must see how our assumptions concerning � and � need be

modi�ed as new �rms enter the industry, one at a time, with the same cost

function, (1), till we get an N{poly. We still want to have an increase in the

price with respect to the monopoly price, p1 < pj; (j = 2; : : : ; N).

3.1 Reaction curves and reaction functions

The pro�t function of �rm j; (j = 1; : : : ; N) will depend on the output

vector q = (q1; : : : ; qj; : : : ; qN):
4

�j(q) =8>>>>><
>>>>>:

�j;1 = �b(qj � (qc1 �
1
2

P0

j qk))
2
+ b (qc1 �

1
2

P0

j qk)
2 � c1;

if 0 � qj < qm

�j;2 = �b(qj � (qc2 �
1
2

P0

j qk))
2
+ b (qc2 �

1
2

P0

j qk)
2 � c2;

if qm � qj � a=b:

(17)

The reactions curve of �rm j with respect to its competitors is:

Rj(q1; : : : ; qj�1; qj+1; : : : ; qN) =

8<
:

qc1 �
1
2

P0

j qk if qj < qm

qc2 �
1
2

P0

j qk if qm � qj � a=b:

As in duopoly, we notice that for 0 �
P0

j qk � 2(qc2 � qm), Rj takes two

values. Once more, we are interested in �nding the

P0

j qk for which we have

�j;2(Rj) � �j;1(Rj). Using equation (17) and c2�c1 = 2b(qc2�qc1)qm we have

that this is true if P0

j qk � qc1 + qc2 � 2qm = qh:

With this we get the reaction as a true function:

Fj(q1; : : : ; qj�1; qj+1; : : : ; qN) =

8<
:

qc2 �
1
2

P0

j qk if

P0

j qk � qh;

qc1 �
1
2

P0

j qk if qh <
P0

j qk � a=b:

(18)

4We use the notation
P

0

j qi to denote total output of all the industry excluding �rm j:
P

0

j qi = (q1 + � � �+ qN )� qj :

12



As we have two choices for each function, there exist 2
N
intersections, and

consequently, 2
N possible Cournot points. If, as before, we denote Aj as one

of the possible values qc1 or q
c
2, we can write the corresponding system as:8>>>>><

>>>>>:

q1 = A1 �
1
2
(q2 + q3 + � � �+ qj + � � �+ qN )

.

.

.

qj = Aj �
1
2
(q1 + q2 + � � �+ qj�1 + qj+1 + � � �+ qN )

.

.

.

qN = AN �
1
2
(q1 + q2 + � � �+ qj + � � �+ qN�1):

Its solution
5
is

 
2A1 �

2

PN

k=1Ak

N + 1

; : : : ; 2Aj �
2

PN

k=1Ak

N + 1

; : : : ; 2AN �
2

PN

k=1Ak

N + 1

!
:

(19)

The industry output at each of these points is Q(N) = 2

PN

k=1Ak=(N + 1):

3.2 N-poly vs. monopoly

If for any number of �rms in the oligopoly, N � 2, the price pN has to be

greater than the price of monopoly, p1, and, consequently,
P

qi < qc2 we need

to have

2

N + 1

(A1 + � � �+ AN) < qc2:(20)

Now if i of the Ak take the value qc2 and the rest N � i take the value qc1,

inequality (20) says

2

N + 1

((N � i)qc1 + i qc2) < qc2;

which, dividing by qc2 and using � = qc1=q
c
2, becomes

2

N + 1

((N � i)�+ i) < 1:

As we are assuming � > 1=2, this last equation implies

2 ((N � i)
1

2

+ i) < N + 1 () i < 1:

5The solution can be easily found adding up both sides of all the equations, (N +

1)(q1 + � � �+ qN ) = 2(A1 + � � �+AN ), which tells us that
P

0

j qk = 2(A1 + � � �+AN )� qj .

Replacing this value in equation j of our system we get the solution given.

13



Contradiction that proves that A1 = A2 = � � � = AN = qc1 and equation (20)

becomes � < (N + 1)=(2N). The restrictions imposed on � are now

1

2

< � <
N + 1

2N
;

which, in the case N = 2 coincide with the known ones for duopoly.

Now, it is easy to see that, as 1=2 < � < (N + 1)=(2N), from the 2
N

Cournot points in (19), only N + 2 have all the coordinates positive:

I0 =

�
2

N + 1

qc1; : : : ;
2

N + 1

qc1

�

IN+1 =

�
2

N + 1

qc2; : : : ;
2

N + 1

qc2

�

and, for j = 1; 2; : : : ; N

Ij =

0
BB@ 2

N + 1

(2qc1 � qc2); : : : ;
2N

N + 1

qc2 �
2(N � 1)

N + 1

qc1| {z }
j

; : : : ;
2

N + 1

(2qc1 � qc2)

1
CCA :

3.3 Existence and uniqueness of I0

Let us study what conditions need to be imposed on qh to guarantee the

uniqueness of I0. By the de�nition of Fj, (18), Ij can exist if

0 �
P0

j qk � qh;

as Ij is the intersection of

Fj = qc2 �
1

2

P0

j qk

and all the other Fi with i 6= j

Fi = qc1 �
1

2

P0

i qk:

Thus if 0 < qh <
P0

j qk; when, for all k; k 6= j qk = 2=(N + 1) (2qc1 � qc2), Ij
will not exist. The condition on qh becomes

0 < qh <
2(N � 1)

(N + 1)

(2qc1 � qc2):

14



From the fact that (N � 1)=(N + 1) increases with N , the inequality will be

veri�ed if it is only checked for N = 2,

0 < qh <
2

3

(2qc1 � qc2);

precisely the assumption made under duopoly.

In this way, the existence and uniqueness of I0 for any N{poly, N � 2 is

guaranteed if

1

6

(5� �) < � <
1

2

(1 + �);

our Assumption 5.

3.4 Positive pro�t

Finally, if our model has to have some feasibility we need to ensure that

the N �rms in the N{poly equilibrium at I0 make positive pro�t: for all

j; j = 1; : : : ; N , �j(I0) > 0. This is equivalent to

c1 <
4b

(N + 1)
2
(qc1)

2:

3.5 Summing up

We can summarize our �ndings in the case of N{poly for N � 2. The

assumptions8>>>>>>><
>>>>>>>:

1

2

< � <
N + 1

2N

max

�
�; 1

6
(5� �)

�
< � < 1

2
(1 + �)

c1 <
(a� d1)

2

(N + 1)
2b

=

4b

(N + 1)
2
(qc1)

2

(21)

guarantee the existence and uniqueness of a Cournot equilibrium point, I0,

with a non{quasi{competitive price structure p1 > pN .

3.6 The stability of the Cournot points

Let us reorder the �rms according to their speeds of adjustment and consider

that k1 � k2 � � � � � kN : As before, the system of N di�erential equations is�
_qi = ki

�
Ai �

1

2

q1 � � � � � qi � � � � �
1

2

qN

�
i = 1; � � � ; N:

15



Its solutions are given by the vector q(t):

qi(t) =

NX
j=1

Di;je
��j t

+ �qi i = 1; � � � ; N;

where �qi are the di�erent Cournot points (19). The ��j are the eigenvalues

of the matrix of the system,0
BB@

�k1 �k1=2 � � � �k1=2

�k2=2 �k2 � � � �k2=2

� � � � � � � � � � � �

�kN=2 �kN=2 � � � �kN

1
CCA = �

1

2

0
BB@

2k1 k1 � � � k1
k2 2k2 � � � k2
� � � � � � � � � � � �

kN kn � � � 2kN

1
CCA :

Now, the eigenvalues of the last matrix above are all real and positive. This

can be seen just considering the characteristic polynomial,

P (x) =

��������
2k1 � x k1 � � � k1

k2 2k2 � x � � � k2
� � � � � � � � � � � �

kN kN � � � 2kN � x

��������
(22)

and noticing that P (0) = (N + 1)k1k2 � � �kN > 0 and

P (kj) =

��������
2k1 � kj k1 � � � k1

k2 2k2 � kj � � � k2
� � � � � � � � � � � �

kN kN � � � 2kN � kj

��������
= kj

Y
i6=j

(ki � kj):

If k1 < k2 < � � � < kN , we have that the signs of the sequence P (k1); P (k2); : : : ;

P (kN); P (1) are alternated This fact guarantees that the N roots of P (x)

are one in each interval (k1; k2); : : : ; (kN�1; kN); (kN ;1). If ` consecutive ki's

are equal, ki itself becomes a root of multiplicity ` � 1, which can be seen

di�erentiating ` times P (x) from its determinant form, (22) and the rest of

the roots remain in the same intervals as before.

Consequently, the �j > 0 for j = 1; : : : ; N: This proves that the station-

ary solutions of our system (or systems) are globally stable.

4 Stability for a new entry

It is not easy to carry out the study of the stability of the model following the

same steps as in duopoly. The complexity of the regions in which [0; a=b]N

gets divided makes it much too di�cult. We have two ways to try to establish
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it: to apply a test as Hahn's test, see Hahn (1962), which is clear{cut and easy

to apply; or to move carefully from the N{poly equilibrium situation to the

new situation with a new entry. The �rst way, requires the di�erentiability

of our cost function which can only be ensured if the actual outputs of all

�rms keep on the same side of qm. Let us explore the second, more direct,

alternative. Let us suppose then that our N{poly �rms' output is at the

Cournot point (2qc1=(N +1); : : : ; 2qc1=(N +1)); and the new �rm enters with

an output qN+1(0) in the range [0; 2qc1=(N +1)]: Let us prove that with these

initial conditions, the new system has as its new equilibrium point

q(q1; : : : ; qN+1) =

�
2

N + 2

qc1; � � � ;
2

N + 2

qc1

�
:

We will prove it by showing that with the initial conditions just mentioned,

the orbits of the motion are con�ned in the region where the prevailing system

of di�erential equations is always the same; that is the one for which we

consider the reaction function in (18) corresponding to

P0

j qk > qh (j =

1::N + 1): If Q(t) denotes the total output of the industry at moment t,�
_qi = ki

�
qc1 �

1

2

Q�
1

2

qi

�
(i = 1; � � � ; N + 1):(23)

Adding up all the equations before, we set up a di�erential equation that

Q(t) must verify:

_Q =

N+1X
i=1

ki

 
qc1 �

1

2

Q�

PN+1
i=1 (kiqi)

2

PN+1
i=1 ki

!
:(24)

Now, turning to our purpose, we want to make sure that the orbit of vector

q(t) veri�es for all t,
P0

i qj(t) > qh (i = 1; : : : ; N + 1).

The initial conditions we have, (2qc1=(N + 1); : : : ; 2qc1=(N + 1); qN+1(0))

verify 8><
>:

0 � qi(0) �
2

N + 1

qc1 (i = 1; : : : ; N + 1)

2N

N + 1

qc1 � Q(0) � 2qc1:

Let us see that the orbit of (q1(t); : : : ; qN+1(t)) and also that of Q(t), get

con�ned to that same region, not only for the initial values but for all t.

Lemma 1 As long as for t > 0 and for all i = 1; 2; : : : ; N + 1, we have

0 � qi(t) � 2qc1=(N + 1) then we will have

2N

N + 1

qc1 < Q(t) < 2qc1:(25)
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Proof To prove this result we will use a simple straightforward mathemat-

ical fact. If f : [0;1) �! R is a continuously di�erentiable function and

f(0) < H, then either f(t) < H forever or the �rst time that f reaches the

value H, let us say for t = t� > 0, we must have f 0(t�) � 0: If f(0) > H,

then either f(t) > H always or the �rst time that f(t�) = H we must have

f 0(t�) � 0. Lastly if f(0) = H, if f 0(0) > 0; then either f(t) > H for all

t > 0 or the �rst time after t = 0 that the value H is attained, we must have

f 0(t�) � 0 and if f 0(0) < 0, then either f(t) < H for all t > 0 or the �rst

time after 0 we have f(t�) = H we must have f 0(t�) � 0.
6

With this result in mind, and noticing that all our qi are continuously

di�erentiable in�nitely many times, and consequently Q too, we reason in

the following way.

Under the hypothesis of the lemma, we have Q(t) =

P
qi(t) � 2qc1.

The equal sign can only be if all the qi's take the value 2qc1=(N + 1) at

the same time. If t� > 0 is the �rst time this happens, we will have for

all i = 1; 2; : : : ; N + 1 _qi(t
�
) = ki(�2q

c
1=(N + 1) < 0 and consequently,

_Q(t�) =
P

_qi(t) < 0: As Q(0) � 2qc1 (and if Q(0) = 2qc1;
_Q(0) < 0) by the

mathematical remark we should have _Q(t�) � 0; contradiction that proves

that for all t > 0; Q(t) < 2qc1:

If t�; (t� > 0) is the �rst time that Q(t�) = 2Nqc1=(N + 1), then for all

i = 1; : : : ; N + 1 we have _qi(t
�
) � 0 which implies that _Q(t�) � 0. Equality

is in fact impossible as it would imply that all _qi(t
�
) = 0 simultaneously

and this can only happen if all the qi(t
�
) = 2qc1=(N + 1) which would mean

that Q(t�) = 2qc1, which is absurd. We have then _Q(t�) > 0: Now, Q(0) �

2Nqc1=(N + 1) (and if Q(0) = 2Nqc1=(N + 1), then _Q(0) > 0), thus by our

mathematical remark we should have _Q(t�) � 0. This contradiction proves

that for all t > 0; Q(t) > 2Nqc1=(N + 1): Q.E.D.

Now we must see that, for all t, the hypothesis of our lemma is valid, that

is to say 0 � qi(t) � 2qc1=(N+1):We will reason as in the proof of the lemma.

If t� > 0 is the �rst moment in time that one of the �rms q`(t
�
) = 0; the

lemma applies for 0 � t � t� and we can infer that Q(t�) < 2qc1 which implies

qc1�(1=2)Q(t�) > 0 and this means _q`(t
�
) > 0: Using our mathematical result

we should have _q`(t
�
) � 0. In this way we see that q`(t) cannot be 0 for any

value of t. An analogous reasoning leads us to the result that q`(t
�
) cannot

reach 2qc1=(N + 1) ever.

6If f(0) = H and f 0(0) = 0 then there might not be a FIRST time after t = 0 where

f(t) = H . f can cross y = H an in�nity of times. Think of f(x) = x3 sin(1=x); f(0) = 0.
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Summing up, we have that8>>><
>>>:

0 < qi(t) <
2

N + 1

qc1

2N

N + 1

qc1 < Q(t) < 2qc1:

for all t > 0:

These results prove that, for all i the orbit of qi(t) remains con�ned to the

region where

P0

i qj > qh :

P0

i qj(t) = Q(t)� qi(t) >
2N

N + 1

qc1 �
2

N + 1

qc1 =
2(N � 1)

(N + 1)

qc1 > qh:

Notice that for N = 1 this last chain of inequalities says simply that q1 > 0 or

q2 > 0 and we cannot conclude that our set of di�erential equations is always

the same. That explains the di�erent treatment for the case of monopoly to

duopoly.

Incidentally, the fact that for all i, and all t, qi(t) < 2qc1=(N + 1) < qm
allows us to use Hahn's condition (see Hahn (1962)) to prove stability: d0 <

C 00
when d00 = 0 and C 00

=constant.

5 A numerical example

We �nish by exhibiting a numerical example of our model. To build it we need

to go from one assumption to another taking good care that no contradictions

arise.

Let our demand function be p = 100� 2q, and N = 5. The cost function

of our 5 �rms has to be carefully chosen:

1. As a = 100 and b = 2 we must have qc2 < 25: Let us choose qc2 = 24.

2. As N = 5; 1=2 < � < (5 + 1)=(2� 5); we choose � = 0:55.

3. Hence qc1 = � qc2 = 13:2.

4. The parameter � must satisfy

0:7416666 : : : = max (�; (1=6)(5� �)) < � < (1=2)(1 + �) = 0:775;

we choose � = 0:75.

5. Thus qm = � qc2 = 18.

6. From di = a� 2b qci (i = 1; 2), we have d1 = 47:2; d2 = 4:
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7. The �xed costs c1 must verify c1 < (8=36)� 13:22: We choose c1 = 10.

8. Lastly from c2 = c1 + (d1 � d2) qm we have c2 = 787:6.

The cost function of our example will be:

C(q) =

�
10 + 47:2 q if 0 � q < 18

787:6 + 4 q if 18 � q < 50:
(26)

Table 1 shows the di�erent total outputs and prices as we move from N = 1

to N = 5 :

Table 1

Outputs and prices

N Q PN

1 24.00 52.00

2 17.60 64.80

3 19.80 60.40

4 21.12 57.76

5 22.00 56.00

qm qc
1
qmq

c
2

qqq

p C �

Demand Cost Monopoly pro�t

Figure 4

6 Conclusions

We have exhibited a classical Cournot oligopoly model in which monopoly

price is lower than any oligopoly price for successive free entry up to N �rms

with N given. In all cases the equilibrium solution reached is unique and

stable under habitual adjustment mechanisms. We stress the fact that in

our model, the choosing of one of the parameters � is con�ned to a small

interval, 1=2 < � < (N + 1))=(2N). When N ! 1, � ! 1=2; 2qc1 ! qc2
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and then the oligopoly solution tends to a total industry output of 2qc1 as

lim2Nqc1=(N +1) = 2qc1. In this case, it is easy to see that our marginal cost

is exactly the market price and we are in perfect competition with a market

output and price which is exactly the same as in monopoly.
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