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Abstract

In the context of linear latent-variable models, and a general type of dis-
tribution of the data, the asymptotic optimality of a subvector of minimum-
distance estimators whose weight matrix uses only second-order moments is
investigated. The asymptotic optimality extends to the whole vector of pa-
rameter estimators, if additional restrictions on the third-order moments of the
variables are imposed. Results related to the optimality of normal (pseudo)
maximuni-likelihood methods are also encompassed. The results derived con-
cern a wide class of latent-variable models and estimation methods used rou-
tinely in software for the analysis of latent-variable models such as LISREL,
EQS and CALIS. The general results are specialized to the context of multi-
variate regression and simultaneous equations with errors in variables.




1 Introduction

Consider a vector s of sample moments that converges in probability to o, a
vector of population moments, and let ¢ = 0(f) be a model for o. Here, § is
a vector of parameters and o(.) is a continuously differentiable vector-valued
function. Consider the minimum-distance (MD) estimator of § defined as

the solution 8 of
Mingee(s — 0(0))'V,,(s - o(8)), (1)

where O is the parameter space of § and V,, is a positive semi-definite matrix
that converges in probability (when sample size n — oo ) to V, a positive
semi-definite matrix (with V, of the same rank as V). Under typical regu-
larity conditions, it can be derived (e.g., Chamberlain, 1982; Browne, 1984;
Bentler and Dijkstra, 1985; Shapiro, 1986; Fuller, 1987 Sect. 4.2; Satorra,
1989) that 6 is consistent and asymptotically normal with asymptotic vari-
ance matrix (avm)

avm (8) = (A'VA)-IA'erA(A'VA)-', (2)

where A = (3/06')o(8) and T’ = avm(s). If V =T ~ and A is containad
in the column space of I' ( alternatively, if V = VI'V), the corresponding
estimator, which we denote by 4, is asymptotically optimal (AO) since it
has minimum avm within the class of MD estimators that minimize (1); in
this case, (2) reduces to

avm(d) = (A'T~A)7, (3)

where for matrix H, H~ denotes a g-inverse of H (i.e. , HH™H = H).

In this paper we will be concerned with models where o is the vector of
non-redundant (uncentered) second-order moments of a vector of observable
variables z (possibly an augmented vector), and s is the corresponding vector
of sample moments. We will discuss situations where there is equality among
submatrices on the right-hand side of (2) and (3) even when V # I'™ ; i.e.,
we are concerned with conditions for asymptotic optimality of a subvector of
MD estimators. In particular, we will show that, under certain conditions to
be made explicit below, the normal (pseudo) maximum-likelihood estimator
of a subvector T of § is AO even when z is nonnormally distributed.

Basically, two types of MD estimators are considered. The AQ estimator
6 introduced above, and the MD estimator § associated with

V., =2"'D'(§"1® S~1)D, (4)




or with a weight matrix whose probability limit is
Q-—l - 2—1 D’(E—l ® E-—l)D’ (5)

where S and ¥ are, respectively, the sample and population (uncentered)
second-order moment matrices of z. Here D and D% are respectively the
"duplication” and "elimination” matrix so that vec A = Dv (A) for sym-
metric matrix A, where "vec” is the usual columnwise vectorization oper-
ator and v (A) is obtained from vec A after eliminating the duplicated ele-
ments associated with the symmetry of A. It holds that v (4A) = D*vec A
where D¥ = (D’D)~' D is the Moore-Penrose inverse of D (see Magnus and
Neudecker, 1986, 1991). For reasons to be given below, 6 will be called a
normal MD (NMD) estimator.

The results concerning the NMD estimator 6 are of high practical rel-
evance since it is (asymptotically) equivalent to the usual normal (pseudo)
maximum-likelihood estimator (PML) of #. For the wide class of latent-
variable models considered in this paper, PML and NMD estimators are
available in conventional computer programs for structural-equation mod-
els, such as LISCOMP (Muthén, 1987), LISREL (Joreskog and Sérbom,
1989), EQS (Bentler, 1989), LINCS (Schoenberg, 1989) and CALIS (SAS,
1990).

The present paper relates to the work of Anderson and Amemiya (1988),
Browne and Shapiro (1988), Anderson (1989), Satorra and Bentler (1990),
and Mooijaart and Bentler (1991) on asymptotic robustness in covariance-
structure analysis. We consider a more general class of models, however,
since we encompass models that restrict means in addition to covariances.
This is not a trivial extension, since it implies the solution of issues associated
with generalized inverse matrices. On the other hand, the present work
focuses on the robustness of the property of asymptotic optimality. The issue
of asymptotic optimality was also considered in Browne-Shapiro’s work, who
exploited Shapiro’s (1987) results on this topic ( Shapiro’s results, however,
relied heavily on Rao and Mitra’s (1971, Chapter 8) conditions for optimality
in least-squares estimation). In contrast to that, our paper is self-contained
and does not draw on the theory of optimality in least-squares estimation.

More recently, Browne (1990) has also considered models that involve
restrictions on means as well as on covariances. We deviate from Browne’s
work in several respects. One difference is that we are concerned not only
with asymptotic optimality of the whole vector of parameter estimators, but
also with AO of a subvector of estimators (for example, the estimators of
regression coeficients in a regression model). This enables us to get results




on AO without restricting the third-order moments of observable variables,
as required in Browne (1990). Further, we involve means in the analy-
sis by using the augmented moment matrices (as advocated, for example,
in Bentler, 1983). The use of augmented moment matrices enables us to
simplify theory and to carry out mean-and-covariance structure analysis by
using standard software for covariance structures. Finally, in contrast with
Browne’s approach, we do not use the theory of cumulants.

For an extensive discussion of minimum-distance estimation in mean-
and-covariance structure analysis, and robustness results with regard to the
validity of standard inference under violation of distributional assumptions,
see the recent work of Satorra (1992a); his work, however, does not touch
on the issue of asymptotic efficiency.

The plan of the paper is as follows. Section 2 presents the model frame-
work to be considered and general results that give conditions for AOQ of
NMD and PML. Specialization of the results to a general type of mul-
tivariate regression models, possibly with errors in variables, is discussed
subsequently in Section 3.

The notation "var” for the variance matrix, and r* = r(r + 1)/2 will be
used. Given a square matrix H, the leading principal submatrix of H of
order ¢t x t will be denoted by [H];x;. Finally, the column space generated
by a matrix A, will be denoted as M(A).

2 Models and main results

The class of models to be considered in the present paper includes the fol-
lowing general latent-variable model:

{z = An+e

n = Bn+¢, (6)

where 2 is a p X 1 vector of observable variables, 1 is an m x 1 vector of
(possibly) latent variables, € is a p X 1 vector of measurement errors of zero
mean, § is a random vector composed of disturbance terms of equations
and exogenous variables and A and B are parameter matrices. The variable
£ is assumed to be of zero mean except (possibly) for its last component
which may be identically equal to unity. It is assumed that ¢ and £ are
uncorrelated, i.e. Fcf’ = 0, where £ denotes mathematical expectation,
and that the (uncentered) second-order moment matrices ¥ = Fee'(p X p)
and ® = E£€'(m x m) are finite. This is a model that encompasses the




class of so-called LISREL models (factor-analysis models, regression with
errors in variables, and so forth). Note that (6) implies a specific moment
structure, o = o(#), for the vector 0 = v (Ezz’) of (uncentered) second-

order moments, where 6 is a parameter vector that assembles the elements
to be estimated in the matrices A, B, ® and ¥. For model (6), the first
and second derivatives of 0 = o(8) can be found in Neudecker and Satorra
(1991).

Note that (6) can be writen as

z=A{I - B) "€ +e=[AU-B) 1€, T, (7)

That is, model (6) is a specific case of the following multivariate linear
relation (e.g., Anderson, 1989)

L
Z=/.l.+ZA,'6,' (8)

1=1

where the é;’s are mutually uncorrelated random (multivariate) variables of

zero mean; that is
Eé;8; =0, when 1 # j, (9)

and p = Ez is the mean of z. Two cases will be considered in the present
paper: the case where z = (y’,1)’ is an augmented vector (where y may
have Ey = 0); and the case where where z is not an augmented vector
but Ez = 0. This is not restrictive, since the remaining case, z is not an
augmented vector and Ez # 0, can be reformulated to one of these.

The following assumption needs to be introduced.

ASSUMPTION Al:

a) z = pu(r) + L, Ai(7)é;, as in (8), where pu(r) and the A;(7)’s are
continuously differentiable functions of a t-dimensional parameter 7;

b) the ¢ x 1 parameter vector

= [, v (K1) VI(Ki)y ooy VI(KLL)], (10)

with K;; = E§;68. ,i=1,... L, is unrestricted;

t
c) £ = Ez2' is a positive definite matrix. m

Note that Assumption Al b) implies that the moment matrices K;; are
unrestricted symmetric matrices. The Assumption Al c) plays a crucial role
in the derivations.




Typically, the analysis is based on a sample 2;,..., 2z, of n independent
observations of z and the data are summarized by the ( p* X 1) vector of
sample moments s = v (5), where

Sziz,-z:-/n (11)
1=1

is the usual sample (uncentered) second-order moment matrix. Straight-
forward application of the central limit theorem shows that the vector of
sample moments s is asymptotically normal with mean ¢ = v(var z) and
asymptotic variance matrix

[ = avm(v/n's) = var (v(z2')), (12)

which we assume to be finite. A consistent estimate of I' can be obtained
easily as follows. Let d; = v(z2/),i = 1,2,...,n; thus, s = Y 1., d;/n.
Clearly, when z has finite eighth-order moments, the (p* x p*) matrix of
sample fourth-order moments

= f_‘l(di - 8)(di —8)'/(n - 1) (13)
=1

is an unbiased and consistent astimator of I'. Consequently, the MD analysis
with A contained in the column space of I' and weight matrix V, equal to
a generalized irverse of the matrix I' will be AO . Further, substitution of
I of (13) for T in (2) produces a consistent estimator of the avm (§). The
standard errors of parameter estimators obtained in this way will be called
asymptotic robust standard errors, since they are valid (asymptotically) re-
gardless of the distribution of the data. In the context of regression analysis,
such asymptotic robust standard errors can be seen to be identical to the
(heteroskedasticity-) robust standard errors proposed in White (1982).

In order to arrive at the main results of this paper, we will now obtain
some implications of (8) and (9). Clearly, (8) implies

L
v(z2)= D} (p®u)+ z D} (A; ® Ai)Ds,v (6:6)+

=1

z D} (A; ® A;)vec 6.-6;+
1<i,3<L
1#2




Hu e A8, +ZD+ (Ai ® p)bi;

=1

ll'Mr-

hence,

L
o=Ev(22)=D}Yu®u)+ Z D} (A ® A;)Ds, v (Ky), (14)
1=1
where (9) was used. Combining the above equation (14) with Assumption A1l
b), we obtain that the derivative matrix A = (9/98')o(8) will be partitioned
as

A= [Al,D+(A1 & AI)D,...,D+(A.‘ & A.‘)D,...,D+(AL ® Ar)D]
= [A1,Aq], (15)

say, where Ay = (9/97')a(8) is a p* x t matrix.

In the sequel 4 and @ denote the MD estimators when V equals ™!
or I'", respectively, where 2! is given in (5), under the assumption that
A is contained in the column space of I'. Recall that any MD estimator
with weight matrix V, converging in probability to Q™! (alternatively, to
I'") will have the same asymptotic properties as é (alternatively, 8). The
corresponding estimator of the subvector 7 of § will be denoted by 7 (alter-
natively, 7).

Before going into the Theorems of the paper we need to consider some
preliminary results.

LEMMA 1. (cf. Satorra, 1992b) Let z = p + "% | A;6; where the ;s
are mutually independent and of zero mean. Then

L
var (v(z2')) = Q + Z{?D*’(A.- ® ) [E 8i(v 6:6))] D'(A; ® A;) DY+ (16)
1=1
+2 D+(A,' ® A,‘) D [E(V 6,6:)6:] (A,' ® /.t)l D+’+

+D*(A; ® Ai) D [var (v4,6}) - 2 D* E(6:67) ® E(6:6})D*'] D' (A; ® A;Y D*'},

where .
Q=Q-2D%(up' ® pu')D*’, (17)

Q=2DY(T®T)DY, (18)
u=FEzand ¥ = Ez2.




REMARK 1. When yin z = (y',1)' is normally distributed, (16) above
implies )
var (v(zz')) = QL. (19)

LEMMA 2. When z = (y', 1), for general distribution of y, it holds
i)
r~ 0
r= ( - ) (20)

- Q< 0
n:(o 0), (21)

where I'* and Q* are (p* — 1) x (p* — 1) positive semi-definite matrices;
iii) under Assumption Al c), ' and Q* are positive definite;
iv) under Assumption Al b),

A*
ae[2]. -

where A* is a (p* — 1) X ¢ matrix;
v) Under Assumption Al c),

and ii)

M(A) C M(T), (23)
and

M(T) = M(9), (24)
and, consequently,

M(A) C M(Q); (25)

vi) under Assumption Al ¢) and A contained in the column space of I’
and ,
A'T"A = A*T* 1A (26)
and
A'Q™A = AYQIAT (27)
Proor. The equality (20) follows trivially from the definition of T in
(12) and the fact that when z = (y’,1)' then the last component of the
vector v (22') is constant to unity. We will prove (21) by showing that Q
is also a variance matrix of a vector whose last component is constant to
unity. Effectively, defining z = (3’,1)’, where § is the normally distributed




vector that has first- and second-order moments equal to those of y, and
using Remark 1, we obtain

var (v(3%')) = Q, (28)
since g = Fz = Fz and £ = Ez2' = E:Z'; hence (21) is proved. Under
Assumption Al c), the above random vectors y and § have a non-singular
covariance matrix, hence result iii) follows. Result iv) follows trivially by
differentiation of a constant (unity). Result v) is a trivial consquence of i) to
iv). Finally, we prove vi) by noting that under (23) and (25) the left-hand
side expressions of (26) and (27) are invariant under choice of g-inverses and

=t o) (et o
0 0 0 0

are g-inverses of I' and {1 respectively m

When 2 is not an augmented vector, then results (23), (24) and (25)
trivially hold.
REMARK 2. Note that (15) and (16) can be combined to write I in the

form i
I'=Q+ A,CA, + A;B + B'A), (29)

where A, is the submatrix of A defined in (15), C = diag(Cy;,-..,Cq,--.,CLL)
and B = (By,...,B!,...,BL)Y with

Cii = var (v6;6)) — 2 D* E(6:6!) ® E(6;6,)D*"

and
B = 2 [E(v 6:6))6]] (Ai ® u)' DY

further, (29) can be rewritten as
'=sQ+AJCJA'"+AJB + B'J'A, (30)

where J = [0 : I(q_q)' with I(,_ an identity matrix of dimension (g - t).
When z = (y',1), then pre- and post- multiplying the equality (30) by
the matrices J*' and J* respectively, where J* = [I(p_1) : 0], we obtain

=0+ A*JCJ'A* + A*JB* + B*'J'AY, (31)

where B* = BJ*.




The matrices C and B will obviously vary with the type of non-normality
of z and will simply vanish when y of z = (y',1)' is normally distributed.
Note also that when Ez = 0, then B equals zero and 2 = 0.

LEMMA 3. Under Assumption Al, it holds that i) the MD estimator
associated with V = Q= has the same asymptotic variance matrix as the
one associated with V = Q71; ii)

A'QTA = A'Q7A; (32)
and iii)
(AT7A8)  exe = [(A'Q7A) Voxe- (33)

PrOOF. Result i) follows from the fact that Q! is a g-inverse of  (see
Satorra & Neudecker, 1993), (24) and (25); ii) results from noting that when
M(A) C M(Q) then A’QQA is invariant under the choice of g-inverse. We
will now prove the result iii). When z is not an augmented vector, then
= Q and Q and T are positive definite, hence

(AT Ay 1A' 'A) !t = (AT Ay a'Q la-AT A A'Q T A) !
= (ATT'A)T'AT YT - )0 ta@a’e~'a)™!
= (AT'A)'ATY(AJCI'A' + AJB + B'J'AYQTAAQ ' A)!
=JCJ' + JBQIA(A'Q7 AT+ (AT 1A) AT B

where (30) was used; consequently,
[(AT7'A) Nexe = [(A' Q7T A) Mixe = [(A'TT'A) T = (A'Q7TA)  Mixe = 0,
When z is an augmented vector, then we can use (26) and (27) and proceed
similarly with (31) replacing (30). w

We are now in a position to state the main result of the paper.
THEOREM 1 Assume z = u+ Y% A;6; as in (8) and (9) with the 6;’s being
mutually independent, and let Assumption Al hold. Then the asymptotic
variance matrices of ¥ and 7 are both equal to [(A'Q71A) " ix:.
Proor By Lemma 3 we know that the MD estimator associated with

V = Q- has the same asymptotic variance matrix as the one associated
with V = Q~!; hence, we can proceed evaluating the asymptotic variance

10




matrix of the MD estimator associated with V = Q. Using (24), (25) and
(30), we obtain

(A'QA)TTA'QC T AN A) ixe =
(A Q" A)TTA'Q QA AA' Q™ A) Hixe (34)

Using (25), and the definition of g-inverse, we get
(A'Q"A)TTA'QTQQTAAQT AT = (AT AT (35)

The proof of Theorem 1 is concluded by combining (32), (33), (34) and (35).
]

Theorem 1 says that under certain conditions the NMD estimator 7 is
asymptotically optimal within the class of MD estimators defined in (1).
REMARK 3 When some of the moment matrices K;, 1 = 1,2,...,L, of
(10) are also restricted to be continuously differentiable functions of 7, then
the conclusions of the theorem also hold if, in addition to the assumptions
of the theorem, each 6, with restricted moment matrix K;; satisfies

var [v (6;6!)] = 2 D¥[E(6:6!) ® E(6:6!))D*' (36)

and
Eé&i(vé:8) = 0. (37)

The above remark results from noting that there will be a one-to-one
correspondence between the submatrices of A2 in (15) that drop out due to
the restrictions on K;’s, and the terms on the rhs of (16) that vanish due to
(36) and (37). Note that properties (36) and (37) will hold, of course, when
é; is normally distributed.

There are situations where such asymptotic optimality of 7 carries over
to the whole vector of estimators §.

THEOREM 2 Assume the conditions of Theorem 1 hold and, additionally,
B in the representation (29) of ' equals zero. Then, the (whole) vectors of
estimators 8 and 6 have the same asymptotic variance matrix. Further, the
avm of ¥ and T is equal to {(A'Q7'A) " ex¢-

PRooF When B in (29) equals zero, we can write

F=Q+4A,CA,=Q+AJCT'A (38)

11




where J = [0 : [ _y]" with [,_, an identity matrix of dimension ¢ — ¢;

consequently, the avm of 6 of (2) will be transformed to
(A'Q"A)TTA'QTTQ AA Q™A = (A'Q" A+ JCT . (39)
The proof concludes by noting that, under the stated conditions,
(AT A=A A +ICS (40)

(cf., Neudecker and Satorra, 1991c ) m

Theorem 2 above says that when B of (29) is zero then the NMD vector
of estimators 6 is AO within the class of MD estimators defined in (1). Note,
however, that the standard errors provided by (A'Q~A)~! will be correct
only for the subvector of estimates 7. Correct standard errors of estimators
for the other parameters can, of course, be estimated from (2) by replacing
I by I of (13) (these latter estimates are the asymptotic robust standard
errors mentioned above).

As can be seen from the inspection of (16), there are two situations
where the matrix B of (29) is zero (and hence AO of the whole vector 4 is
attained); these are listed in Assumption A2.

AssuMPTION A2 One of the following two conditions holds

a) the third-order moments of the §;'s (i.e. the terms E §;(v 6;6!)") are

zero;

b)Ez=0m=

A typical case where Assumption A2 b) always holds is covariance-
structure analysis, where the vector s in (1) is the vector of non-redundant
variances and covariances of a vector of observable variables (equivalently,
the (uncentered) second-order moments of a variable z for which Ez = 0).
Hence, in covariance-structure analysis, if robustness results on AO apply,
they will concern the whole NMD vector of parameter estimators, and not
only a subvector T of 6. In this case, however, AQ will relate to the class of
MD estimators defined by (1), with s being a vector of centered second-order
moments only. When restricted to covariance-structure analysis, Theorems
1 and 2 above are in agreement with the work on asymptotic robustness ref-
erenced in Section 1. When z = (y’, 1)/, however, then s in (1) is composed
of first- and second-order moments and AO for the whole vector of estima-
tors may not apply. Assumption A2 a) guarantees the AO of the whole
vector of NMD estimators  within the class of MD estimators defined by
(1) with s containing first- and second-order moments.

12




It has been shown elsewhere (e.g., Satorra, 1992) that when the vector
of observable variables z is normally distributed the loglikelihood function
is an affine transformation of F(8) = Far(s,0(8)) where

Fyr(s,0)=In | S| +tr ST~ —In| S| -p; (41)

hence, for a general type of distribution of z, the minimizer § of F(8) is
a (pseudo) maximum-likelihood (PML) estimator. In fact, it can be shown
that an MD estimator with V,, as in (4) is (asymptotically) equivalent to the
PML estimator!. Consequently, Theorem 1 and 2 above give also conditions
for the AO of PML.

The typical case in practice is to use PML or MD estimation with V,
defined in (4), with the standard errors of the estimators being computed
by using (3) with V, substituted for I'". The possibility that NMD and
PML analysis retains the property of AO with regard to a subvector of es-
timates of r, and that usual standard errors are correct, is of high practical
relevance. Effectively, NMD and PML are the most typical analyses when
we use standard software such as Joreskog and Sorbom’s LISREL (1989),
Bentler’s EQS (1989) or CALIS (a procedure of SAS). To carry out NMD
or PML analyses in the mentioned computer programs, the augmented mo-
ment matrix S of (11) replaces the usual covariance matrix and the "ML”
option of such programs is used. Theorem 1 implies that, under the stated
conditions, for parameters different from variances and covariances of non-
normal constituents of the model, the usual "ML” estimators are AC and
the usual "ML” standard errors are correct. When the additional conditions
of Theorem 2 hold, namely conditions a) or b) of Assumption A2, the prop-
erty of asymptotic optimality carries over to the whole vector of parameter
estimators.

The above general results will now be specialized to the context of mul-
tivariate regression type of models.

3 Multivariate regression models

Consider the following model of seemingly unrelated regressions (SURE)
with stochastic regressors,

y=a+ Br+(, (42)

'This follows from the fact that 27'8° Fa1/338s' |imo= 07 (e.g, Neudecker and
Satorra, 1991a); consequently, there is asymptotic equality between the minimizer of {(41)
and the MD estimator with V = 27137 Fy,; /3335’ | ,=« (Shapiro, 1985; Newey, 1988).
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where y(p; x 1) is a vector of responses, B(p; X p3) is a matrix of regression
coefficients, z(p2 x 1) is a vector of regressors of mean p; and ((p) x 1) is
a vector of disturbance terms of mean zero. Consider the moment matrices
Erz’ = K.z(p2 X p2) and E((' = ¥(p1 X p1). Denoting z = (y',z,1), we
can write (42) as

Y 0 B 44 Yy C
2=z }=]10 0 pu, z |+ z—-pu | = A, (43)
1 0 0 O 1 1
where
6= (C,7I, - /‘r,v 1),v (44)
A=(I-T)"! and
0 B «
T = 0 0 Hr y (45)
0 0 O

with I and 0 denoting identity and zero matrices respectively of appropriate
dimensions.

Let B, « and u. be continuously differentiable functions of a t-dimensional
vector T (a specific model, for example, is the one in which 1 collects
the distinct elements in B, a and p.). Assume that the moment matri-
ces of z and (, K. and ¥, respectively, are unrestricted. Define, finally,
0 = [r',(vK::),(v¥)]. Under this set-up, (8) , (9) and Assumption Al
hold with the role of the §;’s being taken by z — u and (. When ( and z are
stochastically independent, then Theorem 1 guarantees that PML or NMD
estimators of 7 are AO within the class of MD estimators defined by (1)
with s = v (5) and S defined in (11); further, they have a variance matrix
which can be evaluated by (3) using a consistent estimator of 2 instead of
I'. Note that a consistent estimator of {2 is readily available from (18) by
just substituting S for X.

Consider now a more general case, where ( is partitioned as { = ({1, (3,....{T)’,
with ¥ = diag (¥, ¥22, ..., ¥Y77) conformable with the partition of (. Let
6= (¢,2' - ul,1) = ((,(sy---,{»T' — i, 1), Suppose the model does
not restrict the matrices ¥, nor the moment matrix K., of z. Under the
assumption that z,(;,...,({r are mutually independent, the conditions of
Theorem 1 are satisfied and hence PML and NMD are AO for estimating 7,
within the class of MD estimates defined by (1). Note that now we allow for
a multivariate regression where the disturbance term has a block diagonal
covariance matrix. In the case that one or more covariance matrices ¥;; are

14




restricted to be (continuously differentiable) functions of r, then the results
of optimality of PML and NMD hold also if each {; with restricted variance
matrix satisfies (36) and (37) (a condition which is obviously satisfied when
the corresponding (; is normally distributed).

Note that the classical simultaneous econometric model is encompassed
by (43) if appropriate zero matrices in T of (45) are substituted for param-
eters to be estimated (taking care, of course, that the model is identified).
Thus, the same conclusions of asymptotic robustness would apply in that
case, namely the asymptotic efficiency of PML (which in this case is known
as the classical "full-information maximum-likelihood” estimator) even un-
der non-normality, when there is independence among z and ( (or if there
is mutual independence among z,(,...,{T, in the case of zero restrictions
on the covariances of disturbance terms of equations).

The above arguments extend also to a SURE model with errors in vari-
ables. Consider (43) with 2 = (y',z’,1)’ replaced by the unobservable vector
2* = (y*',z*',1) (where 2* may be of different dimension than 2). Consider,
additionally, the following measurement equation for 2z

z=Az" + ¢, (16)

where A is a matrix of parameters restricted to be a function of 7 (A could be
for instance the identity matrix) and € is the vector of measurement errors.
In this set-up the model can be written as

z=[AI - T)" L, 1),z = pee' 1, €Y, (47)

which is of the form (8) with § = ({’,z*' — p+',1,€)’. The above sub-
vectors can, of course, be further partitioned. From Theorem 1, when the
mixed fourth-order moments among the elements of the partition of § are the
same as with independence, and the variance matrix of non-normal elements
of the partition is unrestricted, then NMD and PML analysis are optimal
within the class of MD estimators defined by (1). Furthermore, the avm of
7 (corresponding to parameters distinct from the variances of non-normal
elements of the partition of §) are given by the same formula as when maxi-
mum likelihood is not misspecified. In all the cases discussed in this section,
if the third-order moments of the é;’s are zero then Theorem 2 applies and
the asymptotic optimality extends to the whole vector of estimators.
Recall that the general model (6) can be written as (8), where A =
[A( = B)~!,I] can be a function of 7 and &' = [¢’, €'}’ (which can, of course,
be partitioned further). This general model set-up encompasses the SURE
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models considered above as well as the simultaneous equation models with
errors in variables. The results of Section 2 show that when there is stochas-
tic independence among the (assumedly) uncorrelated elements of the par-
tition of &, and there are no restrictions on the moment matrices of each
element of the partition, then PML and NMD give AO estimates of r; fur-
ther, the avm of estimators of 7 can be computed with a consistent estimator
of Q replacing I.
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