
1 Introduction

Every real number in (0; 1) can be expanded into an Engel's series:

x =
1

q1
+

1

q1q2
+ � � �+

1

q1q2 � � � qn
+ � � � (1)

where the qn are a �nite or in�nite sequence of positive integers verifying

2 � q1 � q2 � : : : , which we shall call an Engel's admissible sequence. For

short we will write x = hq1; q2; : : :iE instead of (1). For more details, see

the classical text by Perron, [13]. Erd�os, R�enyi and Sz�usz, in [2] studied the

metrical properties of Engel's expansions completing results announced by

Borel, see [1], and L�evy, see [9]. The main trends of the subject are related

to the celebrated theorem of Borel on normal numbers and to the metrical

theory of continued fractions, which was initiated by Gauss, and further

developed by Kuzmin, [7], Khintchine, [6], and L�evy, [8].

The alternated version of Engel's series are known as Pierce expansions:

x =
1

q1
�

1

q1q2
+ � � �+

(�1)n+1

q1q2 � � � qn
+ � � � : (2)

In this case, the qn form a sequence of strictly increasing positive integers,

1 � q1 < q2 < : : : (a Pierce's admissible sequence). We will denote expan-

sion (2) as x = hq1; q2; : : :iP : The metrical theory of Pierce expansions was

studied by Shallit in [16]. More recent contributions to the subject are to

be found in [11, 12, 18, 15, 17].

In both Engel's and Pierce's cases, irrational numbers have one, and only

one, in�nite representation. Rational numbers have exactly two: in the case

of Engel's series one is �nite and the other is in�nite with the elements qn,

all equal from some place onwards. This duplicity is due to the identity:

ha1; a2; : : : ; an; an; an; : : :iE = ha1; a2; : : : ; an�1; an � 1iE :

As to Pierce expansions, both representations of a rational number are �nite,

of length n the �rst and of length n+1 the second. In this case the duplicity

is due to the identity

ha1; a2; : : : ; aniP = ha1; a2; : : : ; an; an + 1iP :

The �nite algorithms for rational numbers attracted Erd�os' attention as they

are intimately related to one of his favourite subjects: Egyptian fractions.

See [2, 3].

In the �rst part of [14], a paper of 1962, R�enyi provided a shorter way

of reaching most of the results found in [2]. Of these, the most spectacular

1



is originally due to Borel, [1], and states that for almost all x 2 (0; 1], the

elements of their Engel's series verify

lim
n!1

n
p
qn(x) = e: (3)

In [16], Shallit proved that the same applies for Pierce expansions. These

coincident results indicate that the growth of the sequence of the elements of

Engel's series and Pierce expansions is about the same (with probability 1).

In the second part of [14], R�enyi proved that, for Engel's series:

i) For almost all x the sequence qn(x) is strictly increasing for n � n0(x),

where n0(x) depends on x.

ii) The probability of qn(x) being strictly increasing from the very begin-

ning, is exactly 1=2.

In the case of Pierce expansions, as the set of partial quotients, qn, is

already strictly increasing, R�enyi's problem does not properly apply, but

we can ask ourselves about the measure of the set of those x in which the

`jump' between two consecutive elements is greater than a �xed positive

integer, k. Of course, this generalization also applies to Engel's series.

The aim of this paper is to extend results i) and ii) above, for both,

Engel and Pierce cases, in the following directions:

� R�enyi's argument for result i), based on the �rst of the Borel{Cantelli

lemmas, applies for a jump of value k � 1 (section 3).

� To compute the exact measure of the set of all x in which the jump

between consecutive elements is greater than or equal to k from the

very beginning (section 4).

2 Some metrical results

The results of this section together with their proofs can be found in [2, 16].

All values x, will always refer to real numbers in (0; 1], and �A will denote

the Lebesgue measure of set A � [0; 1].

The elements (or partial quotients) of the expansions, qn, are to be

considered functions of x.

Given a Pierce's admissible sequence of length r, a1; a2; : : : ; ar, we call

a `cylinder' of rank r the set:

C(P )
r (a1; a2; : : : ; ar) = fx : q1(x) = a1; q2(x) = a2; : : : ; qr(x) = arg:
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Cylinders are intervals with endpoints:

ha1; a2; : : : ; ariP and ha1; a2; : : : ; ar + 1iP

taken in the proper order, and of length

��C(P )
r (a1; a2; : : : ; ar)

�� = 1

a1a2 � � �ar(ar + 1)
:

(We use jIj to denote the length of an interval I.)

For a given Engel's admissible sequence of length r, b1; b2; : : : ; br, the

same de�nitions lead to an interval with endpoints hb1; b2; : : : ; briE and

hb1; b2; : : : ; br � 1iE and length

��C(E)
r (b1; b2; : : : ; br)

�� = 1

b1b2 � � � br(br � 1)
:

The metrical theory concerns itself with the computation of the measure of

sets of numbers which can be described by means of some property which

the elements of the expansion have to verify. As a general rule these sets are

expressed as unions of disjoint cylinders. In the case of Pierce expansions,

this computation depends on the value of sums of the form

Ar(m;n) =
X

m�q1<���<qr�n

1

q1q2 � � � qr
;

where m and n are two positive integers, (m � n) and 0 � r � n�m. That

is, the sum extends to the set of Pierce's admissible sequences of length

r, whose elements are in the range [m;n]. The consideration of Engel's

admissible sequences gives rise to the same sort of sums, where repetitions

are allowed. That is, sums of the form

Br(m;n) =
X

m�q1�����qr�n

1

q1q2 � � � qr
:

In this case, each sum depends on r, 0 � r <1.

Since for �xed m, n the numbers Ar (we drop (m;n)), are nothing but

the elementary symmetric functions for the polynomial whose roots are�
1

m
; 1

m+1
: : : ; 1

n

	
, the generating function of the complex variable z, for the

sequence fArg is:�
1 +

z

m

��
1 +

z

m+1

�
� � �

�
1 +

z

n

�
= A0 + A1z + A2z

2 + � � �+ An�m+1z
n�m+1

(4)
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It can also be proved that in the case of an Engel's admissible sequence, the

generating function for fBrg is the rational function

1�
1�

z

m

��
1�

z

m+1

�
� � �

�
1�

z

n

� = B0 +B1z +B2z
2 + � � � : (5)

2.1 The shift transform

An alternative approach to the theory of Engel's and Pierce's series is based

on the introduction of the shift transforms TP and TE of which we shall

make a very limited use. This is the bridge which links these systems of

representation of real numbers to ergodic theory and dynamical systems. If

x = hq1; q2; q3; : : :i and if T refers to either of TP and TE, the equation

T hq1; q2; q3; : : :i = hq2; q3; : : :i

may be taken as the de�nition of each of the shift transforms. It is easy

to see that the restriction of the transforms to a cylinder C
()

1
(m) takes the

forms TE(x) = mx� 1 and TP (x) = 1�mx. Now, if I = (x; y) is an open

interval, I � C
()

1
(m), its image under T is an interval of length

jTy � Txj = m(y � x)() jTIj = m � jIj :

As this last equality is true for intervals it must be true for Lebesgue meas-

urable sets. Thus for every measurable set A

A � C
()

1
(m) =) �TA = m � �A: (6)

In the following, most of the details are only given for Pierce expansions.

3 R�enyi's �rst problem

Let us consider a �xed positive integer k; k � 1:

Lemma 1 (Pierce). Given positive integers m and n, (m � n), let Xm;n

the set

Xm;n = fx : q1(x) � m and 9j; (j � 1); qj(x) = n and qj+1(x) < n + kg

Then

�Xm;n =
1

m

�
1

n+ 1
�

1

n+ k

�
:
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Proof. Xm;n is the disjoint union of the intervals whose endpoints are

hq1; : : : ; qj�1; n; n+ 1i
P
; hq1; : : : ; qj�1; n; n+ ki

P
;

for all admissible values of q1; : : : ; qj�1: Consequently, the total measure is

1

n

�
1

n+ 1
�

1

n+ k

�
�

X
m�q1<���<qj�1�n�1

1

q1 � � � qj�1
;

setting z = 1 in (4), this last sum is�
1 +

1

m

��
1 +

1

m+ 1

�
� � �

�
1 +

1

n� 1

�
=

n

m
:

Thus, the measure we seek equals

1

n

�
1

n+ 1
�

1

n+ k

�
n

m
=

1

m

�
1

n+ 1
�

1

n + k

�
:

Now, the set of x whose Pierce expansions present, from some place on-

wards, jumps between consecutive elements greater than or equal to k is

the complement in (0; 1] of the set of x whose expansions present jumps of

less than k units in�nitely often, that is to say: lim supnX1; n: For all m,

the series
P

1

n=m �Xm;n converges:

1X
n=m

�Xm;n =

1X
n=m

1

m

�
1

n + 1
�

1

n+ k

�
=

1

m

�
1

m + 1
+ � � �+

1

m+ k � 1

�
:

(7)

Thus, the �rst Borel{Cantelli lemma tells us that

� lim sup
n

X1; n = 0;

proving thus that its complement has measure one.

For Engel's series we would obtain:

Lemma 2 (Engel). Given positive integers m and n, (2 � m � n), let

Ym;n be the set

Ym;n = fx : q1(x) � m and9j; (j � 1); qj(x) = n and qj+1(x) < n + kg:

Then

�Ym;n =
1

m
�

�
1�

1

n

�
�

�
1

n� 1
�

1

n� 1 + k

�
:
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The same considerations as before would show that

� lim sup
n

Y2; n = 0;

proving thus that almost all x in (0; 1] have Engel's series, whose consecutive

elements, from some place onwards, present jumps greater than or equal to

k.

4 R�enyi's second problem

When dealing with Pierce expansions, the closest one can get to the second

of R�enyi's problems is to ask for the measure of the set G of numbers,

whose partial quotients jump more than two units from the very beginning.

A direct argument based on the inclusion and exclusion formula, may be

used to show that the measure of the complement of G in (0; 1] is 1=e. Thus

�G = 1�
1

e
(8)

Besides being tedious in its details, the proof in terms of the inclusion and

exclusion formula was impossible to extend to larger values of the jump

k, so we were forced to a di�erent route which we now take. We give the

details only for Pierce expansions though any modi�cations needed to make

them �t for Engel's series are trivial.

Let us call

E(k)
m = fx : q1(x) � m; 8j; qj+1(x) � qj(x) + kg:

With this notation, the set G above would be written as E
(2)

1
. For the

measure of these sets, let us write pkm = �E
(k)
m .

In the following we consider k as a given positive integer and we drop

the superscript (k) in pkm and in E
(k)
m in order to simplify notation.

Since for each m, Em � Em+1 � C
(P )

1
(m), and TP (Em � Em+1) = Em+k

then, by (6) �Em+k = m � �(Em � Em+1): That is to say,

pm+k = m(pm � pm+1)

which, rendered into homogeneous form gives

pm+k +mpm+1 �mpm = 0: (9)

This is a �nite di�erence equation of order k; linear with polynomial coe�-

cients which we will presently solve after establishing a few necessary lem-

mas.
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Lemma 3. For all m,

mpm + pm+1 + pm+2 + � � �+ pm+k�1 = C;

where C is a constant.

Proof. Let us write the recurrence (9)

mpm = mpm+1 + pm+k: (10)

For any value of m, we consider the following equalities obtained using

recursively (10):

mpm + pm+1 + � � �+ pm+k�1 = mpm+1 + pm+1 + � � �+ pm+k�1 + pm+k

= (m + 1)pm+1 + pm+2 + � � �+ pm+k

Thus, for all m, mpm + pm+1 + � � �+ pm+k�1 = C:

Lemma 4. The sequence pm veri�es: a) lim
m!1

pm = 0; b) lim
m!1

mpm = 1:

Proof. Assertion a) is trivial as pm = �Em and Em � (0; 1=m]. As for b),

if q1(x) � m and x 62 Em, then, there exists a place j such that qj(x) = n

and qj+1(x) < n+ k, that is x 2 Xm;n for some n. By the covering rule,

�

��
0;

1

m

�
� Em

�
� �

1[
m=n

Xm;n �

1X
m=n

�Xm;n:

By (7), this last sum is

1

m

�
1

m+ 1
+ � � �+

1

m+ k � 1

�
:

Consequently,

pm �
1

m
�

1

m

�
1

m+ 1
+ � � �+

1

m + k � 1

�
;

and b) follows.

An immediate consequence of lemma 4 is:

Lemma 5. The constant in lemma 3 is 1, that is to say, for all m we have

mpm + pm+1 + pm+2 + � � �+ pm+k�1 = 1: (11)
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In the case of Engel's series, for the particular values m = 2 and k = 1

the expression above gives 2p2 = 1, that is �E
(1)

2
= p2 = 1=2, which is result

ii) of R�enyi's paper (see p. 2).

We now turn to solve recurrence (9).

Lemma 6.

pm = C �

1Z
0

tm�1 � et+
t2

2

+���+
tk�1

k�1 dt

is a particular solution of the recurrence equation

pm+k +mpm+1 �mpm = 0; (12)

where C is an arbitrary constant.

Proof. We will use Laplace's method (see [5, 10]) which assumes there exists

a solution of the form:

pm =

bZ
a

tm�1 � !(t) dt; (13)

where the limits a and b and the function !(t) are to be determined. Using

(13) and integrating by parts we get:

pm+k =

bZ
a

tm�1 � (tk � !(t)) dt;

mpm = [tm � !(t)]
b

a �

bZ
a

tm � !0(t) dt;

mpm+1 = [tm � (t!(t))]
b

a �

bZ
a

tm � (!(t) + t!0(t)) dt:
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Replacing all these expressions in the original equation (12),

bZ
a

tm�1 � (tk � !(t)) dt+

+ [tm � (t!(t))]
b

a �

bZ
a

tm � (!(t) + t!0(t)) dt�

�

0
@[tm � !(t)]

b

a �

bZ
a

tm � !0(t) dt

1
A = 0:

Grouping integrated parts and integrals we obtain

�
tm+1

� !(t)� tm � !(t)
�b
a
+

+

bZ
a

tm�1 �
�
(t� t2) � !0(t) + (tk � t) � !(t)

	
dt = 0:

The method prescribes to annihilate the integrand in order to obtain !(t)

and to annihilate the bracketed part to determine possible values of a and

b: We start with the integrand,

(t� t2) � !0(t) + (tk � t) � !(t) = 0;

a linear homogeneous di�erential equation with separable variables,

!0

!
=

t� tk

t� t2
=

1� tk�1

1� t
= 1 + t + t2 + � � �+ tk�2;

and thus

!(t) = Cet+
t2

2

+���+
tk�1

k�1 ; (C an arbitrary constant):

Now, replacing !(t) with the value just found, we annihilate the integrated

part seeking values a and b of t that make

tm � Cet+
t2

2

+���+
tk�1

k�1 � (t� 1) = 0:

Besides �1 depending on the parity of k, the only solutions are a = 0

and b = 1, which are the values we are going to use to obtain a particular

solution of our equation:

pm = C �

1Z
0

tm�1 � et+
t2

2

+���+
tk�1

k�1 dt: (14)
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We are now ready for the main result of this section:

Theorem 1. The measure of Em is

pm = e�(1+
1

2

+���+
1

k�1) �

1Z
0

tm�1 � et+
t2

2

+���+
tk�1

k�1 dt:

Proof. By (11) from lemma 5, we have the following set of initial conditions:

mpm + pm+1 + pm+2 + � � �+ pm+k�1 = 1; (m = 1; 2; : : : )

Replacing pm+j by the corresponding values from (14),

C �

1Z
0

�
mtm�1 + tm + � � �+ tm+k�2

�
et+

t2

2

+���+
tk�1

k�1 dt = 1:

Since

d

dt
ftmet+

t2

2

+���+
tk�1

k�1 g =
�
mtm�1 + tm + � � �+ tm+k�2

�
et+

t2

2

+���+
tk�1

k�1 ;

we have

C �

1Z
0

�
mtm�1 + tm + � � �+ tm+k�2

�
et+

t2

2

+���+
tk�1

k�1 dt = e1+
1

2

+���+
1

k�1 :

Therefore, the in�nite set of initial conditions above is consistent with the

value of C given by

C = e�(1+
1

2

+���+
1

k�1):

The solution for this particular value of C is thus unique and corresponds

to the measure we sought.

Now, as an immediate corollary of Theorem 1, makingm = 1 and k = 2,

and taking complements in (0; 1], we obtain result (8).

5 Conclusions

We establish the measure of di�erent sets of real numbers in (0; 1] de�ned

through properties veri�ed by all the elements of their Pierce expansions.

This settles questions about the problem set by A. R�enyi in [14] concerning

the measure of similar sets de�ned using Engel's series instead of Pierce
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expansions. R�enyi's problem, though, involves only the tail of the expan-

sion (from a place n0 onwards). We end up with quite nice neat measures

between zero and one. Speci�cally, see (1), the set of real numbers whose

expansions present elements with a minimum jump of k units between con-

secutive elements, E(k); has measure:

�E(k) = e�Hk�1 �

Z
0

e
Pk�1

j=1
tj

j dt:
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