
1

A Polynomial Algorithm for Special Case of

the One-Machine Scheduling Problem with Time-Lags

Helena Ramalhinho-Lourenço1

Abstract

The standard one-machine scheduling problem consists in scheduling a set of jobs in one

machine which can handle only one job at a time, minimizing the maximum lateness. Each job

is available for processing at its release date, requires a known processing time and after

finishing the processing, it is delivery after a certain time. There also can exists precedence

constraints between pairs of jobs, requiring that the first jobs must be completed before the

second job can start. An extension of this problem consists in assigning a time interval between

the processing of the jobs associated with the precedence constrains, known by finish-start

time-lags. In presence of this constraints, the problem is NP-hard even if preemption is

allowed. In this work, we consider a special case of the one-machine preemption scheduling

problem with time-lags, where the time-lags have a chain form, and propose a polynomial

algorithm to solve it. The algorithm consist in a polynomial number of calls of the preemption

version of the Longest Tail Heuristic. One of the applicability of the method is to obtain lower

bounds for NP-hard one-machine and job-shop scheduling problems. We present some

computational results of this application, followed by some conclusions.

Keywords: one-machine scheduling, polynomial algorithms, lower bounds.

Journal of Economic Literature Classification: C61,C63

1 Department of Economics and Management, Universitat Pompeu Fabra, R. Trias Fargas 25-27, 08005

Barcelona, Spain (e-mail: ramalhin@upf.es; web page: http://www.econ.upf.es/~ramalhin)

2

1. Introduction

The One-Machine Scheduling Problem with Time-Lags consists in scheduling a set of jobs in

one machine, minimizing the maximum lateness. Each job has a release date, a processing time

and a delivery time. Preemption is allowed. There exists a set of generalized precedence

constraints between jobs which are defined as follows: for certain pairs of jobs it is required a

positive time-lag between the completion time of the first job and the start of the second.

We will designate the one-machine scheduling problem with simple precedence constraints as

the standard problem, since it is a well-known problem. This problem is NP-Hard, Lenstra,

Rinnooy Kan and Brucker (1977), but if preemption is allowed the problem can be solved in

polynomial time, Horn (1974). However, if time-lags are considered, the problem is NP-hard

even if preemption is allowed.

The aim of this paper is to present a polynomial algorithm to solve a special case of the one-

machine scheduling problem with time-lags, where all the time-lags are in a chain form, i.e.

there exists a ordered subset of the jobs such that any pair of consecutive jobs is associated

with a positive time-lags. None of the remaining jobs can be associated with positive time-lags.

Our interest in this special case arise from two main applications of the problem. The problem

can be used to obtain lower bounds for the job-shop scheduling problem and for one-machine

scheduling problem with general time-lags. Since, these problems can be found frequently in

practice, solving to optimality the special one-machine scheduling problem with time-lags in

polynomial time can lead to more efficient enumerative algorithms, for the previous problems.

The paper is organized as follows: first, we present the one-machine scheduling problem with

time-lags, a review the solutions methods and an enumerative method to solve it. In the next

section, we describe the polynomial algorithm for the special case, the early-late algorithm. In

section 4, we present some examples and in the next section, we describe the computational

experiments when using the early-late algorithm to obtain lower bounds for the job-shop

scheduling problem. Section 6 concludes with general remarks on this work and further

research.

3

2. The one-machine scheduling problem with time-lags

The one-machine scheduling problem with time-lags can be described as follows: a set of jobs

J J n1 , ,K have to be scheduled on one machine; each job { }J j N nj , , ,∈ = 1K , has a release

date rj, a processing time pj, and a delivery time qj. Each job cannot be processed before its

release time. Whereas at most one job can be processed at a time, all jobs can be

simultaneously delivered; if Cj denotes the time at which job J j completes processing, then it

is delivered at time L C qj j j= + . There also can exists precedence constrains, <, between the

jobs, i.e. if J Jj k< then J k cannot start processing before J j has been finished. These

precedence constraints can be represented by a directed graph. Finally, between the

completion time of J j , Cj, and the starting time of J k , Sk, there must exists a time interval

l jk ≥ 0 , i.e C l Sj jk k+ ≤ , know as finish-start time-lags. The objective is to minimize the

maximum lateness, i.e. L L
j N jmax max=
∈

. We denote this problem by ()1r q prec l Lj j ij, , max and if

preemption is allowed, by ()1 pmtn r q prec l Lj j ij, , , max . Let ()L Imax ,σ be the length of the

feasible schedule σ for an instance I.

The ()1r q prec l Lj j ij, , max can be considered as a generalization of the usual one-machine

scheduling problem 1r q prec Lj j, , max , i.e. the time lags are all equal to zero. The problem is

NP-Complete, even if preemption is allowed. The result was proved independently by

Lourenço (1993) and Balas, Lentra and Vazacoupolos (1995).

The Horn’s algorithm, Horn (1974), solves to optimality the standard one-machine problem if

preemption is allowed. If no preemption is allowed the Carlier branch-and-bound algorithm,

Carlier (1982), solves the standard one machine problem, and Balas, Lentra and Vazacoupolos

(1995) proposed a branch-and-bound algorithm to solve the ()1r q prec l Lj j ij, , max .

Brucker, Hilbig and Hurink (1997) presented a branch-and-bound algorithm for solving the

single-machine scheduling problem with arbitrary time-lags and have shown that most of the

classical scheduling problems can be polynomially reduced to this problem. Brucker and Knust

4

(1998) considered a single-machine scheduling problem with time-lags l lij = ≥ 0 and derive

new complexity results and reductions from other scheduling problems. They also presented a

survey on the complexity results and algorithms for single-machine problems.

The following web page maintains a list of recent results and open-problems in the area of

scheduling: http://www.mathematik.uni-osnabrueck.de/research/OR/.

The Longest Tail Rule can be generalized to obtain a feasible schedule to the one-machine

scheduling problem with time-lags by dynamically updating the release dates of the jobs to

conform with the time lags constraints. We will designate this method by LTRTL.

The LTRTL schedules the jobs sequentially choosing at each step the job with the longest

delivery time among those available for scheduling. Let Cj(σ) denote the completion time of

job Jj in schedule σ, j=1,...,n. We shall say that, in the case of time-lags, a job Jj is said to be

available at time t, if r tj ≤ , where the release date is updated as follows

r = r C ()+lj j
k J J

k kj
k j

max , max { }
:∀ <







σ , and all jobs Jk such that J Jk j< are already completed.

The Horn’s algorithm can also be generalized to obtain feasible solutions for the

()1 pmtn r q prec l Lj j ij, , , max problem in a similar way as done above for the LTRTL. Due to

this similarity, we will call this the preemptive LTRTL (pLTRTL). The main difference is as

follows: if a job with higher delivery time becomes available, the processing of the current job

can be interrupted and this job will be reintroduce in the list of available jobs but considering

only the remaining processing time.

The pLTRTL creates preemptions only at the modified release dates r j , and not at the first

one. Therefore, the rule creates at most n-1 preemptions. The pLTRTL can be easily

implemented to run in O(nlog n) time with the use of two priority queues.

Clearly, the optimal value of the preemptive standard one-machine scheduling problem is a

lower bound for the ()1 pmtn r q prec l Lj j ij, , , max . It is well known that this value is equal to

5

()L K r p qj K j j
j K

j K j= + +∈
∈

∈∑min min , for some { }K n⊆ 1, ,K , Carlier (1982). The jobs in

K bellow to the critical path in the conjunctive graph of the correspondent optimal schedule

σ * . Let Jc be the critical job of the schedule σ * , i.e. the job J c such that

() ()L I C qc cmax *, *σ σ= + .

Next, we present some basic results which will help us to design the proposed polynomial

algorithm. We can assume that the input data already satisfy the following conditions:

if then J J r r p lj k k j j jk< ≥ + + , and q l p qj jk k k≥ + + .

If not, the data can be modified without changing the solution of the problem, Lageweg,

Lenstra and Rinnooy Kan (1976).

Theorem 1: Let σ be a schedule obtained by the pLTRTL for some instance I of

()1 pmtn r q prec l Lj j ij, , , max . So, we have that ()L I r p qj K j j
j K

j K jmax , min minσ = + +∈
∈

∈∑ for

some subset K of the set of the jobs.

Proof. Let t be the latest time such that each job J j processed in the interval ()[]t Cc, σ has

r tj ≥ . Denote by r j the updated released times; note that, the only jobs that have their

released date increased are the ones associated with the time-lags. In other words, if during the

execution of the algorithm, the release date of job J j is increased, then job J j is only

available for processing at time r j . If the job J j is not associated with any time-lag constraint,

then r rj j= . Moreover, when J k is scheduled, if J Jk j< , then the release date of J j can be

increased, ()r C lj k kj= +σ , to satisfy the time-lags.

Let K be the index of the subset of the jobs processed in this interval. This interval contains

no idle time, since if there is idle time, by pLTRTL, the end of this idle time satisfied the

criteria used to select t, and is later than t.

6

Now, if min j K j cq q∈ = , since there is no idle time between t and ()Cc σ , and by the choice of

t we can conclude that: ()L I r p qj K j j
j K

j K jmax , min minσ = + +∈
∈

∈∑ .

To prove that min j K j cq q∈ = , assume this is not true, and consider the latest job J l

processed before J c such that q ql c< . All jobs, J k Kk , ∈ processed between the completion

time of J l , say t’, and the completion time of J c , have delivery time q q qk c l≥ > , therefore

they have to be released after the completion of J l , because otherwise, the modified

preemptive LTRTL would have preempt J l to start some J k . So, all these jobs, J k have

r tk ≥ ' . But in this case we should have select t’ instead of t, which is contradiction. σ

Lemma 2: Consider any feasible schedule σ obtained by the pLTRTL, if a job has some part

processed in the critical path K then this job is totally processed between min j K jr∈ and

min j K j j
j K

r p∈
∈

+ ∑ .

Proof. Suppose that we replace each job J j by new jobs with processing times equal to 1, and

the same release dates, delivery times and time-lags.

Then, by Theorem 1, ()L I r p qj K j j
j K

j K jmax , min minσ = + +∈
∈

∈∑ .

Let K1 be the subset of the unit jobs corresponding to the units in K, then

() ()L I r p q r K q L Ij K j j
j K

j K j i K i i K
unit unit

max max, min min min min ,σ σ= + + = + + =∈
∈

∈ ∈ ∈∑ 1 11 .

If a unit job is one unit of job J j , and belongs to K1 , then every other unit of this job belongs

to K1 , and therefore this job is totally processed between min j K jr∈ and min j K j j
j K

r p∈
∈

+ ∑ .

 Otherwise, suppose that exist a job J j which has one unit processed outside the interval

between min j K jr∈ and min j K j j
j K

r p∈
∈

+ ∑ . Let { }K K J j
unit= ∪1 , where J j

unit is that unit job

that does not belong to K1 . So let , ()L I r K q
j K j j K jmax , min minσ = + +∈ ∈ , and also all jobs

in K have their units jobs in K , then

7

() ()L I r p q L Ij K j j
j K

j K jmax max, min min ,σ σ= + + =∈
∈

∈∑ . Since min min
j K j i K ir r∈ ∈=

1
 and

min min
j K j i K iq q∈ ∈=

1
, then () () ()L I L I L Iunit unit

max max max, , ,σ σ σ= + =1 , which is a

contradiction because () ()L I L Iunit unit
max max, ,σ σ= by above. σ

Theorem 3: There exists a set of delivery times, such that if we apply the pLTRTL rule to a

new instance with all data equal to the original instance I, but considering this new set of

delivery times, we obtain an optimal schedule for I.

Proof. Given an optimal schedule σ* for the instance I, with length ()L Imax *,σ , let the new set

of delivery times be () ()q L I Cj j= −max *, *σ σ for all jobs. These delivery time satisfy the

property that q qj k> whenever Jj<Jk. Modify the release dates so that they also conform to

the precedence constraints and the time-lags: ()()r r C lj j
k J J

k jk
k j

= +





∀ <

max , max *
:

σ . Designate

this instance by I .

Apply the Horn’s rule to I to obtain the schedule σ . By the optimality of this method, each

job Jj has completion time in σ no later then ()C j σ * . Therefore, the new schedule is feasible

and also optimal for I.

Now let $I be the instance with the original release dates and the delivery times q j . Apply the

pLTRTL to $I to obtain the schedule $σ . Note that if $r j denotes the modified release dates

formed by computing $σ , and we apply the Horn’s rule to the instance $I with release dates

$, , ,r j nj = 1K and delivery times q j nj , , ,= 1K , we again obtain $σ .

We claim that $r rj j≤ for j=1,..., n. If this holds, then σ is also a feasible schedule for

instance $I . Since the Horn’s rule minimizes Lmax , then () () ()L I L I L Imax max max
$, $, *,σ σ σ≤ = .

Since $σ also satisfies the time-lags constraints, it is optimal for I. This also implies that

() ()C C j nj j
$ * , , ,σ σ≤ = 1K .

8

To prove that $, , ,r r j nj j≤ = 1K , we need only focus on the jobs with time-lags. Suppose that

there exists a job such that $r rj j> , and let J j be the first job in the schedule $σ that verifies

this condition. But, since $r rk k≤ , for all jobs J k scheduled before than J j in $σ , and the

delivery times are equal in both instances, then () ()C Ck k
$ *σ σ≤ , so

() ()$ max , max $ max , max *
: :

r r C l r C l rj j
k J J

k jk j
k J J

k jk j
k j k j

= +







≤ +







=
∀ < ∀ <

σ σ , which is a

contradiction.

Therefore, $σ is an optimal schedule to the problem, and the theorem is proved. σ

Note that the delivery times are only consider in the pLTRTL as priorities to decide which is

the next job to be scheduled. Therefore, an obvious enumerative method for the

()1 pmtn r q prec l Lj j ij, , , max can be design considering all possible combinations of priorities:

• At level zero, there is a node called the root of the search tree.

• The root has n children, where each child is a node where the priority of job J1 is fixed,

i.e. ~ , , ,q k k n1 1= = K .

• For each node of level i, we have an associated vector v of dimension i which represents

the fixed priorities of the first i jobs. We branch on each of this nodes, by considering the n

possible priorities of job Ji+1. Children are arranged from left to right in order of decreasing

priorities.

• • At the leaves we have all possible priorities of the jobs. We can apply the pLTRTL to each

one, using the priorities. The schedule with the smallest length is optimal.

We would like to point out that the only use of the priorities is to decide which job is

scheduled next in the pLTRTL. The value of a schedule σ is always obtained by using the

delivery times, i.e. ()L I L
j N jmax , maxσ =
∈

.

Next, we consider a special case of the ()1 pmtn r q prec l Lj j ij, , , max problem, where all the

positive time-lags have the special form of a chain. Let { }H h N= ⊆1 2, , ,K be a subset of

jobs such that J J J h1 2< < <K and there are no positive time-lags neither precedence

9

constraints between jobs on this chain and the remaining ones. We will denote this problem as

()1 pmtn r q chain l Lj j ij, , , max . Next we will proved that the above enumerative method can be

simplified to solve to optimality this problem, and in the next chapter we will go further and

prove that, by modifying in a correct way the release dates and the delivery times, we will

solve this problem in polynomial time.

Lemma 4: To obtain the optimal solution of ()1 pmtn r q chain l Lj j ij, , , max , we need only to

change the delivery times of the chain jobs in the previous enumerative method.

Proof. Recall the proof of Theorem 3. Given an optimal schedule σ* for an instance I, with

length ()L Imax *,σ , let the delivery times be () ()q L I Cj j= −max *, *σ σ for j H∈ ; and

q q j Hj j= ∉, for . As before, obtain σ and by the optimality of the Horn’s rule, each job

J j Hj , ∈ has completion time in σ no later than ()C j σ * . Therefore, the new schedule is

feasible and also optimal for I. Also, note that the only jobs that have their release dates

changed are the chain jobs. Therefore, to complete the prove just follow the prove of Theorem

3.σ

This method makes O(nh) calls to the pLTRTL method. Next, we will present an algorithm

that makes a polynomial (in n) number of calls of the pLTRTL. This algorithm is based on the

enumerative method just described, but using an efficient pruning of the search tree and good

dominance relations.

3. Early-Late Algorithm

The early-late algorithm finds the optimal solution of the ()1 pmtn r q chain l Lj j ij, , , max by

considering a polynomial number of tree nodes of the previous enumerative method,

eliminating the remaining ones by using lower bounds and dominance relations.

10

At node N i of the search tree at level i, we associated a vector v of dimension i which

represents the fixed priorities of the first i jobs in the chain. Let this subset of jobs be denoted

by H1. Since the priorities of these jobs are fixed and they are the first i jobs in the chain, then

we can compute the completion time of these jobs in any schedule obtained by applying the

pLTRTL of any descendent of N i . We also associate with N i an instance I i which uses the

priorities v for the jobs in H1 and the original priorities for the remaining jobs. The release

dates of the jobs in the chain are modified during the running of the algorithm. All the other

release dates are unchanged.

The basic idea of the algorithm is to obtain a lower bound and an upper bound for instance I i

at each iteration, which originally is equal to I. If the upper bound is equal to the lower bound

the algorithm stops because that optimal solution was found. Otherwise, the instance I i is

modified using some dominance rules. The only modifications needed are the release dates and

delivery times of the chain jobs. When a modification is made, it means that we are changing

from one node to another in the search tree of the enumerative method. We will prove the

optimality of the algorithm and that it runs in polynomial time.

A lower bound of Ii , ()LB I i , is obtained by applying the Horn’s rule to a modified Ii where

we consider the original delivery times and ignore the time lags. The release dates are the same

for both instances, but can be different from the original instance I. Note that the modified

instance is relaxation of Ii , so the optimal value is a lower bound for ()L I imax *,σ .

By applying the pLTRTL to Ii , using the priorities, we obtain an upper bound for the Ii,

designated by ()L Ii imax ,σ . Note that, the schedule obtained is also feasible for the original

instance I, since only the priorities of the jobs are changed and the release dates are increased.

Therefore ()L Ii imax ,σ is a upper bound for I.

Theorem 5: Let σ i be an schedule obtained by applying the pLTRTL with the priorities to

instance Ii , then ()L I r p qi i j K j j
j K

cmax , minσ = + +∈
∈
∑ for some subset of the job, K .

11

Proof. Let t be the latest time such that each job J j processed in the interval ()[]t Cc i, σ has

r tj ≥ . Let K be the index of the subset of the jobs processed in this interval. This interval

contains no idle time, since if there is idle time, by the pLTRTL, the end of this idle time

satisfied the criterion used to select t, and is later than t. Now, since there is no idle time

between t and ()Cc σ and by the choice of t we can conclude that:

()L I r p qi j K j j
j K

cmax , minσ = + +∈
∈
∑ . σ

If () ()L I LB Ii i imax ,σ = then the schedule σ i is optimal for I i , and consequently we do not

need to branch from this node further.

If () () ()L I r p q LB I r p q L Ki i j K j j
j K

c i j K j j
j K

j K jmax , min min minσ = + + > ≥ + + =∈
∈

∈
∈

∈∑ ∑ ,

then σ i has a job scheduled late, if min minj K j j K jr r∈ ∈> or early, q qc j K j> ∈min . So, we

will changed the priority of such a job. Therefore the algorithm will be designated by early-late

algorithm, since at each step the priority of one job will be adjusted to force the scheduling of

this job earlier or later than it is in the current solution.

Next, we will present two important definitions and some results, followed by the description

of the algorithm. Later on, we will prove that the early-late algorithm obtains the optimal

solution for the ()1 pmtn r q chain l Lj j ij, , , max problem in polynomial time.

Definition 1: A schedule σ is late-active if there exists a job J l in the chain, such that J l is

the first chain job in the schedule for which l K∈ and r rl j K j<
∈

min .

Consider the following notation: define ()C jLB as a lower bound on the completion time of

job J j ; initially, let ()C j r p j nLB j j= + =, , ,1K . This value will be updated during the

algorithm. Moreover, whenever these values change, we update the release dates in the

following way: (){ }r r C j l j hj j LB j j= − + =−max , , , ,,1 21 K . Also, let σ i be the schedule

12

obtained at iteration i of the early-late algorithm by the pLTRTL considering the priorities of

instance Ii .

Theorem 6: If schedule σ i is late-active, then exists at least a job J Hk ∈ such that

() ()C C kk i LBσ > .

Proof. If σ i is late-active, then () ()L I L Ki imax ,σ > , since l K∈ and r rl j K j< ∈min . If

J k Hk , ∈ such that () ()C C kk i LBσ > does not exist, then () ()C C j j hj i LBσ = =, , ,1K .

Consequently, r r j hj j= =, , ,1K because clearly r rj j≤ and

(){ } ()r r C j l C j l r j hj j LB j j LB j j j= − + ≥ − + = =− −max , , , ,, ,1 1 21 1 K .

Therefore () ()L I L Kimax ,σ0 = , which proves that must exist a job J k Hk , ∈ such that

() ()C C kk i LBσ > .σ

The first job J k in the chain verifying () ()C C kk i LBσ > is called the late-active job. Note that

k l< and k K∉

In this case, J k is scheduled “late”, and as a result, we have no guarantee that this schedule is

optimal. Thus, to get a possible improvement in the schedule we should complete the late-

active job earlier, which implies an increase in the priority of this job.

Next, we will define early-active schedule, which apply for the case where q qc j K j> ∈min .

Definition 2: A schedule σ is early-active if there exists a job J k H Kk , ∈ ∩ , which is

different from J c , the critical job, and J k is the last job in the critical path for which

q qk c< .This job is called the early-active job.

For an early-active schedule, since J k is scheduled earlier than J c , we cannot prove

optimality. To obtain a possible improvement of such a schedule, we will see next that we

should decrease the priority of the early-active job.

13

The next theorem proves that we can decrease the priority of the early-late job J k , since we

will not find a better schedule than σ if ~ ~q qk c≥ , where ~q j represents the priority of job J j .

Theorem 7: Let σ be an early-active schedule obtained by applying pLTRTL to instance Ii ,

where Jc is the critical job and J k is the early-active job. Let ′I be an instance equivalent to

Ii , but where ~ ~q qk c≥ . Apply the pLTRTL to ′I to obtain the schedule ′σ . Then

() ()L I L Iimax max, ,σ σ≤ ′ ′ .

Proof. When we apply the pLTRTL to this instance ′I , the job J k will have at least as high a

priority as the critical job Jc . Note that c H∉ , otherwise Jc would have been scheduled

before J k . Since J Hk ∈ , J Hc ∉ and ~ ~q qk c≥ , J k will be always completed before Jc .

Hence Jc will be not completed earlier than ()Cc σ , since no other data was changed. Note

that there is no idle time between ()min j P jr∈ σ and ()Cc σ in σ , then Jc is completed at

()Cc σ in ′σ . Therefore () () ()L I C q L Ii c cmax max, ,σ σ σ= + ≤ ′ ′ .∇

The next lemma says that we can eliminate for further analysis all nodes where ~ ~q qk c≥ and at

least one job in H1 has smaller priority than in node N i .

Lemma 8: Let σ be an early-active schedule obtained by applying the pLTRTL to instance

Ii , where Jc is the critical job and J k is the active job. Let ′I be an instance equivalent to Ii ,

but where ~ ~q qk c≥ and at least one job in H1 has smaller priority than in Ii . Apply the

pLTRTL to ′I to obtain the schedule ′σ . Then either () ()L I L Iimax max, ,σ σ≤ ′ ′ or if not,

then by considering ~ ~q qk c= −1 and applying the pLTRTL, we still obtain ′σ .

Proof. The main idea behind this result is as follows. Observe that if we decrease the priority

of some job J j , j H∈ 1 , and apply the pLTRTL, this job is completed in ′σ no earlier than

()C j σ . If ′σ is different from σ , then rk is bigger in ′σ than in σ . Since ~ ~q qk c≥ then

either some job in K is completed after J k , and as before () ()L I L Iimax max, ,σ σ≤ ′ ′ , or else

14

by considering ~ ~q qk c= −1 and applying the pLTRTL, we still obtain ′σ , because all jobs that

are completed after Jc in σ have smaller priority than ~qc , otherwise Jc will not be the

critical job.∇

The next theorem will prove that we can increment the lower bound of the completion time of

the late-active job, and for all chain jobs before this one.

Theorem 9: If J k is late-active at iteration i and we let ~q nk = , then there is no schedule σ

better than the σ i where () ()C C kk LBσ < , for () ()C k CLB k i= +σ 1 where ()Ck iσ +1 is the

completion time of J k in the schedule σ i+1 obtained by the pLTRTL at iteration i +1.

Therefore, we can update () ()C j C j kLB j i= ∀ ≤+σ 1 , .

Proof.

If σ 0 is late-active and J k is the active job, then we do ~q nk = . At σ1 , iteration 1, J k has

the higher priority at time t rk= and by the way we update ~qk , J k is fully scheduled between

rk and r pk k+ . Also, if J Jj k< , and J Hj ∈ , then J j cannot be completed earlier, since

() () ()C C r p C jj j j j LBσ σ0 1= = + = . Note that J k is the first job in the chain such that

() ()C C kk LBσ0 > .

Suppose that the claim is true for all schedules σ σ0 1, ,K i− . Let H1 denote the index-subset of

jobs such that () ()C C jj LBσ = , and H H H2 1= − . If σ i is late-active, and J k is the late-

active job, then we do ~q nk = , and ~q nj = for j H∉ 1 and J Jj k< , and obtain σ i+1 . At

iteration i, if j H∈ 1 , then j H∈ 1 in the next iteration and () () ()C C C jj i j i LBσ σ+ = =1 . For

j H∈ , if j H∉ 1 and J Jj k< , then at iteration i +1, () ()C C jj i LBσ + =1 since ~q nj = , and so

we make j H∈ 1 . For J k , since ~q nk = , then at time t rk= , J k is the available job with

higher priority; so () ()C r p C kk i k k LBσ + = + =1 . Therefore, if σ i is late-active, by induction,

the jobs just added to H1 verify the claim.

15

If σ i is early-active and J k is the active job, then k H∈ 1 . If j H∈ 1 and J Jj k< then

() () ()C C C jj i j i LBσ σ+ = =1 . For J k and J k j Hj , , ∈ 1 such that J Jj k< , then by Theorems 7

and 8, if () ()C C jj LBσ < then σ is no better than the best schedule found. ∇

 A straightforward argument shows that if () ()L I LB Ii i imax ,σ > must be late-active or early-

active. The next theorem will show that if neither happens, then the optimal schedule for Ii

was found.

Theorem 10: If the schedule σ obtained by applying the pLTRTL to instance Ii , is neither

late-active or early-active, then σ is an optimal schedule for Ii .

Proof. We have seen already in Theorem 6, if () ()C C j j hj LBσ = =, , ,1K , then the schedule

is optimal for Ii . And, the same happens if for all j K H∈ ∩ , j H∈ 1 and c H∈ then

() ()L I L Ki imax ,σ = , by previous theorems.

By Theorem 5, we have that ()L I r p qi j K j j
j K

cmax , minσ = + +∈
∈
∑ . If K has no job such that

j H∈ 1 , then q qc j K j= ∈min . And, if for all jobs j K H∈ ∩ , j H∈ 1 , then r rj j K j= ∈min .

Lets see now, the case that exists at least one l H∈ 2 in the critical path. Let l H∈ 2 be the

first job in the critical path and, let k H∈ 2 be the first job in the schedule for which

() ()C C kk LBσ > , so r rk k= . If r rl j K j≥ ∈min and k K∉ , then min j K j l g gr r r r∈ ≤ ≤ ≤ , for

g H∈ and J Jl g< ; therefore min minj K j j K jr r∈ ∈= . Since g H∈ 2 , then q qc j K j= ∈min . If

k K∈ , then min j K j kr r∈ ≤ . In any case, () ()L I L K r p qi j K j j
j K

j K jmax , min minσ = = + +∈
∈

∈∑ ,

therefore σ is optimal. Furthermore, if σ is neither early-active or late-active then

() ()L I L Kimax ,σ = . ∇

16

The Early-Late Algorithm

Next, we describe the early-late algorithm. Assume that the input data already satisfies the

conditions associated to the precedence constraints and time intervals, i.e.

if and then J J J J H r r pj k j k k j j< ∉ ≥ +, , , and q p qj k k≥ + ;

if and then J J J J H r r p lj k j k k j j jk< ∈ ≥ + +, , , and q l p qj jk k k≥ + + .

1. The algorithm maintains a lower bound on the completion time of the jobs in the chain;

initially let ()C j r p jLB j j= + ∀, . To obtain the initial priorities, sort the delivery times in

nondecreasing order and obtain a permutation π . Let ()~ ,q q jj j= ∀π . The algorithm also

maintains a subset of jobs H1 ; for j H∈ 1 , there is a dominance relation which implies

that if () ()C C jj LBσ < , then there is no schedule better than the best schedule found.

Initially, H2=H and H1 = φ .

2. Apply the Horn’s rule to the original instance I at the root of the search tree to obtain

σ
0

LB , and a lower bound to the problem, ()LB I . If the time-lag between J j and J j+1 , for

all j h= −1 1,..., , is satisfied by σ
0

LB , STOP. (This schedule is optimal.)

3. Obtain the feasible schedule σ 0 by applying the pLTRTL to I. If () ()L I LB Imax ,σ 0 = ,

STOP. (This schedule is optimal). Otherwise, σ 0 is late-active. Let J k0
 be the late-active

job. Let { }H H k H1 01= = ⊂' , ,K , and let H H H2 1= − , and for all j H∈ ' , let ~q nj = .

Consider this instance I0 , as the current instance. Therefore we are in the search tree at

the node at level k0 on the leftmost path from the root. Let i = 0 , σ σbest = 0 and

() ()L I L Ibest bestmax max, ,σ σ= 0 .

4. Let i i= +1. Obtain the schedule σ i by applying the pLTRTL with priorities to current

instance.

4.1. For j = 1 to h do:

17

4.1.1. if j H∈ 1 then () ()C j CLB j i= σ ;

4.1.2. (){ }r r C j lj j LB j j= − + −max , ,1 1 ;

4.2. If () ()L I L Ibest best i imax max, ,σ σ> , then update σ best and the length ()L Ibest bestmax ,σ ;

4.3. Obtain a lower bound to the current instance Ii , designated by ()LB I i . If

() ()LB I L Ii i i≥ max ,σ , or we obtain an optimal schedule for the current instance Ii ,

then STOP (σ best is optimal);

4.4. Otherwise,

4.4.1. if σ i is late-active and J k is the late-active job, let J l−1 be the job in H1

with biggest index, and so, { }H J J Hl k' , ,= ⊂K ; and let H H H1 1= ∪ ' ,

H H H2 2= − ' and for all j H∈ ' let ~q nj = . In this case, we are going down

in the search tree to level k by the left most path.

4.4.2. Else, σ i is early-active, and J k is the early-active job, Jc is the critical job,

let ~ ~q qk c= −1 and i i= +1. In this case, this means going to the right in the

search tree, i.e. the node where ~ ~q qk c= −1 and all remaining priorities are

maintained. Also, as we will see later, we can eliminate all the nodes where
~ ~q qk c≥ , since these nodes do not lead to better schedules than can also be

found by considering ~ ~q qk c= −1.

4.4.3. Go to 4.

5. End of the early-late algorithm. Output the best schedule σ best and the length

()L Ibest bestmax ,σ .

Next, we will prove that the algorithm gives the optimal solution.

Theorem 11: The early-late algorithm obtains the optimal schedule for the one-machine

scheduling problems with positive time-lags in a chain of jobs.

Proof. Consider that, at iteration i we are at node N i and obtained the schedule σ i . If σ i is

late-active and J k is the active job, then for all job j H∈ ' , J Jj k< and for J k , we let

18

~q nj = .This means that we are going down in the search tree to level k by the left most path.

If σ i is early-active, and J k is the active job, then by Theorems 7 and 8, it is enough to

consider ~ ~q qk c= −1 , i.e. we decrease the priority of job J k . Therefore, this means that we are

going to the right in the search tree, going to the node at level k where ~ ~q qk c= −1 and all the

remaining priorities are maintained. Furthermore, by Lemma 8, all the nodes where ~ ~q qk c≥

can be eliminated, since these nodes do not lead to a better schedule that cannot also be find

by considering ~ ~q qk c= −1 .

The algorithm will maintain the best schedule found so far, designated by σ best . The algorithm

stops when either () ()LB I L Ii best best= max ,σ or when we obtain an optimal schedule to

instance Ii , i.e., () ()L I LB Ii i imax ,σ = .

Suppose that the algorithm stopped at node N i . Then, at any descendent of this node in which

we consider different priorities to the jobs in the chain but not in H1 , will not lead to a

schedule of better value than ()LB I i . Consider any other node at the same level, to the right

of N i . At this node, at least one of the jobs in H1 has smaller priority than at N i . For these

nodes, where none of the jobs in H1 have higher priority than at N i , implies that at least some

job J l will be completed no earlier than in σ i , and at some point, later. Therefore, some

released dates will eventually increase, and so ()LB I i is a lower bound to the schedules

associated with such nodes. If at least one job in H1 has higher priority than in N i , we can

apply the previous theorems and therefore, we have already seen that these nodes can be

eliminated.

In this way, we visit some nodes in the search tree and eliminate all of the remaining ones by

knowing that they do not lead to better schedules. Once the remaining nodes have been

eliminated, we can conclude that the best schedule found is optimal. ∇

19

Theorem 12: The early-late algorithm solves the one-machine scheduling problem with a

chain of jobs, ()1 pmtn r q chain l Lj j ij, , , max , in ()O hn calls of the modified preemptive EDD

rule. Therefore, it runs in ()O hn n2 log time.

Proof. There are at most h late-active schedules. If σ i is early-active and J k is the early-

active job, then there cannot exist another early-active schedule with J k as the early-active job

and Jc as the critical job. This implies that the algorithm does at most ()O hn iterations.∇

4. Example

In this section, we present an example of the application of the ()1 pmtn r q chain l Lj j ij, , , max .

We have outputed one instance of the one-machine scheduling problem during the execution

of the branch-and-bound method by Applegate and Cook (1991) applied to the instances of

the job-shop scheduling problem ABZ5, as well as the corresponding directed graph of the

precedence constraints and all time intervals obtained.

Table 1: An instance of the one-machine scheduling problem.

Jobs Release date Processing time Delivery time
1 947 92 0
2 316 50 648
3 924 77 0
4 627 54 347
5 0 69 747
6 601 79 88
7 365 96 639
8 171 82 845
9 274 81 565
10 0 50 1019

In Tables 1 and 2, we present an instance of the one-machine scheduling problem with time-

lags obtained during the branch-and-bound method for the instance ABZ5 of the job-shop

scheduling problem. Considering all lags to be zero, the optimal value when we applied the

Horn’s rule is 1101; if we do not allow preemption and apply Carlier's algorithm, Carlier

(1982), the optimal value is 1108. But these lower bounds can be improved to 1116 just by

20

considering the chain J9< J8< J5, their respective time intervals and allowing preemption.

These, and other examples like this, lead us to think about how to use the one-machine

scheduling problem with time-lags to obtain new lower bounds to the job-shop scheduling

problem.

Table 2: Precedence constraints and time-lags for instance in Table 1.

Jobs Precedence Constraints and Time-Lags
1 T2, 540 T3, 243
4 T0, 432 T2, 559 T3, 262 T5, 232
6 T0, 181
7 T0, 402 T2, 576 T3, 279 T5, 262
8 T2, 457
9 T0, 704 T2, 762 T3, 504 T5, 224

5. Computational Results

In the section, we will present a computational experiment and the results obtained when

several methods are applied to different versions of the one machine scheduling problems. We

would like to point out that the main aim of this paper is to present the polynomial algorithm

for the ()1 pmtn r q chain l Lj j ij, , , max , however the objective of this section is to shown the

potential applicability of the early-late algorithm.

We consider 10 instances of the one-machine scheduling problem obtained by relaxations of

the job-shop scheduling problem. These instance were obtained throughout the running of teh

Applegate and Cook (1991) branch-and-bound method. The methods applied to solve each

version are:

• No time lags, pmtn ()1 pmtn r q prec Lj j, , , max . Horn’s Rule

• Chain time-lags, pmtn ()()1 pmtn r q chain l Lj j ij, , , max . Early-Late algorithm

• All time lags, pmtn ()()1 pmtn r q prec l Lj j ij, , , max . Enumerative method

• No time lags, no pmtn ()1r q prec Lj j, , max . Carlier’s algorithm.

21

• Chain time-lags, no pmtn ()()1r q chain l Lj j ij, , max . Enumerative method

• All time lags, no pmtn ()()1r q prec l Lj j ij, , max . Enumerative method

With respect to these few examples we can make some observations:

• The release dates and the delivery times are strong enough, so the schedule obtained by

applying the early-late algorithm does not violate the time-lag constraints, and in many

cases the same thing happens even when we apply the Horn’s rule. By considering all of

the lags, in only one case, Example 1, we improve the lower bound with respect to the

chain version of the problem.

• When we do not allow preemption, we observe that the instances were usually easily

solved. If we apply Carlier's algorithm to solve this version (no lags/no pmtn), many times

only one node of the search tree was needed, usually 2 or 3 and very few times 4 or more,

and it runs very fast. Note that, we expected Carlier's algorithm to be fast, since the

algorithm is known to perform well even in very large scale instances, and all instances for

this problems have 10 jobs.

• When solving (all lags/no pmtn) version of the problem, we observed again that we need

only to resolve very few conflicts in the order of the jobs, usually involving 2 jobs at most,

and therefore we construct about 1 or 2 schedules. For this case of (all lags/ no pmtn), in

four out of ten examples the bound was improved with respect to the case of (chain/pmtn).

But, we need to solve a NP-complete problem, and the question is whether it is

worthwhile spending more time to obtain a stronger lower bound.

• In many of the schedules obtained, very few preemptions occur and most of them can be

eliminated without affecting the length of the schedule, i.e., if the preemption does not

occur, the length of the schedule is not changed.

• We pay special attention to the MT10 since for this instance, the bound improved only two

times. Note that the only cases in Table 10, in which the (all lags/no pmtn) does not help

are examples from the MT10 instance. For this case, even if preemption is not allowed, it

looks like the lower bound does not improve; in 6 examples, we get an improvement in

only two.

22

Table 3: Results for 10 instances of the one-machine scheduling problem

Examples no
time-lags

pmtn.

Chain
time-lags

pmtn

all
time-lags

pmtn

no
time-lags
no pmtn

chain
time-lags
no pmtn

all
time-lags
no pmtn

1 (LA19) 798 807 813 807 807 832
2 (MT10) 911 911 911 911 911 911
3 (MT10) 917 917 917 917 917 917
4 (MT10) 836 836 836 836 836 836
5 (MT10) 884 884 884 892 892 892
6 (ABZ5) 1101 1116 1116 1108 1116 1116
7 (LA19) 735 752 752 747 755 755
8 (ABZ5) 1147 1157 1157 1147 1157 1157
9 (MT10) 884 884 884 892 892 892
10 (MT10) 918 918 918 918 918 918

We have performed more tests, by integrating the early-late algorithm to obtain lower-bounds

in the branch-and-bound algorithm developed by Brucker, Jurish and Sievers (1994). To

improve the method, we changed the branching scheme to take advantage of the one-machine

scheduling problems with time-lags. In Bruno and Lourenço (1998) two methods were

proposed to this branching scheme, CMC and CTC methods, and extensive computational

results are presented.

The CMC branching scheme arranges the blocks according to non-increasing length of the

longest chain, if exist, associated to each block, instead of the non-decreasing cardinality as in

Brucker, Jurish and Sievers (1994), say the BJS scheme. Meanwhile, the CTC branching

scheme sorts the block according to the total length of all chains associated with the blocks.

Note that, both rules try to take advantage of the existence of time-lags , where the first nodes

to be evaluated are associated with larger chains.

In tables 4, we present some results obtained for the job-shop test problems.

We can observe that, in general, when the new rules were used, the branch-and-bound method

search for fewer nodes than when using the BJS scheme. This happens in special for the larger

instances. However, since it takes more time to calculate the new lower-bound, the use of this

one not always lead to an improve in the running times. Between the schemes CMC and CTC,

23

we can observe that the CMC usually needs less search-nodes than the CTC leading to better

running times.

Table 4: Computational Results for job-shop instances.

BJS CMC CTC

Dimensão Solução
óptima

Solução
obtida

nº de
nodos

tempo
(seg.)

Solução
obtida

nº de
nodos

tempo
(seg.)

Solução
obtida

nº de
nodos

tempo
(seg.)

MT10 930 930 4249 513 930 11724 1493 930 4959 545

ABZ5 1234 1234 2147 244 1234 972 120 1234 972 103

ABZ6 10×10 943 943 135 15 943 168 18 943 153 14

ORB1 1059 1059 3124 37643 1059 3764 4983 1059 45159 5083

ORB2 888 888 2317 262 888 1284 156 888 1284 134

LA21 1046 *1057 765206 225890 *1046 208073 249365 *1046 242062 84934

LA22 927 927 10529 3488 927 6365 2041 927 7993 2169

LA23 15×10 1032 1032 6619 1829 1032 519 145 1032 3157 863

LA24 935 935 136630 45524 935 92736 33479 935 76831 24517

LA25 977 977 429524 135658 977 406705 136075 977 408647 118233

LA26 1218 1218 56639 24076 *1266 484788 313729 *1292 23394 11305

LA27 1235-1256 *1270 185116 116043 *1293 314154 201967 *1391 543788 332863

LA28 20×10 1216 *1273 20042 7889 *1309 27141 16803 *1278 7821 3050

LA29 1120-1164 *1202 326106 182291 *1195 453193 291783 *1225 628420 331613

LA30 1355 1355 368 126 *1379 437 187 *1399 16296 6635

LA31 1784 1784 8 3 *1797 11232 19339 *1788 20 9

LA32 1850 1850 1 0 1850 1 0 1850 1 0

LA33 30×10 1719 1719 77 41 *1753 2 1 *1729 1 0

LA34 1721 1721 15 6 *1798 3 1 *1823 10567 16321

LA35 1888 1888 24 11 1888 8 4 1888 7 3

6. Conclusions

In this work, we have considered the one-machine scheduling with time-lags. The main

contribution of this work is the presentation of a polynomial algorithm, the early-late

algorithm, that solves to optimality the special case where all time-lags have a chain form and

preemption is allowed. This algorithm can be used to obtain lower-bounds to other complex

24

scheduling problems, as the job-shop problem. We also present examples of this application

and some computational testing. From the computational experiment, we can conclude the

potential application of the early-late algorithm.

Further developments of this work are related to the extensions of the one-machine scheduling

problem with chain time-lags and preemption, and their application to obtain lower bounds to

more complex scheduling problems. We observed that the directed graph of the precedence

constraints was frequently an almost-bipartite graph, i.e., there are two subsets of jobs

containing most of the jobs such that a job in the first group has only to be processed before

some of the jobs in the second group. The previous characteristic is associated with a one-

machine scheduling problem with several chains. Also, we would like to study if it is worth to

solve the problem without preemption. Therefore, as an extension of this research, we would

like to develop efficient algorithms to solve the above problems. Even for NP-complete

problems, we should study the following question: does it pay off to spend more time to

obtain the stronger lower-bounds or not?

References

[1] Applegate D and Cook W (1991), A computational study of the job-shop scheduling

problem, ORSA - Journal on Computing, 3, 149-156.

[2] Balas E, Lenstra JK and Vazacoupolos A (1995), One machine scheduling with time-lags,

Management Science, 41 (1), 94-109.

[3] Bruno PM and Lourenço HR (1998), New ramification rules in a branch-and-bound

method to solve the job-shop scheduling problem, Investigação Operacional, 18, 3-16.

[4] Brucker P, Hilbig T and Hurink J (1997), A branch and bound algorithm for a single-

machine scheduling problem with positive and negative time-lags, Working paper,

Fachbereich Mathematik/Informatik, Universität Osnabrück, Germany.

[5] Brucker P, Jurish B and Sievers B (1994), A branch and bound algorithm for the

job-shop scheduling problem, Discrete Applied Mathematics, 49, 107-127.

[6] Brucker P and Knust S (1998), Complexity results for single-machine problems with

positive finish-start time-lags, Working paper, Fachbereich Mathematik/Informatik,

Universität Osnabrück, Germany.

25

[7] Carlier J (1982), The one-machine sequencing problem, European Journal of

Operational Research, 11, 42-47.

[8] Horn WA (1974), Some scheduling algorithms, Naval Res. Logist. Quart. 21, 177-185.

[9] Lageweg BJ, Lenstra JK and Rinnooy Kan AHG (1976), Minimizing maximum lateness

on one machine: computational experience and some applications, Statistica Neerlandica,

30, 25-41.

[10] Lenstra JK, Rinnooy Kan AHG and Brucker P (1977), Complexity of machine scheduling

problems, Annals of Discrete Mathematics, 1, 343-362.

[11] Lourenço HR (1993), A computational study of job-shop and the flow-shop scheduling

problems, Ph.D. Thesis, School of OR&IE, Cornell University, Ithaca, NY, USA.

