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1. Introduction.

We are given an i.i.d. sample X1; : : : ;Xn drawn from an unknown density f on IR.

A density estimate fn(x) = fn(x;X1; : : : ;Xn) is a real-valued measurable function of its

arguments. One of the most popular estimates is

fnh(x) =
1

n

nX
i=1

Kh(x�Xi);

where K : IR ! IR is a �xed kernel with
R
K = 1, Kh(x) = (1=hd)K(x=h), and h > 0

is the smoothing factor (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956). Many data-

dependent choices for h have been proposed in the literature. The question of whether h

can be tuned in an optimal manner has been answered in the a�rmative by Devroye and

Lugosi (1996, 1997), where data-dependent smoothing factors H are introduced for which

sup
f

lim sup
n!1

E
R jfnH � f j

infhE
R jfnh � f j � 3 ;

whenever the kernel K is nonnegative, Lipschitz, and of a compact support.

The variable kernel estimate (Breiman, Meisel and Purcell, 1977; Raatgever and

Duin, 1978; Habbema, Hermans and Remme, 1978) allows h to depend upon either i or

x. In the bmp (Breiman-Meisel-Purcell) form

fn(x) =
1

n

nX
i=1

Khi
(x�Xi);

fn is still a density. Various ways of letting the data pick the hi's were proposed by

Breiman, Meisel and Purcell (1977) and others later. As each hi should be tuned to what

is happening near Xi, the behavior of the bmp estimate should not be radically di�erent

from that of the raw variable kernel estimate in which h = h(x). In a data-based form,

we have H = H(x;X1; : : : ;Xn). It is this form that will be studied in this paper.

We note here some general references on variable kernel estimates, such as Devroye

(1985), Devroye and Penrod (1986), Jones (1990), Terrell and Scott (1992), Hall (1992),

and Marron, Hall and Hu (1995), who all deal with convergence issues. A particularly

in
uential paper was that of Abramson (1982), who showed how variable bandwidths

with positive kernels can nevertheless induce convergence rates usually attainable with

�xed bandwidths and fourth order kernels (see also Hall and Marron, 1988). This sets

variable bandwidth kernels apart from �xed bandwidth kernels. Particular variable band-

widths include the cross-validation methods of Hall and Marron (1988), Hall and Schucany

(1989) and Mielniczuk, Sarda and Vieu (1989), Sheather's solve-the-equation bandwidth

(1983, 1986) (Thombs and Sheather, 1992), Sain's (1994) and Sain and Scott's boot-

strap bandwidth (1996), and Hazelton's (1996) and Farmen's (1996) smoothed bootstrap
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bandwidths. None of the cited papers addresses the question posed here. Our work was

inspired by interesting observations by David Scott at presentations in Louvain La Neuve

and Montreal in 1997, and which are summarized in Sain and Scott (1997).

To introduce our main result, we �x the notation as follows: the raw variable kernel

estimate is

fn;h(x)(x) =
1

n

nX
i=1

Kh(x)(x�Xi);

and the data-based variable kernel estimate is

fn;H(x)(x) =
1

n

nX
i=1

KH(x)(x�Xi);

where it is understood that H(x) = H(x;X1; : : : ;Xn). Let FB be the class of nondecreas-

ing, convex-shaped densities f on [t; t + s] with s sup(t;t+s) f(x) � B, where t 2 IR and

s > 0 are arbitrary. (Note that t is just a translation constant and that if f 2 FB, then so

are all rescaled and translated versions of f .) One of the results we show is the following:

if K � 0 is a symmetric square-integrable kernel on [�1; 1], then there exists a positive

constant C not depending upon n such that

inf
H:IRn+1!(0;1)

sup
f2FB

E
R jfn;H(x)(x)� f(x)jdx

infh:IR!(0;1)E
R jfn;h(x)(x)� f(x)jdx � Cn

1

10 :

So, even with the knowledge that f 2 FB, one cannot e�ciently design a variable band-

width. Generalizations and extensions of this result round out the paper.

It is generally accepted that some versions of variable bandwidths outperform �xed

bandwidth estimates, and our results do not contradict this. However, we only say that

the class of variable bandwidth kernel estimates is too large to be optimized. Devroye,

Lugosi and Udina (1998) basically describe how far one can go in the optimization: they

partition the real line into k intervals and use a di�erent (�xed) bandwidth on each

interval. Simultaneous optimization of the k intervals and the k bandwidths is possible

in the sense that there exists a data-based choice of a piecewise constant function H(x)

with k pieces such that for all densities

E

Z
jfn;H(x)(x)� f(x)jdx � c0 infE

Z
jfn;h(x)(x)� f(x)jdx+ c1

r
k log n

n
;

where c0 and c1 are absolute constants, and the in�mum is taken over all variable kernel

estimates where h(x) is piecewise constant with k pieces. However, as shown in this paper,

optimization becomes impossible when k = n. As a happy by-product, any heuristic for

variable bandwidths is suboptimal, and therefore, no claim of superiority can be made for

any method.
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2. The main result.

We state our main result for the simplest possible kernels and will generalize later.

No attempt is made to optimize the constants in the bounds. We introduce a shape

parameter for nonnegative symmetric kernels K:

�
def
= support(K)�

Z
K2 :

Note that by the Cauchy-Schwarz inequality, � � 1, and equality is reached for the uniform

kernel. In any case, � is a scale-invariant parameter that will appear in our bounds.

Theorem 1. Let K be a symmetric nonnegative square-integrable kernel with shape

parameter �. Then, for n � 24,

inf
H:IRn+1!(0;1)

sup
f2F7=3

E
R jfn;H(x)(x)� f(x)jdx

infh:IR!(0;1)E
R jfn;h(x)(x)� f(x)jdx �

n
1

10

324
p
�
:

The choice of the constant B = 7=3 is irrelevant, and is motivated by convenience.

To prove Theorem 1, we combine two results, an estimate of the L1 error for raw variable

kernel estimates inspired by recent work of Sain and Scott (1997), and a minimax lower

bound for FB. Sain and Scott remarked that for most locations x, the kernel estimate

could be made unbiased by taking h(x) �xed and positive (not depending upon n). A

similar but less explicit remark may also be found in Hazelton (1996, p. 223). This

prompted us to consider f 2 FB, where every x has this property. In particular, the rate

of convergence could be O(1=
p
n) if we knew f and thus the optimal map h : IR! (0;1).

Lemma 1. Let K be a symmetric nonnegative square-integrable kernel on the real line

with shape parameter �. Then

sup
f2FB

inf
h:IR!(0;1)

E

Z
jfn;h(x)(x)� f(x)jdx �

r
4B�

n
:
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Proof. Fix f 2 FB. By a linear transformation, we may and will assume that f is

supported on [0; 1] and bounded by B. Let the support of K be [�c; c]. Note that we

may set h(x) = jxj for x < 0 and h(x) = x � 1 for x > 1, so that since f has support on

[0; 1] and K on [�c; c], we have fn;h(x) � f(x) � 0 outside [0; 1]. Thus, pick x 2 (0; 1).

We use the notation � for the convolution operator, and drop the argument of h(x). Note

that as long as h = h(x) is less than min(x; 1� x)=c,

Efn;h(x) = f �Kh(x)

= (1=h)

Z
f(y)K((x� y)=h)dy

=

Z
f(x+ hw)K(w)dw

= Ef(x+ hW ) (where W has density K)

� f(x+ hEfWg) (by Jensen's inequality)

= f(x):

Also, it is trivial to check that limh!1 f �Kh(x) = 0. Thus, since f �Kh(x), considered as

a function of h, is continuous in h, we see that necessarily f(x) = f �Kh(x) for some h > 0,

and, in fact, there exists at least one such h with h � min(x; 1� x)=c. For x 2 (0; 1), we

de�ne

h(x) = supfz > 0 : f �Kz(x) = f(x)g ;
and note for further use that h(x) � min(x; 1�x)=c. From here on, h denotes this choice.

Then, by routine calculations,

E fjfn;h(x)� f(x)jg = E fjfn;h(x)�Efn;h(x)jg
�
q
E f(fn;h(x)�Efn;h(x))2g

=

r
Var fKh(x�X1)g

n

�
r
E f(Kh(x�X1))2g

n

=

s
E
�R

K2((x� y)=h)h�2f(y)dy
	

n

�
r
B
R
K2

nh
:

This is true for all x 2 (0; 1), and integration yields

E

�Z
jfn;h(x)� f(x)jdx

�
�
r
B
R
K2

n

Z 1

0

1p
h(x)

dx
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� 2

r
Bc
R
K2

n

Z 1=2

0

1p
x
dx

=

r
4B�

n

as required.

It is of course impossible to estimate all f 's in FB at the rate 1=
p
n with any

density estimate, let alone the data-based variable kernel density estimate. To support

this, we merely require a minimax lower bound. For general results in density estimation,

this was done by Birg�e (1984, 1985, 1986) and Devroye (1987), and details for monotone

densities are worked out in Birg�e (1987a, 1987b) and Yang (1996). For the family FB, we

merely require a good non-asymptotic bound with the right dependence on n but not B,

so a bound is derived here which is optimal in n but suboptimal in B.

Lemma 2. For n � 24, we have

inf
fn

sup
f2F7=3

E

Z
jfn � f j � 1

106:02476 : : : n2=5
;

where the in�mum is over all density estimates.

Proof. Let k be a suitable positive integer to be determined further on. We will con-

struct a family of 2k densities contained in FB, where B = 7=3. The interval [0; 1] is

partitioned into k intervals denoted by A1; : : : ; Ak. Thus, Ai = [(i � 1)=k; i=k). On

[(i � 1)=k; i=k], we consider two piecewise linear functions fi and gi with the following

properties:

A. fi = gi at the ends of the interval, and fi�1((i� 1)=k) = fi((i� 1)=k);

B.
R
Ai
fi =

R
Ai
gi;

C. sup
x2((i�2)=k;(i�1)=k)max(f 0

i�1(x); g
0
i�1(x)) � infx2((i�1)=k;i=k)min(f 0

i
(x); g0

i
(x));

D. sup
x2Ai�1 max(fi�1(x); gi�1(x)) � infx2Ai min(fi(x); gi(x));

E. f1(0) = g1(0) = A > 0, where A = 1=3;

F. fk(1) = gk(1) � 7=3;

G.
P

k

i=1

R
Ai
fi = 1.
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If we piece together a function f by choosing either fi or gi on Ai, then we obtain a

bona �de density (by B, D, E and G). Furthermore, f is increasing (by D), continuous on

(0,1) (by A) and convex (by A and C). There are 2k such possible functions, and we may

parametrize the family by a bit vector b = (b1; : : : ; bk), where bi = 1 if the corresponding

f picks fi on Ai, and bi = 0 otherwise. We will denote this f by fb and apologize for using

the same notation as in fi.

De�ne di = 4ai for some constant a. We will pick the fi's such that on Ai, both f 0
i

and g0
i
are between di�1 and di. This will then insure nondecreasing derivatives, and thus

convexity for f . The positivity is also insured. On Ai, we set

f 0
i
=

�
di�1 + a x 2 [(i� 1)=k; (i� 1=3)=k)

di x 2 [(i� 1)=k + 2=(3k); i=k)

and

g0
i
=

�
di�1 x 2 [(i� 1)=k; (i� 2=3)=k)

di � a = di�1 + 3a x 2 [(i� 1)=k + 1=(3k); i=k)

It takes a moment to verify that
R
Ai
f 0
i
=
R
Ai
g0
i
so that fi and gi make equal jumps.

Another routine computation shows that
R
Ai
fi =

R
Ai
gi as well. Thus, the functions will

suit us, provided that the total integral is one. To do this, we observe thatZ
Ai

f 0
i
=

2

3k
(4a(i� 1) + a) +

4ai

3k
=

4ai� 2a

k
;

and similarly for
R
Ai
g0
i
. Hence, at i=k, the value of any f in our class is

A+

iX
j=1

4aj � 2a

k
= A+

2ai2

k
:

For future reference, we note that fk(1) = gk(1) = A + 2ak. Next, we compute the

integrals:Z
Ai

fi =

Z 2=3k

0

(fi((i� 1)=k) + (4(i� 1)a+ a)x)dx+

Z 1=3k

0

(fi(i=k)� 4aix)dx

=
A

k
+
a(18i2 � 18i + 22)

9k2
:

Thus, the integral of any f in our class is the sum over the k individual pieces, which is

A+
a(6k2 + 16)

9k
:

As A = 1=3 and the integral must be one, we must take

a =
6k

6k2 + 16
:
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We verify quickly that a � 1=k, and that for k � 2, a � 4=7k. Finally, we insure that

each f is bounded by 7=3:

fk(1) =
1

3
+

12k2

6k2 + 16
=

42k2 + 16

18k2 + 48
<

7

3
:

This ends the construction of our parametric family with 2k members.

We now apply a minimax lower bound method pioneered by Assouad (1983), in

the form given in Devroye (1987, p. 60): we need to compute two lower bounds � and

�, where � is a uniform lower bound on
R
Ai
jfi � gij, and � is a uniform lower bound onR p

fg, where f and g are two of the 2k functions that di�er only on one interval. The

required uniformity is with respect to i, the interval index. Clearly,Z
Ai

jfi � gij = 2

 Z 1=3k

0

axdx+

Z 1=6k

0

2axdx

!
=

a

6k2
:

Thus, we may set

� =
a

6k2
:

Next, pick i, and let I = Ai, O = [0; 1]�Ai. Let f and g be two of our functions that are

equal on all intervals except Ai. Note that on Ai, jfi � gij is maximal at 1=3k from the

left boundary, and the value there is a=(3k). ThenZ p
fg =

Z
O

f +

Z
I

p
fg

=

Z
O

f +

Z
I

s�
f + g

2

�2

�
�
f � g

2

�2

=

Z
O

f +

Z
I

f + g

2
�
Z
I

f + g

2

0
@1�

s
1�

�
f � g

f + g

�2

1
A

=

Z
O

f +

Z
I

f �
Z
I

f + g

2

0
@1�

s
1�

�
f � g

f + g

�2

1
A

� 1�
Z
I

(f + g)(f � g)2

2(f + g)2

� 1� a2

18k2

Z
I

(f + g)�1dx

� 1� 3a2

18k3

= 1� a2

6k3
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� 1� 1

6k5

We set 1 � � = 1=(6k5). By Assouad's theorem (as in Devroye, 1987, p. 60),

inf
fn

sup
f2F7=3

E

Z
jfn � f j � k�

2

�
1 �

p
2n(1 � �)

�

=
ka

12k2

�
1 �

r
n

3k5

�

� 1

21k2

 
1�

r
1

4

!

(provided k � 2 and k5 � 4n=3)

=
1

42k2

=
1

42d(4n=3)1=5e2
(upon taking k = d(4n=3)1=5e)

� 1

42(1 + (4n=3)1=5)2
:

Note that the condition k � 2 holds if n � 24. In that case, 1 � (4n=3)1=5=2, and the

lower bound is thus at least

1

42((3=2)(4n=3)1=5)2
� 1

106:02476 : : : n2=5

which was to be shown.

We may now combine Lemmas 1 and 2 to prove Theorem 1. Indeed,

inf
H:IRn+1!(0;1)

sup
f2F7=3

E
R jfn;H(x)(x)� f(x)jdx

infh:IR!(0;1)E
R jfn;h(x)(x)� f(x)jdx

�
inffn supf2F7=3 E

R jfn;H(x)(x)� f(x)jdx
sup

f2F7=3 infh:IR!(0;1)E
R jfn;h(x)(x)� f(x)jdx

�
1

106:02476:::n2=5q
28�

3n

� n
1

10

324
p
�
:

This concludes the proof of Theorem 1.

From looking at Lemma 1, one is tempted to try to �nd data-based variable band-

widths that achieve O(1=
p
n) error rates over the given class of convex densities, but
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Theorem 1 shows that in a uniform sense, no such rate is possible. It does not imply

that there always exists one convex density for which the rate is worse. To prove that

this is the case|and thus, that the \bad density" does not change with n, as in minimax

results|, we need additional work, which is presented in the next section.

Sain and Scott (1997) give a detailed and lucid account of the zero-bias band-

width for locally convex densities. They consider pointwise L2 errors (or mse) and

observe O(1=n) pointwise rates if h(x) were known. They try to estimate h(x) by cross-

validation. Unfortunately, they report that in practice theO(1=n) rate (which corresponds

to O(1=
p
n) L1 errors) is not achievable, which in view of our results is to be expected.

We would like to make one fundamental remark however about the mise E
R
(fn � f)2.

If fn is the kernel estimate with optimal h(x) and f 2 FB, then the mise is in general

in�nite (while the L1 error by Lemma 1 is O(1=
p
n). Indeed, due to the squaring, the

variance is O(
R 1

0
1=(nh(x))dx), and as h(x) near 0 varies about like x, we see that the

integrated variance blows up.

3. Bad densities for the entire sequence.

Assume that we are given an entire sequence of local data-based bandwidths, where

the n-th mapping is Hn : IRn+1 ! (0;1). We write Hn also for Hn(x;X1; : : : ;Xn). In

this section, we show (Theorem 2 below) that if an # 0 arbitrarily slowly, then there exists

a monotone bounded piecewise convex density on [0; 1] for which the ratio

E
R jfn;Hn(x)(x)� f(x)jdx

infh:IR!(0;1)E
R jfn;h(x)(x)� f(x)dx

is in�nitely often more than ann
1=10. Thus, the same density can be used as a counterex-

ample no matter how large the sample size is. In our proof, we follow to some extent the

lead of Birg�e (1986).

Lemma 3. Let K be a symmetric nonnegative square-integrable kernel on the real line

with shape parameter �. Partition the line into an in�nite number of intervals of length li

and weight pi. On the i-th interval, let f be a nondecreasing convex nonnegative function

of integral pi and taking maximal value mi. Assume that
P

i
pi = 1. Then

inf
h:IR!(0;1)

E

Z
jfn;h(x)(x)� f(x)jdx �

X
i

min

 r
4limi�

n
; 2pi

!
:
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Proof. We refer to the proof of Lemma 1, and only modify a few bounds. Consider the

i-th interval, and assume without loss of generality that it is [0; li]. De�ne h(x) as in the

proof of Lemma 1, and note that h(x) is at least equal to the minimum distance from x

to the border of its interval. As intervals can thus be treated separately, we may argue

as on one interval, as in Lemma 1. For x 2 [0; li], de�ne �(x) = min(x; li � x). Note that

arguing as in Lemma 1, h(x) � �(x)=c, where [�c; c] is the support of K.

We also note that by the choice of h(x), and positivity of K, we have

E fjfn;h(x)� f(x)jg � f(x) +Efn;h(x) = 2f(x) :

Thus, for all x in the i-th interval,

E fjfn;h(x)� f(x)jg � min

0
@
s
mi

R
K2

nh(x)
; 2f(x)

1
A

� min

0
@
s
mic

R
K2

n�(x)
; 2f(x)

1
A

= min

�r
mi�

2n�(x)
; 2f(x)

�

so that, taking integrals then yields

E

Z
jfn;h(x)� f(x)j dx �

X
i

Z
i-th interval

min

�r
mi�

2n�(x)
; 2f(x)

�
dx

�
X
i

min

�Z
i-th interval

r
mi�

2n�(x)
dx;

Z
i-th interval

2f(x) dx

�

=
X
i

min

 r
mi�

2n
2

Z
li=2

0

1=
p
xdx; 2pi

!

=
X
i

min

 r
4limi�

n
; 2pi

!
:

Lemma 3 provides us with a rich enough family of densities from which to draw

examples: it is applicable to basically all bounded piecewise convex densities. The freedom

in the choice of the Lemma's parameters will be useful further on. The following Lemma

allows us to use minimax lower bounds for densities on a �xed interval for mixtures of

densities.
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Lemma 4. Let g be a �xed density supported outside [0; 1], and let FB be as in Lemma

2. Let p 2 (0; 1) and let G be the class of densities of the form pf + (1 � p)g : f 2 F7=3.

For n � 24, we have

inf
fn

sup
f2G

E

Z
jfn � f j � p

106:02476 : : : n2=5
;

where the in�mum is over all density estimates.

Proof. We mimic the proof of Lemma 2, and make only changes where appropriate. The

2k-member subclass construction is as in Lemma 2, except for the multiplicative factor p.

This leads to the choice 1 � � = p=6k5. By Assouad's theorem,

inf
fn

sup
f2G

E

Z
jfn � f j � kp�

2

�
1 �

p
2n(1 � �)

�

=
kpa

12k2

�
1 �

r
np

3k5

�

� p

21k2

�
1�

r
p

4

�
(provided k � 2 and k5 � 4n=3)

� p

42k2

=
p

42d(4n=3)1=5e2
(upon taking k = d(4n=3)1=5e)

� p

42(1 + (4n=3)1=5)2
:

Note that the condition k � 2 holds if n � 24. In that case, 1 � (4n=3)1=5=2, and the

lower bound is thus at least

p

42((3=2)(4n=3)1=5)2
� p

106:02476 : : : n2=5

which was to be shown.
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Theorem 2. Let an be a strictly decreasing sequence of positive numbers with zero limit.

A. Let fn be any density estimate. Then there exists a piecewise convex nondecreasing

density f on [�1; 0] bounded by 5 and a subsequence nj such that along this

subsequence

E

Z
jf � fnj j � anjn

�2=5
j

:

B. Let fn;Hn(x) denote any variable kernel estimate with kernelK and local bandwidth

Hn. If K is symmetric, nonnegative, and has shape parameter � <1, then there

exists a piecewise convex nondecreasing density f on [�1; 0] bounded by 5 and a

subsequence nj such that along this subsequence

E
R jfnj ;Hnj

(x) � f j
infh:IR!(0;1)E

R jfnj;h(x)(x)� f(x)jdx � anjn
1=10

j
:

Proof. We consider an in�nite subfamily of densities within the conditions of Lemma

3. Let p1 > p2 > : : : be a probability vector, and let Bi = [�1+1=2i;�1+2=2i) for i � 1.

On Bi, de�ne a class of densities as in the proof of Lemma 2, parametrized by ki, the

number of partitions, and scale each density by li = 1=2i. Each density is characterized by

a bit vector bi with ki bits. The density for bi on Bi is denoted by fi;bi. If b = (b1; b2; : : :),

de�ne the density

fb = p1f1;b1 + p2f2;b2 + � � �
and consider the class F of all these densities. Note that on Bi, each fb takes values

in [pi=3li; (7=3)pi=li], is nondecreasing and piecewise convex. Formally, in Lemma 3, we

have mi = 7pi=3li, and li = 1=2i. Each fb is supported on [�1; 0], and is nondecreasing

provided that
7pi+1

3li+1

� pi

3li

for all i. This translates in the condition

pi+1

pi
� 1

14
:

Finally, note that each fb is bounded by (7=3)p1=l1 � 14=3. Our class is thus contained in

the class of bounded support bounded monotone densities. (With some extra e�ort, we

could have made the densities continuous as well within the support.) By Lemma 3, for

all b,

inf
h:IR!(0;1)

E

Z
jfn;h(x)(x)� fb(x)jdx �

P
i

p
4limi�p
n

=

q
28�

3

P
i

p
pip

n
:

13



It remains to show how to replace Lemma 2. Let ffng be any sequence of density estimates.

Then, let 24 < n1 < n2 < � � � be a specially selected sequence of sample sizes. The interval

Bi is targeted when n = ni, and we do not care about sample sizes n outside the collection

of ni's. The observations in the sample are all determined from b and the i.i.d. pairs

(Z1; U1); (Z2; U2); : : :, where the Zi's are discrete and take the value j with probability pj,

j � 1, and the Ui's are uniform [0; 1]. Zi picks the mixture component for Xi, and Ui is

used in the probability integral transform to obtain Xi from the density fZi;bi. Note in

particular that with this embedding, if Nj = 0 (where Nj is the number of Xi's in interval

Bj), then the sample is una�ected by changes of bj. The existence of a bit vector b will

be established inductively. Assume that we have �xed b1; : : : ; bj�1. We have n = nj, by

assumption. Let E denote the event that N =
P

k>j
Nk = 0. Let F denote the family of

densities fb with the �rst j � 1 components of b �xed as above and with the components

bk, k > j all zero. The family has 2kj members distinguished by all possible values for bj.

Then at n = nj,

sup
bj

E

Z
jfn � fbj � sup

bj

E

Z
Bj

jfn � pjfbj j � pjn
�2=5=107

if nj � 24 by Lemma 4. Pick bj so that E
R jfnj � fbj � pjn

�2=5
j

=107. Continue in this

fashion, and �nd b = (b1; b2; : : :). Then, at n = nj , we have, setting b
� = b in its �rst j

components, but zero for the other components,

E

Z
jfn � fbj � E

�
IE

Z
jfn � fb�j

�

= E

�Z
jfn � fb�jjE

�
PfEg

� pj

p1 + � � � + pj
n
�2=5
j

PfEg=107

� pjn
�2=5
j

PfEg=107 :
Here the ratio comes from the observation that conditional on E, the sample may be

thought to be drawn from mixture densities with only the �rst j components. Now,

PfEg � 1 � nj
P

k>j
pk � 1=2 by our choice of pj and nj . As aj is decreasing, we will

make pjn
�2=5
j

=214 greater than or equal to n
�2=5
j

anj for all j. From the sequence an, pick

a subsequence anj , with the property that
P

j
anj < 1=214, an2 � 1=428, and such that

anj+1 < anj=(2nj). Clearly,
P

k>j
ank < anj=nj for all j. Set pj = 214anj so that we have

the desired inequality, and the pj 's sum to less than one. Give the remaining mass to p1,

to make a probability vector. Note that

nj
X
k>j

pk = nj
X
k>j

214anj � 214anj �
1

2

14



for j > 1 by our choice of a subsequence. Thus, PfEg � 1=2 as required. Also, pj+1=pj =

anj+1=anj � 1=2nj � 1=48 < 1=14 as required for monotonicity. Therefore, for our

recursively constructed b, we have at all j > 1,

E

Z
jfnj � fbj � n

�2=5
j

anj :

This concludes the proof of part A of the Theorem. For part B, we use the same sub-

sequence, but note an earlier bound for the denominator in the ratio and obtain for all

j > 1,

E
R jfnj ;Hnj

(x) � fbj
infh:IR!(0;1)E

R jfn;h(x)(x)� fb(x)jdx �
n
�2=5
j

anjp
28�

3

P
i

p
pip

nj

=
n
1=10

j
anjq

28�

3

P
i

p
pi

� n
1=10

j
anjp

�an1
�

p
2� 1p

28 � 428=3

becauseX
i

p
pi =

X
i

p
214ani

�
p
214

�p
an1 +

p
an1=(2n1) +

p
an1=(2

2n1n2) +
p
an1=(2

3n1n2n3) + � � �
�

�
p
214an1

1X
i=0

1

(
p
2)i

=
p
428an1

1p
2 � 1

:

By replacing the an's by
p
an at the outset of the proof, it is trivial to see that the ratio

studied in part B of the Theorem is in�nitely often greater than ann
1=10, as required. This

concludes the proof of Theorem 2.
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4. Extensions and generalizations.

The proofs show that Lemma 1 and Theorems 1 and 2, with suitable changes

of the constants, remain valid for piecewise convex densities, and in particular, for any

piecewise linear density. However, for piecewise linear densities with a �nite number of

breakpoints, it may be possible to design a variable kernel density estimate with L1 error

rate O(1=
p
n). Indeed, this is possible for the uniform density on [0; 1] and for trapezoidal

densities. And since it is possible to estimate the breakpoints e�ciently, so that the class

of piecewise linear densities with � k breakpoints is truly a parametric class.

In IRd, if we use bounded support positive symmetric product kernels, the same

methodology would work on the class of all convex densities on [0; 1]d bounded by a

constant B. There is no problem with the generalization of Lemma 1: the rate O(1=
p
n)

would be achievable for the best h(x) (assuming the same h is used in all dimensions). The

minimax rate for the new class needs to be determined however. Clearly, it is going to be

worse than in the one-dimensional case, so that even if we pick h identical in all directions

(an easier problem than picking it separately for each dimension), a phenomenon similar

to that described by Theorems 1 and 2 should occur.

A more subtle situation occurs when the kernel K is of order 2s for some positive

integer s, that is, K is symmetric,
R
K = 1,

R
xiK(x)dx = 0 for 1 � i < 2s andR

x2sK(x)dx = S 6= 0. Even here, there is an analog to Theorem 1. The variance bound

as described in Lemma 1 remains obviously valid uniformly over all bounded densities on

[0; 1] that have for each x 2 (0; 1) a bandwidth h(x) that makes the bias zero. What one

needs is the property that at every x, locally, f �Kh increases initially when h increases

from 0. By Taylor's series expansion with remainder, this is easy to establish if at every

x 2 (0; 1), f2s is of the same sign as S, and if K vanishes o� [�1; 1]. The minimax lower

bound over such densities on [0; 1] bounded by a constant B is of the order of n�2s=(4s+1)

(we could not �nd a reference for this though), and therefore, the factor n1=10 in Theorem

1 should be replaced by n1=(8s+2), which still tends to in�nity, albeit more slowly.

16



5. Remarks on unbiasedness.

We showed that it is futile to look for the zero-bias choice h(x) even for convex

densities. Of course, we knew since Rosenblatt (1956) that no universally unbiased non-

negative density estimate fn exists:

inf
fn:fn�0

sup
f

Z
jEfn � f j > 0 :

On the other hand, for small classes (F) of densities, unbiased density estimates exist:

inf
fn

sup
f2F

Z
jEfn � f j = 0 :

An example is the class of all normal densities with unknown mean and variance, for

which an unbiased estimate was found by Basu (1964)|see also exercise 7.14 of Devroye

(1987). A second example is the class AT;s;C of Devroye and Gy�or� (1985, page 142),

which roughly speaking is a subclass of all densities with bounded support characteristic

function and absolute s-th integrated derivative of the characteristic function bounded

by C. Here the unbiased estimate is the ordinary kernel estimate with a superkernel

and a bandwidth less than a constant depending upon T only. For more information on

unbiasedness, see Lumelskii and Sapozhnikov (1969), Wertz (1975), Guttmann and Wertz

(1976), and Seheult and Quesenberry (1971).

One may ask then where the boundary is for F? Which classes are too large

to �nd unbiased density estimates for all members in the class? We o�er the following

result, which relates the non-existence of unbiased estimates to the richness of the class

of densities under consideration.

Theorem 3. Let F be a class of uniformly bounded densities, and let Rm(F) denote its
minimax risk for sample size m:

Rm(F) = inf
fm

sup
f2F

E

Z
jfm � f j :

Let fn be a density estimate, where n is a �xed integer. If limm!1
p
mRm(F) =1, then

either fn is not unbiased (supf2F
R jEfn � f j > 0) or

sup
f2F

Z p
Eff2

n
g =1:

Let us illustrate this Theorem. The fact that the minimax risk increases faster

than 1=
p
n usually is accepted as an indication that F is \nonparametric". An example

of a rich class is the class of all densities on [0; 1] with 25 continuous derivatives on the

17



real line, each of which is bounded in absolute value by B for a su�ciently large constant

B. With the knowledge that f is in this class, one would be tempted to construct density

estimates bounded by B. But Theorem 3 then says that fn cannot be unbiased for all

f in the class! The price to pay for unbiasedness is unboundedness in expectation as in

the last condition of Theorem 3. In particular, for such rich nonparametric classes, no

bounded and compactly supported unbiased density estimate exists, even if we know a

uniform bound on the densities and the support in the class.

While Theorem 3 does not supersede Rosenblatt's result, it complements it by

addressing the question of the size of the classes. The two examples cited earlier of course

had minimax risks of the order of 1=
p
n. Note also that Theorem 3 does not say thatR jfnj =1 with probability one: indeed, we could have

R jfnj <1 with probability one.

Proof. Assume that fn is unbiased for all f 2 F . We then construct the following

density estimate for sample size mn:

fmn(x) =
1

m

mX
j=1

fn(x;X(j�1)n+1; : : : ;X(j�1)n+n)

which is unbiased, and a sum of n independent summands. Therefore,

Varffmn(x)g = 1

m
Varffn(x)g:

But then Z
Efjfnm � f jg =

Z
Efjfnm �Efnmjg

�
Z p

Varffnm �Efnmg

=
1p
m

Z p
Varffng :

Taking supremums shows that

sup
f2F

p
nmE

Z
jfnm � f j � sup

f2F

p
nmp
m

Z p
Varffng:

as m!1, the left-hand side tends to 1 by assumption. As n is �xed, this shows that

sup
f2F

Z p
Varffng =1:

By the uniform boundeness of f , this implies that

sup
f2F

Z p
Eff2

n
g =1:
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