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Abstract

Given n independent replicates of a jointly distributed pair (X; Y ) 2 Rd
�R,

we wish to select from a �xed sequence of model classes F1;F2; : : : a determin-

istic prediction rule f : Rd
! R whose risk is small. We investigate the

possibility of empirically assessing the complexity of each model class, that is,

the actual di�culty of the estimation problem within each class. The estimated

complexities are in turn used to de�ne an adaptive model selection procedure,

which is based on complexity penalized empirical risk.

The available data are divided into two parts. The �rst is used to form

an empirical cover of each model class, and the second is used to select a

candidate rule from each cover based on empirical risk. The covering radii are

determined empirically to optimize a tight upper bound on the estimation error.

An estimate is chosen from the list of candidates in order to minimize the sum

of class complexity and empirical risk. A distinguishing feature of the approach

is that the complexity of each model class is assessed empirically, based on the

size of its empirical cover.

Finite sample performance bounds are established for the estimates, and

these bounds are applied to several non-parametric estimation problems. The

estimates are shown to achieve a favorable tradeo� between approximation

and estimation error, and to perform as well as if the distribution-dependent

complexities of the model classes were known beforehand. In addition, it is

shown that the estimate can be consistent, and even possess near optimal rates

of convergence, when each model class has an in�nite VC or pseudo dimension.

For regression estimation with squared loss we modify our estimate to

achieve a faster rate of convergence.



1 Introduction

Let (X;Y ) 2 Rd �R be a jointly distributed pair, where X represents the outcomes

of several real or vector-valued predictors that are related to a real-valued response

Y of interest. The relationship between X and Y will generally be stochastic: Y is

not assumed to be a function of X. Any measurable function f : Rd ! R acts as a

deterministic prediction rule if f(X) is used to estimate the value of Y .

Let ` : R�R ! [0;1) be a nonnegative loss function having the interpretation

that `(y0; y) measures the loss (or cost) incurred when the true value Y = y is predicted

to be y0. The performance of a prediction rule f will be assessed in terms of its

expected loss, or risk,

L(f) = E`(f(X); Y ) :

The risk of every prediction rule is bounded below by the optimum value

L� = inf
f
L(f) � 0 ;

where the in�mum is taken over all measurable functions f : Rd ! R. Throughout
the paper it is assumed that (X;Y ) is such that `(f(X); Y ) 2 [0; 1] with probability

one.

Constructing a good prediction rule from a �nite data set is an important problem

in both parametric and non-parametric statistics. Put more precisely, the task is as

follows:

Given a data set Tn = (X1; Y1); : : : ; (Xn; Yn) containing n i.i.d. replicates

of the pair (X;Y ), select a prediction rule f : Rd !R whose risk is small,

in the sense that L(f) � L�.

For convenience, the notation Z = (X;Y ), Zi = (Xi; Yi), and Z
n
1 = Tn will be used

in what follows.

1.1 Complexity of a model class

Many approaches to the general estimation problem restrict their search for a pre-

diction rule to a constrained collection of functions F containing a �nite or in�nite

number of prediction rules. In such a cases it is natural to replace the unknown

joint distribution of (X;Y ) by the empirical distribution of Tn, and to evaluate the

performance of each prediction rule f 2 F in terms of its empirical loss

bLn(f) = 1

n

nX
i=1

`(f(Xi); Yi) :
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Selecting a rule f 2 F in order to minimize bLn(f) is known as empirical risk mini-

mization. To avoid minimization over an in�nite set, one may discretize the class F .
A simple but suboptimal procedure is the following: Fix a positive number r, and

select a �nite subset Fr = ff1; : : : ; fNg of F such that for all f 2 F there exists a

g 2 Fr with

sup
x2Rd;y2R

j`(f(x); y)� `(g(x); y)j � r:

(We assume for now that such a �nite covering exists.) The smallest N such that this

is possible is called the r-covering number of the class of functions

H = fh(x; y) = `(f(x); y) : f 2 Fg

with respect to the supremum norm. Denote this quantity by Nr, and assume that

jFrj = Nr.

If fn is that element of Fr having minimal empirical risk, then on may readily

show that

EL(fn) � inf
f2F

L(f) � r + 2E
�
max
f2Fr

��� bLn(f)� L(f)
���� � r +

s
2 lnNr

n
: (1)

The second inequality follows from the boundedness of the loss function, Hoe�d-

ing's (1963) inequality for the moment generating function of a sum of independent

bounded random variables, and a standard bounding trick explained, for example, in

Pollard (1989).

Since Nr is a monotone decreasing function of r, selecting the covering radius r

such that r �
q
(2=n) logNr approximately minimizes the upper bound (1). Indeed,

if one de�nes r0 = inf
n
r > 0 : r �

q
(2=n) logNr

o
, then

EL(fn)� inf
f2F

L(f) � 2r0 � 2 inf
r

0
@r +

s
2 logNr

n

1
A :

Thus r0 might be called the balanced covering radius of the class F (with respect to

the supremum norm). The quantity 2r0 is a distribution-free upper bound on the

di�culty of estimation in F , and as such, r0 may be considered as a measure of the

complexity of F . Though bounding the estimation error by r0 may seem to be quite

crude, it is often close to the best achievable distribution-free upper bound. In fact,

the minimax rate of convergence is in many cases proportional to r0 (see, e.g., Nicoleris

and Yatracos (1997), Yang and Barron (1997)).

One may signi�cantly improve the upper bound above in a distribution-dependent

manner. Let G be a family of functions g : X ! R and let un1 = u1; : : : ; un be a

sequence of points in X . For each radius r > 0 the covering number N(un1 ; r;G) is
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the size of the smallest set G0 � G such that for every g 2 G there exists a function

g0 2 G0 such that
1

n

nX
j=1

jg(uj)� g0(uj)j � r :

If no �nite r-cover exists then N(un1 ; r;G) =1. The family G0 is called an r-cover of

G based on un1 . De�ne the balanced covering radius of H by

�rn = inf

8>><
>>:r > 0 : r �

vuut8 logEN
�
Zn
1 ;

r
2
;H
�

n

9>>=
>>; :

Thus �rn is the balanced covering radius of H based on the expected covering numbers

EN (Zn
1 ; r;H).

Given data Tn, let f
0
n denote a function in F having minimal empirical risk. Then

Lemma 2 in Section 6 shows that

EL(f 0n)� inf
f2F

L(f) � 2E

"
sup
f2F

jbLn(f)� L(f)j
#
� 8�rn;

Note that �rn depends critically on the (unknown) distribution of Z = (X;Y ). For

certain \nice" distributions, �rn may be signi�cantly smaller than the minimax risk

associated with the class F . In other words, the actual complexity of the estimation

problem may be much less than the worst-case complexity, as measured by the mini-

max risk. This implies that adaptive model selection methods which assign a penalty

to a model class based on its minimax risk will necessarily perform suboptimally for

all such nice distributions. The purpose of this paper is to present a method that

assesses the actual (distribution-dependent) balanced covering radius of each model

class empirically, and then uses these radii to calculate data-based complexity penal-

ties for adaptive model selection. Our estimates are based on empirical covering of

model classes. A closely related approach to exploiting nice distributions is elaborated

by Shawe-Taylor et al. (1997).

1.2 Adaptive model selection

Empirical risk minimization over a model class F provides an estimate whose loss

is close to the optimal loss L� if the class F is (i) su�ciently large so that the loss

of the best function in F is close to L� and (ii) is su�ciently small so that �nding

the best candidate in F based on the data is still possible. This trade-o� between

approximation error and estimation error is best understood by writing

EL(fn)� L� =

�
EL(fn)� inf

f2F
L(f)

�
+

�
inf
f2F

L(f) � L�
�
:
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Often F is large enough to minimize L(�) for all possible distributions of (X;Y ), so
that F is too large for empirical risk minimization. In this case it is common to �x

in advance a sequence of smaller model classes F1;F2; : : : whose union is equal to F .
Given data Tn, one wishes to select a good model from one of these classes. Denote

by f (k)n a function in Fk having minimal empirical risk. If the distribution of (X;Y )

were known in advance, one would select a model class FK such that

EL(f (K)
n )� L� = min

k
EL(f (k)n )� L�

= min
k

��
EL(f (k)n )� inf

f2Fk
L(f)

�
+

�
inf
f2Fk

L(f) � L�
��
:

In the previous section it was shown that for each model class Fk, a quite acceptable

upper bound for the estimation error is given by

EL(f (k)n ) � inf
f2Fk

L(f) � 8�r(k)n :

Here �r(k)n denotes the balanced covering radius of the class Hk = f`(f(x); y) : f 2 Fkg
with respect to Zn

1 , and is de�ned by

�r(k)n = inf

8<
:r > 0 : r �

s
8 logEN (Zn

1 ; r=2;Hk)

n

9=
; :

With this in mind, a slightly less ambitious goal of the model selection problem is to

�nd an estimate gn such that

EL(gn)� L� � min
k

�
8�r(k)n +

�
inf
f2Fk

L(f) � L�
��
: (2)

An estimate satisfying (2) achieves an optimal trade-o� (over classes Fk) between

approximation error and a tight distribution-dependent upper bound on estimation

error. The main di�culty in constructing such an estimate is that both �r(k)n and the

approximation error depend on the unknown distribution of (X;Y ), and the optimal

k is a complicated function of this distribution. The main result of the paper is the

construction of an estimate which achieves this goal. The exact performance bound

is given in Theorem 1 below.

Previous approaches to the model selection/prediction problem described above

include Grenander's (1981) method of sieves, in which the classes Fi are nested, �nite

subsets of a �xed universal collection F . Here, typically, the model class is selected

in advance of the data, based only the sample size n, in such a way that the model

class gets richer as n increases, but that this increase of complexity is su�ciently slow

so that the estimation error may be controlled.
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Distribution-free consistency and rates of convergence for sieve-type estimates

have been investigated, e.g., by Geman and Hwang (1982), Gallant (1987), Shen and

Wong (1992), Wong and Shen (1992), Devroye (1988), White (1990), Lugosi and

Zeger (1995), and Birg�e and Massart (1998).

Complexity regularization, also known as structural risk minimization, extends the

methodology of sieve estimates by using the data to choose the class from which the

estimate is selected. Complexity regularization seeks to counter optimistic estimates

of empirical risk by means of complexity penalties that favor simpler prediction rules,

or rules belonging to smaller classes. In other words, the training set Tn is used to

adaptively select both a model class Fk and a suitable prediction rule from that class.

The potential advantages of such exibility are clear. If a function minimizing L(�)
lies in Fk, then there is no point in searching for a rule in a larger class, which has

a greater estimation error. On the other hand, when no rule f in a non-adaptively

chosen class Fk minimizes L(�), the data may warrant consideration of a larger model

class Fk0 having better approximation capabilities. Early applications of complexity

penalties to the problem of model selection were proposed by Mallows (1973), Akaike

(1974), Vapnik and Chervonenkis (1974), and Schwarz (1978).

In the work of Rissanen (1983), Barron (1985), Wallace and Freeman (1987),

and Barron and Cover (1991), the complexity penalty assigned to a model class is the

length of a binary string describing the class. In this model, minimization of empirical

risk plus complexity takes the form of a minimumdescription length principle. In this

paper, as in the earlier work of Vapnik (1982), Barron (1991), Lugosi and Zeger (1996),

and the recent work of Barron, Birg�e, and Massart (1995), the complexity assigned to

a model class does not have the formal interpretation of a description length, but is

instead an upper bound on the estimation error of the class. For di�erent applications

and extensions of the same ideas we refer to Kearns et al. (1995), Krzy_zak and Linder

(1998), Meir (1997), Modha and Masry (1996), Shawe-Taylor et al. (1997), and Yang

and Barron (1998).

Both the design and the analysis of penalized model �tting procedures rely on

bounds for the complexity of the given model classes. As was mentioned above, worst-

case assessments of model complexity are vulnerable to the fact that the complexity

of a given model class can vary greatly with the underlying distribution of the pair

(X;Y ). For example, if the random vectorX takes values in a �nite set fx1; : : : ; xkg �
Rd, then any model class F can be viewed as a subset f(f(x1); : : : ; f(xk)) : f 2 Fg of
the �nite dimensional space Rk, where the dimension k is independent of the sample

size n. Under these circumstances worst-case bounds on the complexity of F will be

extremely pessimistic.
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As the distribution of (X;Y ) is unknown, any procedure that seeks to assess model

complexity in a distribution-speci�c fashion must do so based on the data. In this

paper we propose and analyze an adaptive model �tting procedure, which is based

on data-dependent complexity penalties.

The available data are divided into two parts. The �rst is used to form an empirical

cover of each model class, and the second is used to select a candidate rule from each

cover having minimal empirical risk. The covering radii are determined empirically

in order to to optimize an upper bound on the estimation error. The empirical

complexity of each model class is related to the cardinality of its empirical cover. An

estimate gn is chosen from among the countable list of candidates in order to minimize

the sum of class complexity and empirical risk.

Estimates of this sort, based on empirical covering of model classes, were �rst

proposed by Buescher and Kumar (1996a,b), who showed that empirical covering

provides consistent learning rules whenever such rules exist.

Below inequalities and rates of convergence for the estimate gn are established, and

application of the estimates to a variety of problems, including nonparametric clas-

si�cation and regression, is considered. The proposed estimates achieve a favorable

tradeo� between approximation and estimation error, and they perform as well as if

the distribution-dependent complexities of the model classes were known beforehand.

1.3 Summary

Our principal assumptions, and several technical preliminaries are discussed in the

next section. In Section 3 the complexity penalized estimator gn is de�ned. A general

upper bound on the performance of the estimator is given in Theorem 1, after which

the relation of the bound to existing results is discussed.

In Section 4, some special cases, including regression function estimation under the

L2 loss, are considered. In these cases, by modifying the complexities assigned to each

class, faster rates of convergence is achievable. An upper bound on the performance

of the modi�ed estimate is presented in Theorem 2.

Sections 5.1 to 5.5 contain applications of Theorem 1 to curve �tting and classi�-

cation. In Section 5.6, the complexity-based estimate is employed as a means of �tting

piecewise polynomial regression trees to multivariate data. The proofs of Theorems

1 and 2 appear in Section 6.
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2 The AMSEC Estimate

2.1 Preliminaries and Assumptions

In what follows, a model class is any family F of prediction rules f : Rd ! R. It is
assumed that a sequence F1;F2; : : : of model classes and a non-negative loss function

l : R�R ! R have been �xed in advance. For each model class Fk let

Hk = fh(x; y) = `(f(x); y) : f 2 Fkg

be the associated family of error functions. By de�nition, each error function is non-

negative. Each model class Fk is assumed to contain a countable subclass F0
k with

the property that every f 2 Fk is a pointwise limit of a sequence of functions from

F0
k . Each family Hk of error functions is assumed to have the same property. This

ensures the measurability of random variables that are de�ned in terms of suprema

or in�ma over the various classes (see Dudley (1978) for more details).

The data consist of n i.i.d. replicates of a jointly distributed pair Z = (X;Y ) 2
Rd � R. Our principal assumption is that l(y; y0) � 1 for each y; y0 2 R, or more

generally, that

h(Z) � 1 with probability one for each error function h 2 [1k=1Hk : (3)

By suitably rescaling `(�; �), one may ensure that the latter condition holds whenever

there is a constant B < 1 such that h(Z) � B with probability one for every error

function h. In other circumstances, it may be necessary to truncate `(�; �), or to

assume (e.g. in the case of absolute or squared loss) that the response variable Y is

bounded.

If a uniform upper bound B on the error functions exists, but is unknown, one may

de�ne a modi�ed estimator that employs a data-dependent rescaling of the loss func-

tion. Upper bounds on the performance of the modi�ed estimator will be asymptotic

in nature, and will involve distribution dependent constants involving the distribu-

tion of h(Z). The condition of uniform boundedness may be replaced by conditions

requiring rapidly decreasing tails of h(Z), but for the sake of simplicity such cases are

not discussed here.

Beyond boundedness of the error functions, no restrictions are placed on the joint

distribution of (X;Y ). In particular, the distribution of X is not assumed to be

absolutely continuous, nor is it assumed that the conditional distribution of Y given

X is of some parametric form. No regularity or smoothness conditions are placed on

the loss function `(�; �).
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3 Description of the estimate

The estimate is de�ned by �rst splitting the available data in half. The �rst half

of the data is used to (i) select a suitable covering radius for each model class, and

(ii) construct a suitable empirical cover of each model class using the selected radius.

Each model class is assigned an empirical complexity that depends on the size of its

empirical cover. The second half of the data is used to assess the empirical risk of

a given classi�cation rule. >From the empirical cover of each class a candidate rule

is selected having minimal empirical risk. The estimate is de�ned to be a candidate

rule for which the sum of empirical risk and class complexity is minimized. A formal

description of the estimate follows.

The estimate. Ignoring the last sample point if necessary, assume without loss of

generality that the size n of the available data is even. Split the data sequence into

two parts of equal size,

Z1; : : : ; Zm and Zm+1; : : : ; Zn :

where (n�m) = m = n=2, and Zi = (Xi; Yi).

Step 1: For each k � 1 consider the familyHk of error functions associated with Fk.

Using the �rst half of the data, evaluate the balanced empirical covering radius of Hk

as follows:

br(k)m = inf

8>><
>>:r > 0 : r �

vuut8 logN
�
Zm
1 ;

r
2
;Hk

�
m

9>>=
>>; :

Let cHk be an empirical cover of Hk on Z1; : : : ; Zm with radius br(k)m and minimal

cardinality:

jcHkj = N(Zm
1 ; br(k)m ;Hk) :

Let bFk be a corresponding �nite subset of Fk such that cHk = f`(f(x); y) : f 2 bFkg
and j bFkj = jcHkj. Assign to the model class Fk the empirical complexity

bCn�m(k) =

vuut log j bFkj+ 2 log k

2(n�m)
=

vuut logN(Z
n=2
1 ; br(k)m ;Hk) + 2 log k

n

Note that bFk may be regarded as an empirical cover of Fk with respect to a metric

that is determined by the loss function `(�; �).
Step 2: De�ne the empirical risk of a prediction rule f : Rd ! R to be the average
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loss of f on the second half of the data:

bLn�m(f) = 1

n �m

nX
i=m+1

`(f(Xi); Yi) :

For each j � 1 let bfj be a member of bFj having minimal empirical risk,

bfj = argmin
f2bFj

bLn�m(f) :

Note that bfj depends on Z1; : : : ; Zm through the choice of bFj, and on Zm+1; : : : ; Zn

through the de�nition of bLn�m(�).
Step 3: From each model class Fj there is a candidate rule bfj that is chosen based

on the available data. The estimate is chosen from the list of candidates bf1; bf2; : : : in
order to minimize the sum of empirical risk and empirical class complexity. De�ne

gn = bfk where
k = argmin

j�1

hbLn�m( bfj) + bCn�m(j)
i
: (4)

Thus gn is de�ned by means of adaptive model selection, using empirical complexi-

ties. It will be referred to as the AMSEC estimator in what follows. Observe thatbCn�m(j)!1 as j !1. Since the empirical risks bLn�m( bfj) are bounded above by

1, a minimizing index k must exist, and therefore gn is well-de�ned.

Remark: We note that the estimate de�ned above will not, in general, be compu-

tationally feasible. This limitation arises principally from the di�culty of evaluating

empirical covering numbers, and of selecting a minimal covering of a given radius.

The chosen prediction rule gn comes from the union of the empirical coversbF =
S1
j=1

bFj. The underlying model classes Fj may overlap (if they are nested,

for example), and therefore the covers bFj may not be disjoint. With this in mind one

may de�ne the complexity of each individual rule f 2 bF by

b�n�m(f) = min
n bCn�m(j) : all j such that f 2 bFj

o
:

Let g0n be any function in bF achieving an optimum trade-o� between performance

and complexity:

g0n = arg min
f2bF

hbLn�m(f) + b�n�m(f)
i
:

It is easy to show that any function achieving this minimum can be obtained via a

two-stage optimization procedure similar to that described in steps 2 and 3 above.

Thus the analysis of gn applies to g0n as well.
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3.1 Performance of the estimate

Our initial bounds on the expected loss of the estimate gn are given in terms of

balanced covering radii for the families of error functions Hk. The balanced covering

radius of Hk with respect to Z1; : : : ; Zm is de�ned by

�r(k)m = inf

8>><
>>:r > 0 : r �

vuut8 logEN
�
Zm
1 ;

r
2
;Hk

�
m

9>>=
>>; : (5)

Recall that the optimal performance obtainable with any prediction rule is given by

L� = inf
f
L(f);

where the in�mum ranges over all measurable functions f : Rd ! R. De�ne also

L�k = inf
f2Fk

L(f)

to be the optimal performance of rules in the k'th model class. The following theorem

gives expected performance bounds for the estimator gn de�ned above.

Theorem 1 Under the boundedness assumption (3), for each n the AMSEC estimate

gn is such that

EL(gn)� L� � inf
k�1

2
413:66�r(k)n=2 + 5:2

s
log k

n
+ (L�k � L�)

3
5 :

Remark 1. The bound of Theorem 1 comes quite close to the goal set forth in (2).

In addition to a larger constant (13:66 instead of 8), the balanced covering radii are

now calculated at sample size n=2. The additional term 5:2
q

logk
n

is typically much

smaller than the �rst term. The bounds in Theorem 1 and the corollaries that follow

are non-asymptotic. They hold for every �xed sample size n. Thus, in principle,

the sequence of model classes may change with sample size, that is each Fj may be

replaced by Fj;n.

Remark 2. To evaluate the performance bound in speci�c examples, one needs upper

bounds for �r
(k)

n=2. Since

�r
(k)

n=2 � inf
r
max

0
BB@r; 2

vuut logEN
�
Zm
1 ;

r
2
;Hk

�
n

1
CCA ;
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we see by taking r = 4=
p
n for example, that

�r
(k)

n=2 � 2

s
logEN (Zm

1 ; 2n
�1=2;Hk)

n
:

This inequality will be used in some of the applications below.

Remark 3. (Lipschitz loss.) A loss function `(�; �) is called Lipschitz if there is a

constant M <1 and a set C � R, containing the range of every function in [1k=1Fk,

such that for every y1; y2 2 C and every v 2 R,

j`(y1; v)� `(y2; v)j �M jy1 � y2j :

Note that the absolute loss `(u; v) = ju � vj is Lipschitz, and that if L is Lipschitz

then for each pair f; f 0 2 Fk,

jL(f)� L(f 0)j �MEjf(X) � f 0(X)j :

If `(�; �) is Lipschitz, a straightforward argument shows that for every k � 1 and r > 0,

N
�
Z
n=2
1 ; r;Hk

�
� N

�
X

n=2
1 ;Mr;Fk

�
:

This inequality will be used in some of the applications below.

3.2 Discussion

Theorem 1 is similar in spirit to results of Barron and Cover (1991) and Barron (1991).

In their work, there is for each sample size n, a �xed, countable list of candidate rules,

each of which is assigned a data-independent complexity. They show that for each n

the error of their estimate is bounded by a constant times an index of resolvability,

which is the minimum, over all candidates, of the sum of approximation error and

complexity. In a similar fashion, the bound of Theorem 1 measures the best possible

tradeo� between complexity and approximation ability, and it too may be viewed

as an index of resolvability. The crucial improvement here is the appearance of the

distribution-dependent quantity �r
(k)

n=2 in Theorem 1 above.

In applications where the model classes F1;F2; : : : contain in�nitely many func-

tions, Barron and Cover (1991) and Barron (1991) assume that, for every �xed positive

resolution, each class can be covered in supremum norm by �nitely many functions.

For each n, their countable list of candidates is the union of the �nite �n-covers of

each class. While covering in the supremum norm ensures that the list will have

good approximation properties under every distribution, for Lipschitz loss functions

13



the appropriate measure of approximation is the metric of L1(PX). Sup-norm cover-

ing numbers overestimate L1 covering numbers, sometimes substantially, and thereby

increase the index of resolvability.

In light of its equivalent de�nition g0n above, it can be seen that our estimate

selects, for each n, a countable list of candidate functions from F1;F2; : : : in a data-

adaptive way. The list contains functions that have good approximation properties

in the norm corresponding to the empirical distribution of X1; : : : ;Xn. As a result,

our upper bound is expressed in terms the expected L1 covering numbers, rather than

the sup-norm covering numbers.

In recent work, Barron, Birg�e and Massart (1998) give an exhaustive review and

a wide variety of sharp bounds for estimation procedures based on data-independent

complexities. When each of the model classes Fk is both linear and �nite-dimensional,

their bounds improve those obtained below, and they obtain rates that di�er from

ours by a logarithmic factor. In earlier work on linear �nite-dimensionalmodel classes,

Birg�e and Massart (1997) de�ned a data-dependent complexity penalty di�erent from

the one considered here. In their penalty the observations are used to scale a data-

independent term that involves the dimension of the model and the sample size. In

both papers the complexity penalties derive from distribution-free upper bounds on

the estimation error, which are based on the assumption that the individual model

classes are �nite-dimensional. Our method does not require the availability of such

distribution-free bounds, or that each model class be �nite dimensional. Indeed,

the strength of our method is seen when neither of these conditions holds. Several

examples are given in the next two sections.

4 The second estimate

As it was pointed out by Barron (1991), there are special cases, such as regression

estimation with squared error loss, in which it may be advantageous to signi�cantly

decrease the size of the complexity penalties in order to achieve faster rates of conver-

gence. In this spirit, a modi�cation of the AMSEC estimate is propose and analyzed

below.

Consider the setup of the previous section. Let F1;F2; : : : be an arbitrary sequence

of model classes and for each k let rk > 0 be a (data-independent) covering radius

for the k'th class. Given data Tn = Zn
1 de�ne classes bFk as in Step 1 of the previous

section by empirically covering the Hk's with radii rk, based on the �rst m = n=2
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observations. Assign to Fk the complexity

bCn�m(k) = 22 � log j
bFkj+ 2 log k

n�m
:

Select from each bFk a candidate rule having minimal average risk on the last n=2

observations, and choose from among the candidates a rule  n for which the sum of

empirical risk and class complexity is minimized. Assume, as before, that h(Z) � 1

with probability one for each h 2 [1k=1Hk.

Theorem 2 Under the boundedness assumption above, the modi�ed AMSEC esti-

mate satis�es

EL( n) � c0 inf
k�1

2
4rk + c1

EN(Z
n=2
1 ; rk=14;Hk)

n
+
c2 log k

n
+ L�k

3
5+ c3

n
;

where c0; c1; c2; c3 > 1 are universal constants.

Remark 4. The principal improvement of Theorem 2 over Theorem 1 is that the

complexity penalty

�r
(k)

n=2 � inf
r

2
664r + 2

vuut logEN
�
Z
n=2
1 ; r

2
;Hk

�
n

3
775

has now been replaced by rk+c1n
�1EN(Z

n=2
1 ; rk=14;Hk), which is often much smaller.

However, a price is paid for this improvement. Since the constant c0 is strictly greater

than one, subtracting L� from both sides of the performance bound shows that Theo-

rem 2 provides an asymptotic improvement over Theorem 1 only if L� = 0. If L� > 0

then infk L
�
k is necessarily positive, and the bound of Theorem 2 does not even guar-

antee consistency: it may happen that EL( n) does not converge to L
�. Nevertheless,

the case L� = 0 is interesting, and as shown below, Theorem 2 applies to the general

situation in the case of squared error loss.

Remark 5. We have not attempted to �nd the optimal constants for Theorem 2.

The values found in the proof below are c0 = 10, c1 = 401, c2 = 18, and c3 = 10442.

These may be improved by more careful analysis.

Remark 6. In the modi�ed AMSEC estimate the covering radii rk are �xed in

advance of the data. As a consequence, the optimal balanced covering radii do not

appear in Theorem 2. In certain cases satisfactory approximations can be found by

investigating the model classes. For �nite-dimensional model classes rk � n�1 is

generally a good choice.
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4.1 Regression function estimation

Consider the squared loss function `(y0; y) = (y0 � y)2. In this case it is well known

that for any bounded function f : Rd ! R,

L(f) = E
n
(f(X) � Y )2

o
= E

n
(f(X)� f�(X))2

o
+E

n
(f�(X)� Y )2

o
;

where f�(x) = EfY jX = xg is the regression function of Y on X. Note that if Y and

each candidate decision rule take values in the unit interval, then the boundedness

assumption above is satis�ed.

To study regression estimation in the context of Theorem 2 we introduce modi�ed

expected and empirical losses

J(f) = L(f)� L(f�) and bJn(f) = bLn(f)� bLn(f�):
If the regression function f� is unknown, the empirical modi�ed loss bLn(f) cannot be
calculated directly. However the AMSEC estimate  n computed with the modi�ed

loss is the same as that computed using the unmodi�ed squared loss as the termbLn(f�) is the same for each candidate rule. It follows from Theorem 2 that

EJ( n) � c0 inf
k�1

0
@rk + c1

EN(Z
n=2
1 ; rk=14;Hk)

n
+
c2 log k

n
+ J�k

1
A +

c3

n
;

where J�k = inff2Fk J(f). This readily implies the following performance bound for

the AMSEC regression estimate: if (f(X) � Y )2 � 1 for each candidate prediction

rule then

EL( n)�L(f�) � c0 inf
k�1

0
@rk + c1

EN(Z
n=2
1 ; rk=14;Hk)

n
+
c2 log k

n
+ (L�k � L(f�))

1
A+c3

n
:

Thus, in the special case of regression function estimation with the squared loss, one

may obtain improved rates of convergence even when L� = L(f�) 6= 0.

5 Applications

5.1 Finite dimensional classes

In many applications the model classes Fk are \�nite dimensional," meaning that

there exist numbers Vk; wk such that for every sequence z1; : : : ; zm 2 Rd � R and

every r > 0, one has N(zm1 ; r;Hk) � (wk=r)
Vk . The number Vk may be called the
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\dimension" of the model class Fk. In this case the performance bound of Theorem

1 together with Remark 2 imply that

EL(gn) � L� � min
k�1

8<
:C

s
Vk(log n+ logwk) + ck

n
+ (L�k � L�)

9=
; : (6)

For example, if Fk is a VC-graph class, then it is �nite-dimensional in the above sense

(see, e.g., Chapter 2. of Pollard (1984)).

When the numbers V1; w1; V2; w2; : : : are known in advance of the data, exist-

ing complexity-based methods o�er similar, and in some speci�c cases (see Barron,

Birg�e, and Massart (1995)) better, performance bounds than those in (6) above.

One advantage of the adaptive approach taken here is that it may be applied with-

out the knowledge that the model classes are �nite-dimensional, and without knowl-

edge of the quantities wk, Vk. More importantly, however, if for some distribution

EN(Zm
1 ; r;Hk) � (w0k=r)

V 0

k with w0k << wk and V 0
k << Vk, then we may replace wk

and Vk respectively by these smaller values in (6).

One might call V 0
k the \e�ective dimension" of Fk with respect to the actual

distribution of Z = (X;Y ). As V 0
k is often signi�cantly smaller than Vk, the new

method will, in such cases, be superior to methods in which complexity penalties

are based on distribution-free quantities. The new method is also able to handle

\in�nite-dimensional" model classes. One such example is sketched in the following

section.

5.2 Piecewise monotone functions

Consider a one-dimensional curve �tting problem in which the k-th model class Fk

contains all those functions f : R ! [�1=3; 1=3] comprised of k monotone pieces,

that is, there exist numbers u1 � � � � � uk�1 such that on each of the intervals

(�1; u1]; (u1; u2]; : : : ; (uk�1;1), f is either decreasing or increasing. It can be shown

that none of the Fk is �nite dimensional in the sense described above. Assume that the

response variable Y = f�(X) +W , where f� is an unknown function in [1k=1Fk, and

the random variable W is independent of X and such that PfjW j � 1=3g = 1. Let

`(�; �) be the absolute-error loss `(y1; y2) = jy1 � y2j. Thus the uniform boundedness

assumption is satis�ed, moreover L� = EjZj and inff2Fk L(f) = L� if k � K. Under

these assumptions the AMSEC estimator gn satis�es the following inequality:

Proposition 1 Let K be the least index k such that f� 2 Fk. Then

EL(gn)� L� � c

0
@
s
K log n

n
+ n�1=3

q
K log n

1
A ;
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where c is a universal constant.

The risk of gn converges to zero at rate n�1=3
p
log n. Nemirovksii, Polyak, and Tsy-

bakov (1985) showed that the minimax optimal rate of convergence for the class F1

is n�1=3. Thus, the performance of the estimate gn is at most a factor of
p
log n away

from the optimal rate for all Fk.

Proof: As the absolute-error loss is Lipschitz, for every sequence z1 = (x1; y1), : : : ,

zm = (xm; ym), every r > 0, and every k � 1 one has N(zm1 ; r;Hk) � N(xm1 ; r;Fk)

(see Remark 3 above). To calculate an upper bound for N(xm1 ; r;Fk), it su�ces to

count the number of functions restricted to xm1 , comprised of k monotone pieces, that

take at most N = d1=re distinct values. Now there are at most
�
m+k

k�1

�
di�erent ways

of segmenting x1; : : : ; xm into k pieces of lengths m1; : : : ;mk with
Pk

i=1 = m Since

the number of monotone functions on mi points taking N distinct values is at most�
mi+N+2

mi

�
, for each m � k, and each r > 0

N(xm1 ; r;Fk) �
 
m+ k

k � 1

!
� max
m1+���+mk=m

kY
i=1

 
mi +N + 2

mi

!
� (2m)k�1�(m+N+2)k(N+2);

so that

logN(xm1 ; r;Fk) � (k � 1) log(2m) + k

�
1

r
+ 3

�
log

�
m+

1

r
+ 3

�
:

In conjunction with (5), the last bound shows that r = cm�1=3
p
k logm is an upper

bound for �r(k)m . As m = n=2 the bound stated above follows from Theorem 1. 2

5.3 Applications to classi�cation

In the simplest version of the classi�cation problem the response variable Y takes

values in f0; 1g. A (binary) classi�cation rule is any function f : Rd ! f0; 1g. Under
the absolute loss `(y; y0) = jy � y0j, the risk of f is equal to its probability of error

L(f) = Pff(X) 6= Y g:

The minimum probability of error L� is achieved by the Bayes rule f�(x) = IfP(Y =

1jX = x) � 1=2g, where If�g is the indicator function of the event in braces. The

Bayes rule can be found when the joint distribution of (X;Y ) is known.

In the remainder of this section, each model class F under consideration will be

a family of binary classi�cation rules. For each sequence of vectors x1; : : : ; xm 2
Rd, the shatter coe�cient S(xm1 ;F) of F is de�ned to be the cardinality of the set
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f(f(x1); : : : ; f(xm)) : f 2 Fg of binary m-tuples. One may readily verify that for

each r > 0,

N(xm1 ; r;F) � S(xm1 ;F) : (7)

The Vapnik-Chervonenkis (or vc) dimension of F , written dim(F), is the least integer
m such that

maxfS(xm1 ;F) : x1; : : : ; xm 2 Rdg < 2m ;

and dim(F) = 1 if no such m exists. It is well known (Vapnik and Chervonenkis,

1971) that for each m � 1 and each sequence x1; : : : ; xm 2 Rd,

S(xm1 ;F) � mdim(F) + 1 : (8)

It follows from (7) and (8) that if the vc-dimension of a model class F is �nite, then

its covering numbers are bounded by a polynomial in m that is independent of r.

Fix a sequence F1;F2; : : : of families of binary classi�cation rules. If each family

Fk has �nite vc-dimension, then Theorem 1 gives useful bounds on the performance

of the resulting estimator. Similar bounds were established by Lugosi and Zeger

(1996) for an estimator that is based on the method of structural risk minimization

proposed by Vapnik and Chervonenkis (1974). In both cases, construction of the

corresponding estimator requires that bounds on the dimension of each model class

be known in advance of the data. The following performance bound for the AMSEC

estimate is an immediate consequence of Theorem 1 and Remarks 2 and 3:

Corollary 1 Let gn be the AMSEC estimator for F1;F2; : : : based on independent

observations (X1; Y1); : : : (Xn; Yn). If Vk = dim(Fk) for each k, then

EL(gn)� L� � min
k�1

8<
:55

s
Vk log n

n
+ 5:2

s
log k

n
+
�
inf
f2Fk

L(f)� L�
�9=
; ;

and the upper bound is non-trivial if some Vk is �nite.

Comparison of this result with Theorem 1 of Lugosi and Zeger (1996) shows that

the AMSEC estimate, which is based solely on empirical complexities, works as well as

the method of structural risk minimization, in which complexity penalties are assigned

according to the (known) dimension of each class. More importantly, the arguments

above give also an analogous bound with Vk log n replaced by logES(Xm
1 ;Fk). In

some cases ES(Xm
1 ;F) is signi�cantly smaller than the maximum of S(xm1 ;F) over

all m-length vector sequences. Estimates based on data-dependent complexities can

perform well even if each model class Fk has in�nite vc-dimension.
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5.4 Unions of convex sets

For k = 1; 2; : : : let Fk contain the indicator function of each set C � Rd that is equal

to the union of at most k convex sets. The vc-dimension of each class Fk is in�nite.

However, if the distribution of X has a density with respect to Lebesgue measure

then there exist constants fbmg, depending on the density of X, such that bm=m! 0

and ES(Xm
1 ;F1) � 2bm for each m � 1, see Devroye, Gy�or� and Lugosi, 1996. An

inspection of their proof shows, in addition, that for each k � 1,

E
n
S(Xm

1 ;F1)
k
o
� 2kbm : (9)

Elementary combinatorial arguments like those in Chapter 2 of Pollard (1984) show

that for each k and each sequence x1; : : : ; xm 2 Rd, S(xm1 ;Fk) � S(xm1 ;F1)
k. There-

fore,

logEN(Xm
1 ;m

�1=2;Fk) � logES(Xm
1 ;Fk) � kbm = ko(m):

Moreover, for each distribution of (X;Y ), inff2Fk L(f) ! L� as k ! 1 since any

subset of Rd can be approximated in the symmetric di�erence metric by a �nite

union of convex sets. Combining the last two observations with Theorem 1, one may

establish the following result:

Proposition 2 If the distribution of X is absolutely continuous, the AMSEC esti-

mates gn for F1;F2; : : : are Bayes risk consistent, that is, EL(gn)! L� as the sample

size n!1.

Remark: There is at least one special case in which it is possible to obtain rates of

convergence for the estimates of Proposition 2. Suppose that d = 2 and that X has a

bounded density with bounded support. Then it is known (c.f. Devroye, Gy�or�, and

Lugosi, 1996) that bm � c
p
m, where c > 0 depends only on the distribution of X.

Under these additional assumptions Theorem 1 shows that

EL(gn)� L� � inf
k

�
c0k1=2n�1=4 + (L�k � L�)

�

for some universal constant c0. In computational learning theory it is common to

assume that L� = 0 and moreover that f� 2 [1k=1Fk. In such cases, choosing rk =

14=n, Theorem 2 may be applied to show that the modi�ed estimate  n achieves

EL( n) � c00
Kp
n
;

where K is the smallest index k such that f� 2 Fk and c00 is another universal

constant.
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5.5 Discrete distributions

If the common distribution of the predictors X1;X2; : : : is discrete then, under mild

conditions, simple classi�cation schemes such as empirical minimization are consistent

regardless of the model class F from which prediction rules are selected. Under the

same circumstances, the more adaptive procedure considered here exhibit similar

behavior. It is shown below that the e�ective dimension of a model class F with

respect to a sequence X1; : : : ;Xm is bounded by the number of distinct elements in

that sequence. The proposed estimation method exploits this reduction of complexity

adaptively, without prior knowledge of X or the model classes Fk. Application of

Theorem 1 requires a preliminary result.

Proposition 3 Let W1;W2; : : : ;W be i.i.d. integer-valued random variables, with

probabilities pk = PfW = kg for k � 1. Let Mn be the number of distinct inte-

gers appearing in the sequence W1; : : : ;Wn. Then

lim
n!1

n�1 logE2Mn = 0: (10)

If EW1 =
P1

k=1 kpk <1 then

lim
n!1

n�1=2 logE2Mn = 0: (11)

Proof: Note that for every integer k � 1,

Mn � k +
nX
i=1

IfWi > kg :

From this last inequality and the independence of W1; : : : ;Wn it follows that

E2Mn � 2k �
�
E2IfW>kg

�n
� 2k � (1 + 2PfW > kg)n

� exp [ k + 2nPfW > kg ] : (12)

Therefore,

n�1 logE2Mn � k

n
+ 2PfW > kg

and letting n tend to in�nity,

lim sup
n!1

1

n
logE2Mn � 2PfW > kg:

Suitable choice of k insures that the right hand side of the last inequality is arbitrarily

close to zero, and (10) follows.
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To establish (11), note that if
P1

k=1 kpk < 1 then limk!1 k � PfW > k=jg = 0

for every �xed positive integer j. Set N0 = 1 and for each j � 1 let Nj be the least

integer N > Nj�1 such that for every n � N ,

n1=2P

(
W >

n1=2

j

)
� 1

j
:

Therefore

kn =
n1=2

maxfj : Nj � ng :

is such that kn = o(n1=2) and n1=2PfW > kng = o(1). It follows from (12) with

k = kn that

n�1=2 logE2Mn � kn

n1=2
+ 2n1=2PfW > kng = o(1):

2

Proposition 4 Let gn be the n-sample AMSEC estimator for an arbitrary sequence

F1;F2; : : : of families of binary-valued prediction rules. If the distribution of X is

supported on a countable set S � Rd then the following implications hold.

1. If the Bayes rule f� is in the L1 closure of
S
k Fk then EL(gn)! L�.

2. If the elements of S may be ordered as x1; x2; : : : in such a way that
P1

k=1 kP (xk)

is �nite, and if f� 2 Sk Fk, then EL(gn) � L� +O(n�1=4).

Proof: De�ne Wi =
P1

j=1 jIfXi = xjg and �x k � 1. The shatter coe�cient of Fk

on Xm
1 is at most #f(f(X1); : : : ; f(Xm)) : f 2 Fg � 2Mm , where Mm is the number

of distinct integers among W1; : : : ;Wm. Thus, for every r > 0,

EN(Xm
1 ; r;Fk) � ES(Xm

1 ;Fk) � E2Mm ;

and it follows from (10) that n�1 logEN(X
n=2
1 ; n�1=2;Fk) ! 0. In conjunction with

Theorem 1 and Remark 3, this last relation implies

lim sup
n!1

EL(gn)� L� � L�k � L� � inf
f2Fk

Ejf � f�j :

Letting k tend to in�nity establishes the �rst conclusion of the proposition. To

establish the second, let K be any index such that f� 2 FK. By the bound on the

expected covering numbers above,

EL(gn)� L� � c �
2
64
vuut logES(X

n=2
1 ;FK)

n
+

s
logK

n

3
75
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for every n � 1. Equation (11) implies that the �rst term in brackets is O(n�1=4). 2

Remark: Note that no conditions have been placed on the model classes Fk, which

can be arbitrarily complex.

5.6 Piecewise polynomial regression trees

Here the modi�ed estimate of the previous section is used to �t piecewise polynomial

regression trees to multivariate data, when the unknown regression function f� is

smooth, in the sense that it possesses continuous partial derivatives of some unknown

order.

Piecewise polynomial regression trees are most naturally described by doubly in-

dexed model classes. The class Fk;p contains functions f : Rd ! R that are obtained

by (i) forming a hierarchical (tree-structured) partition of Rd with k cells and then

(ii) assigning a truncated multivariate polynomial of degree p to each cell. In select-

ing a suitable model, the procedure must choose both the number of cells k and the

degree of local approximation p. Increasing p enables the procedure to more accu-

rately reproduce the empirical behavior of the data within each cell, while increasing

k allows for smaller cells. Balancing these choices against the estimation error of

the resulting models, the complexity penalized regression procedure adapts to the

unknown regularity of the regression function. Its success is reected in its rate of

convergence, which is within a logarithmic factor of optimal.

A tree-structured partition is described by a pair (T; � ), where T is a �nite binary

tree, and � is a function that assigns a test vector � (t) 2 Rd to every node t 2 T .

Every vector x 2 Rd is associated, through a sequence of binary comparisons, with a

descending path in T . Beginning at the root, and at each subsequent internal node

of T , x moves to that child of the current node whose test vector is nearest to x in

Euclidean distance. In case of ties, x moves to the left child of the current node. The

path ends at a terminal node (leaf) of T .

For each node t 2 T , let Ut be the set of vectors x whose path includes t. If t is the

root node of T then Ut = Rd. In general, the region Ut corresponding to an internal

node of T is split between the children of that node by the hyperplane that forms the

perpendicular bisector of their test vectors. Thus if t is at distance k from the root,

then Ut is a polytope having at most k faces. The pair (T; � ) generates a partition �

of Rd, whose cells are the regions Ut associated with the terminal nodes of T . Let Tk
contain all those partitions generated by binary trees T having k terminal nodes.

If at each internal node of T the comparison between the test vectors labeling its

children involves a single coordinate of x, then each cell of the resulting partition is a
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d-dimensional rectangle. Partitions of this sort, based on axis-parallel splits, are the

basis for the regression trees considered by Breiman, Friedman, Olshen, and Stone

(1984).

For each vector u = (u1; : : : ; ud) 2 Rd and each sequence � = (�1; : : : ; �d) of

non-negative integers, let u� = u�11 � � �u�dd and j�j = �1+ � � �+�d. For each p � 0 let

Gp =
8<
:g(x) =

X
j�j�p

a�x
� : a� 2 R

9=
;

be the class of multivariate polynomials on Rd of order p. Assuming that the response

variable Y 2 [�1=2; 1=2], de�ne the class of truncated polynomials

~Gp = f(g(�) ^ 1=2) _ (�1=2) : g 2 Gg :

A k-node piecewise polynomial regression tree with local order p is a function

f : Rd !R of the form

f(x) =
X
U2�

gU (x)IU(x)

where � 2 Tk, and gU 2 ~Gp for each U 2 �. In other words, f is obtained by applying

a di�erent truncated multivariate polynomial in ~Gp within each cell of a partition

in Tk. For each pair k; p � 0 let Fk;p contain all the k-node piecewise polynomial

regression trees with local degree p. Let gn be the complexity penalized regression

estimate de�ned using fFk;p : k; p � 0g as in Section 4 above.

Proposition 5 If the common distribution P of the measurement vectors Xi is sup-

ported on a bounded set S � Rd, if each Yi 2 [�1=2; 1=2], and if the regression func-

tion f� has continuous partial derivatives of order s � 1 on some open set containing

S, then

EL(gn)� L(f�) = E

�Z
jgn � f�j2dP

�
� C(r; d)

"
log n

n

# 2s
2s+d

;

where the constant C(r; d) is independent of n.

Results of Stone (1982) show that the rate of convergence obtained here is, within a

logarithmic factor, minimax optimal simultaneously for all r. Breiman et al. (1984)

and Gordon and Olshen (1984) gave su�cient conditions for the L2 and a.s. con-

sistency of piecewise constant (e.g., p = 0) regression trees with rectangular cells.

Their conditions stipulate that the cells of the selected partitions must shrink with

increasing sample size, and that each cell must contain a minimum number of mea-

surement vectors. Under additional conditions, Chaudhuri et al. (1994) established
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the consistency of piecewise polynomial regression trees with rectangular cells and

�xed local degree p. Each of these results applies to unbounded response variables

under suitable moment restrictions. Nobel (1996) considered the consistency of the

general polynomial regression trees described above when the approximation degree

p is �xed.

Proof: We consider, in turn, the estimation and approximation properties of the

model classes Fk;p. For each p � 0, the family Gp is a �nite dimensional vector space

of functions on Rd having dimension

pX
k=0

 
d+ k � 1

d � 1

!
� (p+ 1)

 
d + p� 1

d� 1

!
� (d+ p)d+1 :

Thus Gp is a VC-graph class, and the same is true of ~Gp. Standard results concerning

VC-graph classes (c.f. Chapter 2 of Pollard (1984)) show that

N(xn1 ; r;
~Gp) � apr

�bp ;

where bp = 2(d + p)d+1 + 4 and ap = e2bp log bp are independent of n and r > 0.

Proposition 1 of Nobel (1996) shows further that

N(xn1 ; r;Fk;p) �
�
apn

dr�bp
�k

(13)

for each sequence x1; : : : ; xn and each r > 0.

Assume without loss of generality that X is supported on S = [0; 1]d. Let k = 2ld

where l � 1 is an integer, and consider the regular dyadic partition � of [0; 1]d into

k cells, each of which is a cube with sides of length 2�l. One can implement � by

means of a pair (T; � ), where T is a balanced binary tree of depth ld.

Fix a cube Ui 2 � and let zi be its center, that is, the j'th coordinate of zi is the

midpoint of the j'th interval in the Cartesian product that de�nes Ui. Let M < 1
bound each partial derivative of f� on some open set containing S. A multivariate

Taylor series expansion of f� about zi shows that

f�(zi + x) =
X

j�j�s�1

a�x
� +R(x)

where

jR(x)j �M
X
j�j=s

jx�j :

If zi + x 2 Ui then
jR(x)j � ck�s=d
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with c =M2�s(s+ d)d, and consequently for each i = 1; : : : ; k there is a polynomial

gi 2 Gs�1 such that

max
x2Ai

jf�(x)� gi(x)j � ck�s=d :

As jf�j � 1=2, truncating each gi at += � 1=2 leaves the bound unchanged. Piecing

together these truncated polynomials produces a function f 2 Fk;s�1 such that

Z
jf � f�j2dP � c2k�2s=d : (14)

The upper bound of Theorem 2 is an in�mum over indices k; p � 0. Fixing p = s

and applying the bounds (13) and (14) above, one �nds that

EL(gn)� L(f�) � C(s; d) inf
k�0

"
k log n

n
+ k�2s=d

#
:

Optimizing over k gives the desired bound. 2

6 Proofs

Our �rst lemma is a straightforward modi�cation of some arguments in Lugosi and

Zeger (1995).

Lemma 1 Let F1;F2; : : : be a sequence of �nite sets of functions f : Rd ! R. Let

(X1; Y1); : : : ; (Xn; Yn) 2 Rd �R be independent replicates of a pair (X;Y ) such that

`(f(Xi); Yi) � 1 with probability one for all f 2 [1k=1Fk. Let

f 0k = arg min
f2Fk

L(f) and bfk = arg min
f2Fk

bLn(f);
be rules in the k'th class having minimal actual and empirical risk, respectively. Let

L0k = L(f 0k). De�ne nonnegative complexities Cn(1); Cn(2); : : : by

Cn(k) =

s
log jFkj+ 2 log k

2n
;

and consider the complexity penalized empirical risks

~Ln( bfk) = bLn( bfk) + Cn(k) k = 1; 2; : : : :

If gn = argminbfk:k�1 ~Ln( bfk) is that function bfk minimizing ~Ln, then

EL(gn)� L� � inf
k�1

[3:66 � Cn(k) + (L0k � L�)] :
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Proof: We begin with the decomposition

L(gn)� L0k =

�
L(gn)� inf

j�1
~Ln( bfj)

�
+

�
inf
j�1

~Ln( bfj)� L0k

�
;

which holds for any k � 1. Let � > 0 be arbitrary. Then

P

�
L(gn)� inf

j�1
~Ln(

bfj) > �

�
� P

(
sup
j�1

�
L( bfj)� ~Ln(

bfj)� > �

)

�
1X
j=1

P
n
L( bfj)� bLn( bfj) > �+ Cn(j)

o

�
1X
j=1

P

(
max
f2Fj

�
L(f) � bLn(f)� > �+ Cn(j)

)

�
1X
j=1

jFjje�2n(�+Cn(j))2 (15)

�
1X
j=1

jFjje�2n�2e�2nCn(j)2

= e�2n�
2
1X
j=1

1

j2
� 2e�2n�

2

;

where (15) follows from the union bound and Hoe�ding's inequality. Standard bound-

ing then shows that

E

�
L(gn)� inf

j�1
~Ln( bfj)

�
� 1p

n
:

On the other hand, if � � 2Cn(k) then

P

�
inf
j�1

~Ln( bfj)� L0k > �

�
� P

n
~Ln( bfk)� L0k > �

o

� P

�bLn( bfk)� L0k >
�

2

�
(using � � 2Cn(k))

� P

��bLn(f 0k)� L(f 0k)
�
>
�

2

�

� e�n�
2=2;

where at the last step Hoe�ding's inequality is used. Consequently,

E

(�
inf
j�1

~Ln( bfj)� L0k

�2
)

=
Z 1

0
P

�
inf
j�1

~Ln( bfj)� L0k >
p
�

�
d�

� 4Cn(k)
2 +

Z 1

4Cn(k)2
e�n�=2

� 4Cn(k)
2 +

2

nk2jFkj � 5Cn(k)
2:

Therefore,

E

�
inf
j�1

~Ln( bfj)� L�k

�
�
vuutE

(�
inf
j�1

~Ln( bfj)� L�k

�2)
�
p
5Cn(k):
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Collecting bounds, we have

EL(gn)� L0k �
p
5Cn(k) +

1p
n
� Cn(k)(

p
5 +

p
2) < 3:66 � Cn(k):

Hence

EL(gn)� L� = inf
k�1

[EL(gn)� L0k + (L0k � L�)]

� inf
k�1

[3:66 � Cn(k) + (L0k � L�)] :

2

Let Z1; : : : ; Zm be i.i.d. replicates of a random vector Z 2 Rd+1 and let H be a family

of non-negative functions h : Rd+1 ! R such that h(Z) � 1 with probability one.

For each function h 2 H, de�ne

Ph = Eh(Z) and bPmh =
1

m

mX
i=1

h(Zi) :

Lemma 2 If �rm is the balanced covering radius of H then

E

"
sup
h2H

j bPmh � Phj
#
� 4�rm :

Proof: Fix a number r > �rm. Then by de�nition of �rm,

r �

vuut8 logEN
�
Zm
1 ;

r
2
;H
�

m
(16)

By standard symmetrization arguments (c.f. Pollard (1989)),

E

"
sup
h2H

j bPmh� Phj
#
� 2E

"
sup
h2H

����� 1m
mX
i=1

�ih(Zi)

�����
#
;

where �1; : : : ; �m are independent sign random variables, independent of the Zi's,

such that Pf�i = 1g = Pf�i = �1g = 1=2. According to Pollard (1984, Ch2), for

every t > 0,

P

(
sup
h2H

����� 1m
mX
i=1

�ih(Zi)

����� > t

)
� 2EN

�
Zm
1 ;

r

2
;H
�
e�mt2=8:

Therefore,

E

"
sup
h2H

j bPmh� Phj
#
� 2r + 4

Z 1

r
EN

�
Zm
1 ;

r

2
;H
�
e�mt2=8dt

� 2r + 4EN

�
Zm
1 ;

r

2
;H
�Z 1

r
e�mt2=8dt

� 2r + 4
p
2EN

�
Zm
1 ;

r

2
;H
� Z 1

r=
p
8
e�ms2

�
2 +

1

ms2

�
ds
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= 2r + 4
p
2EN

�
Zm
1 ;

r

2
;H
� ��1

ms
e�ms2

�1
r=
p
8

= 2r +
16

mr
EN

�
Zm
1 ;

r

2
;H
�
e�mr2=8

� 2r +
16

mr
� 4r:

The last two inequalities above follow from (16). Taking the in�mum over all r > �rm

establishes the assertion of the Lemma. 2

Lemma 3 If �rm and brm are the balanced covering radius and the balanced empirical

covering radius of H respectively, then

Ebrm � 2�rm:

Proof: Fix a radius r > �rm and note that the expected value of brm may be bounded

as follows:

Ebrm � r +
Z 1

0
Pfbrm > r + tgdt: (17)

If brm > r + t, then by de�nition of brm and monotonicity of the covering numbers,

r + t <

vuut8 logN
�
Zm
1 ;

r+t
2
;H
�

m
�

vuut8 logN
�
Zm
1 ;

r
2
;H
�

m

Combining this last inequality with (16) gives the bound

Pfbrm > r + tg � P

8>><
>>:

vuut8 logN
�
Zm
1 ;

r
2
;H
�

m
>

vuut8 logEN
�
Zm
1 ;

r
2
;H
�

m
+ t

9>>=
>>;

Let  (x) = emx2=8. As  is monotone increasing, Markov's inequality implies that

the last probability above is at most

E 

0
BB@
vuut8 logN

�
Zm
1 ;

�rm
2
;H
�

m

1
CCA �

2
664 

0
BB@
vuut8 logEN

�
Zm
1 ;

�rm
2
;H
�

m
+ t

1
CCA
3
775
�1

= EN

�
Zm
1 ;

�rm

2
;H
�
exp

8>><
>>:
�m
8

0
BB@
vuut8 logEN

�
Zm
1 ;

�rm
2
;H
�

m
+ t

1
CCA
29>>=
>>;

� e�mt2=8:

Now
R1
0 e�mt2=8dt =

q
2�=m � �rm, and therefore (17) shows that Ebrm � r + �rm.

Taking the in�mum over all r > �rm completes the proof. 2
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Proof of Theorem 1: If Z1; : : : ; Zm are held �xed, then the empirical covers bF1,bF2, : : :may be treated as �xed, �nite model classes with cardinalities given by j bFkj =
N(Zm

1 ; br(k)m ;Hk). Conditional application of Lemma 1 gives the following bound:

EL(gn)� L� = EE fL(gn)� L�jZm
1 g

� E

�
inf
k�1

�
3:66 � bCn�m(k) + (L0k � L�)

��

= E

�
inf
k�1

�
3:66 � bCn�m(k) + (L0k � L�k) + (L�k � L�)

��
:

Now observe that

L0k � L�k = min
f2bFk L(f) � inf

f2Fk
L(f)

� min
f2bFk

bLm(f)� inf
f2Fk

bLm(f) + 2 sup
f2Fk

jbLm(f) � L(f)j

� br(k)m + 2 sup
h2Hk

j bPmh � Phj:

Therefore, by an applications of Lemmas 2 and 3,

EL(gn)� L�

� E

(
inf
k�1

"
3:66 � bCn�m(k) + br(k)m + 2 sup

h2Hk

j bPmh� Phj+ (L�k � L�)

#)

� inf
k�1

"
E
n
3:66 � bCn�m(k)

o
+Ebr(k)m + 2 sup

h2Hk

j bPmh� Phj+ (L�k � L�)

#

� inf
k�1

h
E
n
3:66 � bCn�m(k)

o
+ 10�r(k)m + (L�k � L�)

i

It remains to consider the expectation of the empirical complexities. As
p
a+ b �p

a+
p
b and m = n�m = n=2,

bCn�m(k) �
vuutlogN(Zm

1 ; br(k)m ;Hk)

2m
+

s
2 log k

n

=
1

4

vuut8 logN(Zm
1 ;

2br(k)m

2
;Hk)

m
+

s
2 log k

n

� 2

4
br(k)m +

s
2 log k

n
;

where the last inequality follows from the de�nition of br(k)m and the fact that 2br(k)m >

br(k)m . By another application of Lemma 3,

E
n
3:66 � bCn�m(k)

o
� 3:66 � �r(k)m + 5:2

s
log k

n

and the proof is complete. 2

To prove Theorem 2, we need the following technical lemma:
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Lemma 4 Let H be a �nite class of functions h : X ! R and let Z 2 X be a random

variable such that h(Z) � 1 with probability one for all h 2 H. If Z1; : : : ; Zn are i.i.d.

copies of Z, and �; ; � are positive numbers, then

P

(
min

h2H:Ph>�+(1+)�
Pnh � � + �

)
� jHj exp

"
�3n

8
� �2

� + (1 + )�

#
:

Proof: If

max
h2H

Ph� Pnhp
Ph

� �q
� + (1 + )�

;

then for every h 2 H,
Pnh � Ph� �

s
Ph

� + (1 + )�
:

As the function x � c
p
x is monotone increasing for x � c2=4, if in addition Ph >

� + (1 + )�, then

Pnh � � + (1 + )�� �

vuut� + (1 + )�

� + (1 + )�
= � + �:

Hence

P

(
min

h2H:Ph>�+(1+)�
Pnh � � + �

)
� P

8<
:max

h2H

Ph� Pnhp
Ph

� �q
� + (1 + )�

9=
;

� jHjmax
h2H

P

8<
:Ph � Pnhp

Ph
� �q

� + (1 + )�

9=
; :

It therefore su�ces to show that for every h 2 H,

P

(
Ph� Pnhp

Ph
� �

)
� exp

"
�3n

8
� �2

� + (1 + )�

#
;

where � = �(�+ (1 + )�)�1=2. Note that the probability on the left-hand side is zero

whenever � � p
Ph, so we may assume without loss of generality that � <

p
Ph.

Then

P
n
Ph� Pnh � �

p
Ph
o
� exp

" �n�2Ph
2Ph + (2=3)�

p
Ph

#
� exp

"�3n�2
8

#
:

The �rst inequality above follows fromBernstein's inequality and the fact thatVarh(Z) �
Ph. The second follows from the assumption that � <

p
Ph. 2
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Lemma 5 Consider the same situation as in Lemma 1 but now with complexities

Cn(k) = 22 � log jFkj+ 2 log k

n
:

Let  n be the candidate rule bfj minimizing the sum of class complexity and empirical

risk. Then

EL( n) � inf
k�1

(2Cn(k) + 5L0k) +
106

n
:

Proof: Let bfk and f 0k be de�ned as in Lemma 1. In order to establish the stated

inequality, we �rst derive a probabilistic bound for the di�erence between L( n) and

L0k. For any number � > 0,

P fL( n)� L0k � �g =
1X
j=1

P
n
L( bfj)� L0k � � and  n = bfjo

Set � = 4L0k+2� and consider a single term in the sum. If  n = bfj and L( bfj)�L0k � �,

then there is a function f 2 Fj such that

~Ln(f) � ~Ln( bfk) � ~Ln(f
0
k) and L(f) � 5L0k + 2� :

Therefore,

P
n
L( bfj)� L0k > 4L0k + 2� and  n = bfjo

� P

(
inf

f2Fj:L(f)�5L0

k
+2�

~Ln(f) � ~Ln(f
0
k)

)

= P

(
inf

f2Fj:L(f)�5L0

k
+2�

bLn(f) � bLn(f 0k) + (Cn(k)� Cn(j))

)
:

Let A be the event in the last line above. De�ne additional events

B = fbLn(f 0k) + Cn(k)� Cn(j) � 0g ;

and

C =
n
2bLn(f 0k) < 3L0k + Cn(j)� Cn(k) + �

o
:

Clearly P(A \Bc) = 0, and consequently

P(A) � P(A \B \ C) +P(Cc) : (18)

A straightforward calculation shows that Var(bLn(f 0k)) � L0k=n. It then follows from

Bernstein's inequality that

P(Cc) � P
n
2(bLn(f 0k) � L0k) � L0k + � + Cn(j)� Cn(k)

o
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� exp

 �n(� + Cn(j)� Cn(k))

11

!

� exp

 �n(� + Cn(j)� Cn(k))

22

!

=
k2jFkj
j2jFjj exp

 �n�
22

!
: (19)

If B \ C occurs then

2(Cn(j)� Cn(k)) � 2bLn(f 0k) � 3L(f 0k) + (Cn(j)� Cn(k)) + �

which implies

Cn(j)� Cn(k) � 3L0k + � :

Thus B \ C implies that

5L0k + 2� � 2L0k + (� + Cn(j)�Cn(k)) :

It follows from these considerations that

P(A \B \ C)
� P

(
inf

f2Fj:L(f)�2L0

k
+(�+Cn(j)�Cn(k))

bLn(f) � 3

2
L0k +

1

2
(� + (Cn(j)� Cn(k))+)

)

� jFjj � exp
 �n(� + Cn(j)� Cn(k))

22

!

� k2

j2
jFkj � exp

 �n�
22

!

where the second inequality follows from Lemma 4 with � = L0k,  = 1, and � =

(L0k + � + (Cn(j)� Cn(k))+)=2. Combining the inequality above with (18) and (19)

shows that

PfL( bfj)� L(f 0k) > 4L0k + 2�g � 2
k2

j2
jFkj � exp

 �n�
22

!

and therefore

P fL( n)� L0k � 4L0k + �g � 2k2jFkj exp
 �n�

44

!
�
1X
j=1

1

j2

� 4k2 � jFkj exp
 �n�

44

!
: (20)

Using the last inequality, the expected di�erence between L( n) and L0k may be

bounded as follows:

E [L( n)� L0k] � E [L( n)� L0k]+

33



� 4L0k + u+
Z 1

u
P fL( n)� L0k � 4L0k + tg dt

� 4L0k + u+ 4k2jFkj
Z 1

u
exp

��nt
44

�
dt

= 4L0k + u+
176k2jFkj

n

Z 1

nu=44
e�vdv

� 4L0k +
44 log (4ek2jFkj)

n
;

where in the last step u is set equal to 44n�1 log(4kjFkj). It follows that for every

k � 1,

EL( n) � 5L0k +
44 log (4ek2jFkj)

n
� 5L0k + 2Cn(k) +

106

n
;

as desired. 2

The following inequality is due to Pollard (1986), see also Haussler (1992) for the

proof.

Lemma A Let H be a family of functions h : Rd+1 ! [0; 1], and let Z1; : : : ; Zm 2
Rd+1 be i.i.d. random vectors. For each u > 0 and each � 2 (0; 1),

P

(
sup
h2H

jPmh� Phj
Pmh + Ph+ u

> �

)
� 4EN

�
Zm
1 ;

�u

8
;G
�
e�m�2u=16 :

Lemma 6 Let Fk be a model class, f�k = arg minf2Fk L(f) and L�k = L(f�k ). For

each r > 0,

E fL0k � 2L�kg � 2r +
392 logEN(Zm

1 ; r=14;Hk)

m
+
1023

m
:

Proof: We �rst derive a probabilistic bound for the di�erence between L0k and 2L�k.

If L0k � 2L�k > 2r + t for some t > 0, then there exists a prediction rule f 2 bFk � Fk

such that

1

m

mX
i=1

j l(f(Xi); Yi)� l(f�k (Xi); Yi) j < r and L(f) � L0k � 2L�k + 2r + t:

The �rst inequality implies bLm(f) < bLm(f�k ) + r, and it follows that

PfL0k � 2L�k > t+ 2rg
� P

(
inf

f2Fk:L(f)>2L�

k
+2r+t

bLm(f) < bLm(f�k ) + r

)

� P

(
inf

f2Fk:L(f)>2L�

k
+2r+t

bLm(f) < 3

2
L�k + r +

t

2

)

+ P

�bLm(f�k ) + r � 3

2
L(f�k ) + r +

t

2

�
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� P

(
inf

f2Fk:L(f)>2L
�

k
+2r+t

bLm(f) < 3

2
L�k + r +

t

2

)

+ P

�bLm(f�k ) � 3

2
L(f�k ) +

t

2

�
: (21)

Bernstein's inequality implies that the second probability in (21) is at most e�mt=10.

To bound the �rst, let f 2 Fk be any prediction rule such that L(f) � 2L�k + 2r + t.

If in addition
L(f) � bLm(f)

L(f) + bLm(f) + 2(2r + t)
� 1

7

then by a straighforward calculation,

bLm(f) � (2L�k + 2r + t)
3

4
� 2r + t

4
: =

3

2
L(f�k ) + r +

t

2
:

It follows from Lemma A that the �rst inequality in (21) is at most

P

(
sup
f2Fk

L(f)� bLm(f)
L(f) + bLm(f) + 2(2r + t)

>
1

7

)
� 4EN(Zm

1 ; r=14;Hk)e
�mt=392:

Summarizing, for each t > 0,

PfL0k � 2L�k > t+ 2rg � 5EN(Zm
1 ; r=14;Hk)e

�mt=392:

Thus, for every u > 0,

EL0k � 2L�k � 2r +
Z 1

0
PfL0k � L�k > t+ 2rgdt

� 2r + u+
Z 1

u
5EN

�
Zm
1 ;

r

14
;Hk

�
exp

��mt
392

�
dt

The desired inequality follows by setting u = 392 log (5EN(Zm
1 ; r=14;Hk)) =m. 2

Proof of Theorem 2: By conditioning on Zm
1 and applying Lemma 5) one obtains

the bound

EL( n) � E

�
inf
k
(2Cn�m(k) + 5L0k)

�
+
212

n
:

By Lemma 6 and the de�nition of the complexities bCn(k) the �rst term on the right

hand side is at most

inf
k

 
88E logN(Zm

1 ; rk;Hk)

n
+
176 log k

n
+ 5E fL0k � 2L�kg+ 10L�k

!

� inf
k

 
88E logN(Zm

1 ; rk;Hk)

n
+
176 log k

n
+ 10rk +

3920 log (EN(Zm
1 ; rk=14;Hk))

n

+
10230

n
+ 10L�k

�

� inf
k

 
4008 log (EN(Zm

1 ; rk=14;Hk))

n
+
176 log k

n
+ 10rk + 10L�k

!
+
10230

n
;
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and the result follows. 2
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