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Abstract

We address the problem of scheduling a multi-station multiclass queueing network (MQNET)

with server changeover times to minimize steady-state mean job holding costs. We present new

lower bounds on the best achievable cost that emerge as the values of mathematical programming

problems (linear, semide�nite, and convex) over relaxed formulations of the system's achievable

performance region. The constraints on achievable performance de�ning these formulations are

obtained by formulating system's equilibrium relations. Our contributions include: (1) a ow

conservation interpretation and closed formulae for the constraints previously derived by the

potential function method; (2) new work decomposition laws for MQNETs; (3) new constraints

(linear, convex, and semide�nite) on the performance region of �rst and second moments of

queue lengths for MQNETs; (4) a fast bound for a MQNET with N customer classes computed

in N steps; (5) two heuristic scheduling policies: a priority-index policy, and a policy extracted

from the solution of a linear programming relaxation.

Keywords: Multiclass queueing network, changeover times, optimal scheduling, performance

region, linear programming relaxation, semide�nite programming, convex programming.

JEL classi�cation: C61, C63.
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1 Introduction

Multiclass queueing networks (MQNETs) provide a rich range of models for complex service sys-

tems in application areas that include manufacturing (see Buzacott and Shanthikumar (1993)) and

computer-communication systems (see Gelenbe and Mitrani (1980)). The practical needs to evalu-

ate and improve the performance of such systems have motivated extensive research e�orts on the

analysis, optimization and stability of MQNETs.

Most relevant MQNET models have not yielded an exact performance analysis (evaluating the

system performance under a scheduling policy). This has only been achieved in a restricted range

of models, such as product-form MQNETs (see Kelly (1979)), and certain single-server priority and

polling systems (see Levy and Sidi (1990)). A more feasible research objective for those seemingly

intractable MQNETs is to obtain performance bounds which can be e�ciently computed. These

bounds may be used to approximate the performance of a given scheduling policy, and to assess its

suboptimality gap with respect to a performance objective.

The performance optimization problem (computing the optimal system performance under a

range of scheduling policies, and �nding a policy that achieves it) also appears computationally

intractable in most MQNET models, as shown by Papadimitriou and Tsitsiklis (1994). Exact results

have only been achieved in a range of systems that satisfy certain work conservation laws: for

them simple priority-index policies have been shown to optimize linear performance objectives (see

Bertsimas and Ni~no-Mora (1996a)). In more complex MQNETs researchers have focused their e�orts

on designing heuristic scheduling policies that exhibit a good empirical performance (see, e.g., Wein

(1990)).

An important modeling feature that is absent in most studies on MQNETs with multiple service

stations is the inclusion of changeover times (which a server incurs when changing service from one

class to another). This is in contrast with the rather vast literature on single-station models with

changeover times (usually called polling systems; see the survey by Levy and Sidi (1990)).

In this paper we address the performance optimization problem in multi-station MQNETs with

changeover times by means of the achievable region approach, with the objective of developing a

systematic method for computing performance bounds and designing scheduling policies that nearly

optimize performance objectives. We have investigated the corresponding problem for single-station

MQNETs in a companion paper (see Bertsimas and Ni~no-Mora (1998)).

The achievable region approach to performance optimization of queueing systems. The

achievable region approach to performance optimization, surveyed in Bertsimas (1995), was intro-

duced by Co�man and Mitrani (1980). It draws on the mathematical programming approach to

optimization, as it seeks to characterize the performance region achievable by a system performance

measure under a class of admissible scheduling policies. The goal is to formulate explicitly this region
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by means of equality and inequality constraints. Since it may not be possible to formulate the exact

performance region, we may have to settle for constructing a relaxation that contains it.

Co�man and Mitrani (1980) �rst addressed with this approach the problem of minimizing the

class-weighted mean delay in a multiclass M=M=1 queue. They formulated exactly the system

performance region as a polyhedron, and showed that the known optimality of priority-index policies

(the c�-rule) follows from structural properties of this underlying polyhedron. The scope of the

approach has since been extended to tackle a range of increasingly more complex systems. Drawing

on earlier work by Federgruen and Groenevelt (1988) and Shanthikumar and Yao (1992), Bertsimas

and Ni~no-Mora (1996) developed a uni�ed approach for formulating the exact performance region

in a wide variety of MQNETs that satisfy work conservation laws. They established that the

strong structural properties of these performance optimization problems (optimality of priority-index

policies) are a consequence of corresponding properties of their underlying polyhedral performance

regions.

Researchers have sought recently to extend further the scope of the achievable region approach,

with the aim of solving computationally hard performance optimization problems: restless bandits

(see Bertsimas and Ni~no-Mora (1994)) and MQNETs (see Bertsimas, Paschalidis and Tsitsiklis

(1994)-(1995) and Kumar and Kumar (1994)).

The two critical problems the achievable region approach needs to overcome when tackling a

performance optimization problem are (a) generating constraints on the performance region, and

(b) designing e�ective policies from the solution of the corresponding relaxations.

Regarding the �rst problem, an idea that has proven fruitful is to generate constraints by for-

mulating stochastic equilibrium relations satis�ed by the system. The kinds of equilibrium relations

that have been so far used in the literature include the following:

1. Work conservation laws, which hold in single-server MQNETs under nonidling policies (the

server never stops working when there are jobs in the system). These laws lead to an exact

polyhedral characterization of the performance region (see Bertsimas and Ni~no-Mora (1996a)).

2. Work decomposition laws, which hold in single-server MQNETs that allow server idleness (such

as that caused by changeover times). Bertsimas and Xu (1993), and Bertsimas and Ni~no-Mora

(1998) have shown that these laws yield a convex relaxation of the system performance region,

from which they obtain bounds and policies.

3. Potential function recursions, as developed by Bertsimas, Paschalidis and Tsitsiklis (1994)-

(1995), and by Kumar and Kumar (1994). The use of potential functions has proven to be

a powerful tool for generating a sequence of increasingly tighter polyhedral relaxations for

Markovian MQNETs.

Although they have proven their value as powerful tools for generating constraints, the above

approaches exhibit certain limitations:
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1. The approach based on formulating work conservation laws is restricted to work-conserving

systems, thus excluding systems with server changeover times, and multi-station MQNETs.

2. The approach based on formulating work decomposition laws has only been developed in

single-server systems (see Bertsimas and Ni~no-Mora (1998)).

3. The potential function method is algebraic in nature: it does not provide a physical insight

into the reason of its success.

The problem of designing in a systematic way e�ective scheduling policies for intractable MQNETs

from the solution of the relaxations remains an open challenge. Previous work in this direction in-

cludes the dual-index policy proposed in Bertsimas and Ni~no-Mora (1994) for the restless bandit

problem, and the policies for polling systems proposed in Bertsimas and Xu (1993) and in Bertsimas

and Ni~no-Mora (1998).

Objective and contributions. Our objective in this paper is to support the thesis that the

achievable region approach is an e�ective tool for solving hard performance optimization problems.

We shall test this thesis by tackling via the approach the performance optimization problem in an

open multi-station MQNET model with changeover times. In Bertsimas and Ni~no-Mora (1998) we

address the corresponding problem in a single-station MQNET model with changeover times.

Our contributions include:

1. We develop new constraints on performance measures by formulating di�erent kinds of equi-

librium relations than those considered previously in the literature.

2. We reveal the physical origin of the constraints given by the potential function method, as for-

mulating the classical ow conservation law of queueing theory L� = L+. This understanding

leads to explicit and simple formulas for all higher order relaxations.

3. We provide the �rst known explicit relaxation for the performance region of second moments

of queue lengths in a multi-station MQNET. The relaxation is a semide�nite programming

problem, for which e�cient (polynomial time) algorithms have been developed in recent years.

4. As a byproduct of the ow conservation constraints, we obtain directly new work decomposition

laws for multi-station MQNETs. From these laws we derive a family of convex constraints that

account explicitly for the e�ect of changeover times.

5. We adapt Klimov's one-pass algorithm for computing fast index-based performance bounds

for MQNETS.

6. We propose heuristic scheduling policies based on the solution of the relaxations. First, we

apply the ow conservation law appropriately in order to obtain relaxations for MQNETs

with �nite bu�ers, from which one can naturally extract policies. Second, we derive a bound

on the optimal performance for a MQNET based on a relaxation that de�nes indices in the
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network. These indices, which for the single-station MQNET case correspond to the optimal

indices derived in Klimov (1974), naturally de�ne priority-index policies for the multi-station

MQNET case.

Structure of the paper. The rest of the paper is structured as follows: Section 2 introduces the

MQNET model and formulates the corresponding performance optimization problem in terms of

the achievable region approach. Sections 3-7 develop di�erent families of performance constraints by

formulating system equilibrium relations. The constraints presented in section 7 account explicitly

for the impact of changeover time parameters. Section 8 presents several positive semide�nite

constraints. Section 9 summarizes the bounds and the formulations developed previously and reports

computational results. Section 10 proposes two heuristic policies extracted from the formulations.

We have summarized in Appendix A some basic results from the Palm calculus of point processes

that are used throughout the paper.

2 The MQNET model

2.1 Model description

We consider a network of queues composed ofM single-server stations and populated by N customer

classes. The set of customer classes N = f1; : : : ; Ng is partitioned into subsets C1; : : : ; CM , so that

station m 2 M = f1; : : : ;Mg only serves classes in its constituency Cm. We note that the single

class index i 2 N of a customer used here carries the same information as the usual pair of indices

(j;m) used in much of the queueing network literature (see, e.g., Kelly (1979)) for identifying jobs

present in the network, where an index denotes the job's current type and the other its current

location. We further denote by s(i) the station that services class i customers (which we shall refer

to as i-customers). The network is open, so that customers arrive at the network from outside, follow

a Markovian route through one or several queues (i-customers wait for service at the i-queue) and

then leave the system. External i-customers' arrivals follow a Poisson process with rate �i (if class

i does not have external arrivals we let �i = 0). The service times of i-customers are i.i.d., having

an exponential distribution with mean �i = 1=�i. Upon completion of its service at station s(i), an

i-customer may be routed for further service to the j-queue, with probability pij , or it may leave

the system, with probability pi0 = 1 �
P

j2N pij . We assume that routing matrix P = (pij)i;j2N

is such that a single customer moving through the network eventually exits it, i.e., matrix I �P is

invertible. We further assume that all service times and arrival processes are mutually independent.

The network is controlled by a scheduling policy, which speci�es dynamically how each server

is allocated to waiting customers. Servers incur changeover times when moving from one queue

to another: if after visiting the i-queue the corresponding server moves to the j-queue he incurs a
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random changeover time having a general distribution with mean sij and second moment s
(2)
ij . Usual

stochastic independence assumptions hold.

We shall refer to the following classes of scheduling policies: dynamic policies, under which

scheduling decisions may depend on the current or past states of all queues; static policies, under

which the scheduling decisions of each server depend only on the state of the queue he is currently

visiting; stable policies, under which the queue length vector process has an equilibrium distribution

with �nite mean. We shall allow policies to be preemptive (a customer's service may be interrupted

and resumed later). However, we require that once a changeover is initiated, it must continue to

completion. We shall further refer to the class of nonidling policies, under which each server must

be at any time either serving a customer or engaged in a changeover.

We de�ne next other model parameters of interest. The total arrival rate of j-customers, denoted

by �j , is the total rate at which both external and internal customers arrive to the j-queue. The

�j 's are computed by solving the system

�j = �j +
X
i2N

pij�i; for j 2 N .

The tra�c intensity of j-customers, denoted by �j = �j�j , is the time-stationary probability that

a j-customer is in service. The total tra�c intensity at station m is �(Cm) =
P

j2Cm
�j , and is the

time-stationary probability that server m is busy. The condition

�(Cm) < 1; for m 2 M

is necessary but not su�cient for guaranteeing the stability of any nonidling policy.

We assume that the system operates in a steady-state regime, under a stable policy, and introduce

the following variables:

� Li(t) = number of i-customers in system at time t.

� Bi(t) = 1 if an i-customer is in service at time t; 0 otherwise.

� Bm(t) = 1 if server m is busy at time t; 0 otherwise; notice that Bm(t) =
P

i2Cm
Bi(t).

Bij(t) = 1 if a server is engaged in a i! j changeover at time t; 0 otherwise.

In what follows we shall write, for convenience of notation, Li = Li(0), Bi = Bi(0) B
m = Bm(0)

and Bij = Bij(0).

2.2 The performance optimization problem

The main system performance measure we are concerned with is the vector whose components are

the time-stationary mean number from each class in the system, denoted by x = (xj)j2N , where

xj = E [Lj ] ; for j 2 N :
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Performance variables Interpretation

xj ; x = (xj)j2N E [Lj ]

xij ; X = (xij)i;j2N ; xi = (xij)j2N E [Lj j Bi = 1]

x0mj ; X0 = (x0mj )m2M;j2N ; x
0m = (x0mj )j2N E [Lj j B

m = 0]

rij ; R = (rij)i;j2N E [BiBj ]

rkij ; R
k = (rkij)i;j2N E [BiBj j Bk = 1]

r0mij ; R0m = (r0mij )i;j2N E [BiBj j B
m = 0]

yij ; Y = (yij)i;j2N E [LiLj ]

ykij ; Y
k = (ykij)i;j2N E [LiLj j Bk = 1]

y0mij ; Y 0m = (y0mij )i;j2N E [LiLj j B
m = 0]

fij ; F = (fij)i;j2N rate of i! j changeovers

fi; f = (fj)j2N rate of server visits to the i-queue

Table 1: Network performance measures.

Given a performance cost function c(x) (possibly nonlinear), we shall investigate the following per-

formance optimization problem: compute a lower bound Z � c(x) that is valid under a given class

of admissible policies, and design a policy which nearly minimizes the cost c(x).

We shall approach this problem via the achievable region approach, as described in the Intro-

duction. Let X be the performance region achievable by performance vector x under all admissible

policies. Our �rst goal is to derive constraints on performance vector x that de�ne a relaxation of

performance region X . Since it is not obvious how to derive constraints on x directly, we shall pursue

the following plan: (1) identify system equilibrium relations and formulate them as constraints in-

volving auxiliary performance variables; (2) formulate additional positive semide�nite constraints on

the auxiliary performance variables; (3) formulate constraints that express the original performance

vector, x, in terms of the auxiliary variables.

Notice that this approach has a clear geometric interpretation: It corresponds to constructing

a relaxation of the performance region of the natural variables, xj , by (1) lifting this region into a

higher dimensional space, by means of auxiliary variables, (2) bounding the lifted region through

constraints on the auxiliary variables, and (3) projecting back into the original space. Lift and

project techniques have proven powerful tools for constructing tight relaxations for hard discrete

optimization problems (see, e.g., Lov�asz and Schrijver (1991)).

We have summarized in Table 1 the performance measures considered in this paper.
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3 Projection constraints

We present in this section several sets of linear equality constraints that express natural performance

measures in terms of auxiliary ones. These constraints correspond geometrically to a projection:

they allow us to recover the values of natural performance measures from the corresponding values

of auxiliary ones.

Theorem 1 (Projection constraints) Under any dynamic stable policy, the following equations

hold:

(a)

xj =
X
i2Cm

�ix
i
j + (1� �(Cm))x

0m
j ; for j 2 N , m 2M: (1)

(b)

rij =
X
k2Cm

�kr
k
ij + (1� �(Cm)) r

0m
ij ; for i; j 2 N , m 2M: (2)

(c) If E
�
(L1 + : : :+ LN)

2
�
<1 then

yij =
X
k2Cm

�ky
k
ij + (1� �(Cm)) y

0m
ij ; for i; j 2 N , m 2M: (3)

Proof

The constraints in (a), (b) and (c) are elementary, as they follow by a conditioning argument, by

noticing that at each time every server is either serving some customer class in its constituency or

idling.

4 Lower bound constraints

We present in this section a new set of lower bound constraints on auxiliary performance variables.

Our main result follows next.

Theorem 2 (Lower bound constraints) Under any dynamic stable policy, the following linear

constraints hold:

(a)

rij � max(0; �i + �j � 1); for i; j 2 N : (4)

(b)

xij �
rij

�i
; for i; j 2 N ; (5)

xij �
max(0; �i + �j � 1)

�i
; for i; j 2 N : (6)

(c)

x0mj � max

�
0;
�j � �(Cm)

1� �(Cm)

�
; for m 2M; j 2 N : (7)
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(d)

rkij � max

�
0;
rki + rkj

�k
� 1

�
; for i; j; k 2 N : (8)

(e)

r0mij � max

�
0;
max(0; �i � �(Cm)) + max(0; �j � �(Cm))

1� �(Cm))
� 1

�
; for i; j 2 N , m 2M: (9)

(f) If E
�
(L1 + � � �+ LN)

2
�
<1 then

yij � rij ; for i; j 2 N ; (10)

ykij � rkij ; for i; j; k 2 N ; (11)

y0mij � r0mij ; for i; j 2 N , m 2M: (12)

Proof

(a) The result follows directly by subtracting equation

P fBi = 1; Bj = 0g+ P fBi = 0; Bj = 0g = 1� �j

from

P fBi = 1; Bj = 0g+ P fBi = 1; Bj = 1g = �i:

(b) The result follows from

xij � P fBj = 1 j Bi = 1g

=
rij

�i
: (13)

(c) We have

x0mj � P fBj = 1 j Bm = 0g

=
P fBj = 1; Bm = 0g

1� �(Cm)
: (14)

Now, by subtracting

P fBj = 1; Bm = 1g+ P fBj = 0; Bm = 1g = �(Cm)

from

P fBj = 1; Bm = 1g+ P fBj = 1; Bm = 0g = �j

we obtain

P fBj = 1; Bm = 0g � �j � �(Cm); (15)

which, combined with (14) yields the result.

(d) The result follows directly by subtracting

P fBi = 0; Bj = 1 j Bk = 1g+ P fBi = 0; Bj = 0 j Bk = 1g = P fBi = 0 j Bk = 1g = 1�
rki

�k

10



Point process Epochs Intensity Stochastic intensity

A0
i external i-customer arrivals �i �A

0

i (t) = �i

D0
i external i-customer departures �ipi0 �D

0

i (t) = �ipi0Bi(t)

Tij i! j customer routing �ipij �Tij (t) = �ipijBi(t)

Table 2: Elementary network point processes and their intensities.

from

P fBi = 0; Bj = 1 j Bk = 1g+ P fBi = 1; Bj = 1 j Bk = 1g = P fBj = 1 j Bk = 1g =
rkj

�k
:

(e) The result follows by subtracting

P fBi = 0; Bj = 1 j Bm = 0g+ P fBi = 0; Bj = 0 j Bm = 0g = P fBi = 0 j Bm = 0g

from

P fBi = 0; Bj = 1 j Bm = 0g+ P fBi = 1; Bj = 1 j Bm = 0g = P fBj = 1 j Bm = 0g ;

and then applying inequality (15).

(f) The inequalities in (f) are elementary, as they follow from the relation Li � Bi.

5 Flow conservation constraints

We present in this section a set of linear constraints on performance measures by formulating the

classical ow conservation law of queueing theory L� = L+. This law states that, in a queueing

system in which the queue size can increase or decrease only by unit steps, the stationary state

probabilities of the number in system at arrival epochs and that at departure epochs are equal. These

constraints were �rst derived for multi-station MQNETs by Bertsimas, Paschalidis and Tsitsiklis

(1994), and by Kumar and Kumar (1994), through a potential function approach. The corresponding

constraints for single-station MQNETs were obtained by Klimov (1974) via transform methods.

Our contribution in this section is twofold: (1) we reveal that the physical origin of the constraints

produced by the potential function approach is the ow conservation law L� = L+; (2) we derive

new closed formulae for all higher-order constraints (with the potential function approach these are

generated recursively).

In particular, we shall apply the law L� = L+ to a family of queues obtained by aggregating

customer classes, as explained next. Let S � N .

De�nition 1 (S-queue) The S-queue is the queueing system obtained by aggregating customer

classes in S. The number in system at time t in the S-queue is denoted by LS(t) =
P

j2S Lj(t).
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As usual we write LS = LS(0), L
�
S = LS(0�), L

+
S = LS(0+) = LS(0).

We denote by AS the point process of net arrival epochs to the S-queue, which consists of S-

customer external arrival epochs and customer routing epochs from a class in Sc to a class in S. We

can thus express point process AS as the superposition (see Appendix A) of the elementary network

point processes shown in Table 2, as follows:

AS =
X
j2S

A0
j +

X
i2Sc

X
j2S

Rij ;

Similarly we denote by DS the point process of net departure epochs from the S-queue, consisting

of S-customer external departure epochs and customer routing epochs from a class in S to a class

in Sc,

DS =
X
j2S

D0
j +

X
j2S

X
i2Sc

Rji:

Notice that we ignore customer routing epochs within classes in S, since they do not change the

number of customers in the S-queue.

For convenience of notation we shall also write

p(i; S) =
X
j2S

pij

and

�(S) =
X
j2S

�j :

We denote the Palm probabilities and expectations with respect to point processes AS and DS by

PAS (�), EAS [�] and PDS (�), EDS [�], respectively. The time-stationary distributions and expectations

are denoted by P (�) and E[�], respectively.

We state and prove next our main result, which formulates the law L� = L+ as it applies to the

S-queue: The stationary state probabilities of the number of customers in the S-queue just before a

net customer arrival epoch and just after a net customer departure epoch to/from the S-queue are

equal. The theorem formulates this identity between Palm distributions as a linear relation between

time-stationary distributions, thus bridging the gap between them.

Theorem 3 (The law L� = L+ in MQNETs) Under any dynamic stable policy, and for any

subset of customer classes S � N and nonnegative integer l:

(a)

PAS
�
L�S = l

	
= PDS

�
L+
S = l

	
: (16)

(b) Identity (16) is equivalently formulated as

�(S)P fLS = lg+
X
i2Sc

�ip(i; S)P fLS = l j Bi = 1g =
X
i2S

�i (1� p(i; S))P fLS = l + 1 j Bi = 1g :

(17)
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Proof

Part (a) follows directly by applying the ow conservation law L� = L+ to the number in system

process fLS(t)g corresponding to the S-queue.

(b) The key tool we shall apply for expressing the Palm distributions in part (a) in terms of time-

stationary distributions is Papangelou's theorem (Theorem 11 in Appendix A). First, we notice that

arrival point process AS admits a stochastic intensity (see Appendix A)

�S(t) = �(S) +
X
i2Sc

X
j2S

�ipijBi(t); (18)

whereas the stochastic intensity of departure point process DS is

�S(t) =
X
i2S

�i (1� p(i; S))Bi(t): (19)

Let �S = E
�
�S(0)

�
and �S = E

�
�S(0)

�
. Notice that, by ow conservation, �S = �S .

Now, by Papangelou's theorem, Eq. (18) and the relation P fBi = 1g = �i we have

�SPAS
�
L�S = l

	
= �SEAS [1 fLS(0�) = lg]

= E
�
�S(0)1 fLS(0) = lg

�
= �(S)P fLS = lg+

X
i2Sc

X
j2S

�ipijP fLS = L j Bi = 1g ; (20)

and, similarly,

�SPDS
�
L+
S = l

	
= �SPDS

�
L�S = l + 1

	
= E

�
�S(0)1 fLS(0) = l+ 1g

�
=

X
i2S

�i (1� p(i; S))P fLS = l + 1 j Bi = 1g : (21)

Now, equating (20) and (21) (by part (a)), and using the fact that �S = �S the result follows.

Taking expectations in identity (17) we obtain our next result, which formulates a linear relation

between time-stationary moments of queue lengths.

Corollary 1 Under any dynamic stable policy, and for any subset of customer classes S � N and

positive integer K for which E
�
(L1 + � � �+ LN )

K
�
<1,

�(S)E
�
LKS

�
+
X
i2Sc

�ip(i; S)E
�
LKS j Bi = 1

�
=
X
i2S

�i (1� p(i; S))E
�
(LS � 1)K j Bi = 1

�
: (22)

The equilibrium equations in Corollary 1 corresponding to K = 1; 2 and S = fig; fi; jg, for

i; j 2 N , yield directly the system of linear constraints on performance variables shown next. Let

� = Diag(�).
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Corollary 2 (Flow conservation constraints) Under any dynamic stable policy, the following

linear constraints hold:

(a)

��x0 � x�0 + (I �P )0�X +X 0�(I �P ) = (I �P )0�+�(I �P ): (23)

(b) If E
�
(L1 + � � �LN )

2
�
<1, then

�jyjj +
X
r2N

�rprjy
r
jj � �jy

j
jj + 2�j(1� pjj)x

j
j = �j(1� pjj); j 2 N ; (24)

�iyjj + �jyii + 2(�i + �j)yij +
X
r2N

�rpriy
r
jj +

X
r2N

�rprjy
r
ii

+
X
r2N

2�r(pri + prj)y
r
ij � �iy

i
jj � �jy

j
ii � 2�iy

i
ij � 2�jy

j
ij

+2�i(1� pii � pij)x
i
j + 2�j(1� pji � pjj)x

j
i = ��ipij � �jpji; i; j 2 N :(25)

Remarks. 1. Eqns. (23) in Corollary 2 were �rst derived by Bertsimas, Paschalidis and Tsit-

siklis (1994), and by Kumar and Kumar (1994) through a potential function method. In both

papers the authors assumed the stronger condition that the second moment of the total num-

ber of customers in the network is �nite, i.e., E
�
(L1 + � � �+ LN )

2
�
<1. We only require, as

in Kumar and Meyn (1996), �niteness of the corresponding �rst moment.

2. Bertsimas, Paschalidis and Tsitsiklis (1994) proposed a recursive algebraic procedure for gen-

erating higher-order constraints corresponding to Eqns. (22) in Corollary 1 (with K � 2). In

contrast to their approach, we present in Corollary 1 closed formulae that reveal the simple

structure of this family of equations.

3. Interestingly, for K = 1, it can been seen that all the equations in (22) for jSj � 3 are implied

by those with jSj � 2.

6 Workload decomposition constraints

In this section we derive a new family of linear constraints by identifying and formulating new work

decomposition laws satis�ed by the system. A work decomposition law is a linear relation between

the mean number in system from each class at an arbitrary time and at an arbitrary time during a

period when some servers are idle. Our contributions include: (1) a family of new work decomposition

laws for multi-station MQNETs, which extends the most general results known previously: Boxma's

(1989) work decomposition law for multiclassM=G=1 queues, and Bertsimas and Ni~no-Mora's (1998)

work decomposition laws for single-server MQNETs; (2) tighter network workload bounds, which

improve upon the bounds derived by Bertsimas, Paschalidis and Tsitsiklis (1994); (3) new families of

convex constraints for MQNETs with changeover times, obtained from the new work decomposition

laws.
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The idea of deriving performance constraints from work decomposition laws was introduced by

Bertsimas and Xu (1993) in the setting of a multiclass M=G=1 queue with changeover times. They

derived a set of convex constraints by applying a work decomposition law due to Fuhrmann and

Cooper (1985). Bertsimas and Ni~no-Mora (1998) have extended the idea to single-server MQNETs

with changeover times, presenting a family of new work decomposition laws, and applying them to

formulate new convex performance constraints.

6.1 Work decomposition laws

In order to develop the new work decomposition laws we �rst present the following de�nition. Let

S � N be a subset of customer classes.

De�nition 2 (S-workload) The workload process corresponding to the S-queue (see De�nition 1)

is called the S-workload process, denoted by
�
V S(t)

	
t2<

. V S(t) is thus the total remaining service

time needed for �rst clearing the S-queue of all S-customers present at time t.

We shall denote by Bm
S (t) the indicator of the event that server m is busy with an S-customer

at time t, i.e., Bm
S (t) =

P
i2S\Cm

Bi(t). As before, we write V
S = V S(0); Bm

S = Bm
S (0):

We next de�ne parameters V S
i , for i 2 N , as the solution of the system of linear equations

V S
i = �i +

X
j2S

pijV
S
j ; for i 2 N : (26)

We shall refer to V S
i , for i 2 S, as the S-workload of an i-job, as it represents the mean remaining

service time a current i-job receives until its class �rst leaves S following completion of its current

service.

In what follows we shall use the following matrix notation: if S; T � N , z = (zi)i2N is an

N -vector, and A = (aij)i;j2N is an N �N matrix, we shall write

zS = (zj)j2S ; and AST = (aij)i2S;j2T :

For example, we write Eqns. (26) in matrix form as

V S
S = �S +P SSV

S
S ;

V S
Sc = �Sc +P ScSV

S
S ;

where � = (�i)i2N :

Furthermore, we shall denote by �0(S) the rate at which external S-work enters the system, i.e.,

�0(S) =
X
j2S

�jV
S
j ;

15



and write

�(S) =
X
j2S

�j :

We state and prove next the new work decomposition laws, which formulate a decomposition

of the mean workload in the S-queue, for every S � N . Let M(S) denote the set of stations that

service S-customers, and let M(S) = jM(S)j be its corresponding cardinality.

Theorem 4 (Work decomposition laws) Under any dynamic stable policy, and for any subset

S � N of customer classes:

(a)

�
M(S)� �0(S)

�X
j2S

V S
j xj =

X
j2S

�jV
S
j +

X
i2Sc\([m2M(S)Cm)

X
j2S

�iV
S
j x

i
j

+
X
i2Sc

X
j2S

�
�iV

S
i � �i

�
V S
j x

i
j

+
X

m2M(S)

X
j2S

(1� �(Cm)) V
S
j x

0m
j : (27)

(b) Identity (27) is equivalently formulated as

�
M(S)� �0(S)

�
E
�
V S
�

=
X
j2S

�jV
S
j +

X
i2Sc

�
�iV

S
i � �i

�
E
�
V S j Bi = 1

�
+

X
m2M(S)

(1� �(S \ Cm))E
�
V S j Bm

S = 0
�
: (28)

Proof

Let us de�ne N -vector v by

v =

0
@ V S

S

0

1
A ;

and set function b(S) by

b(S) =
1

2

X
i2S

X
j2S

V S
i V

S
j bij ;

where B = (bij)i;j2N is the matrix de�ned by

B = (I �P )0�+�(I �P ):

We then have, by the ow conservation equations (23) in Corollary 2, that

b(S) =
1

2
v0f��x0 � x�0 + (I �P )0�X +X 0�(I �P )gv

= ��0(S)
X
j2S

V S
j xj +

8<
:
0
@ IS �P SS �P SSc

�P ScS ISc �P ScSc

1
A
0
@ V S

S

0

1
A
9=
;
0

�X

0
@ V S

S

0

1
A

= ��0(S)
X
j2S

V S
j xj +

�
�0S �0Sc � V

S
Sc
0
�
�

0
@ XSS XSSc

XScS XScSc

1
A
0
@ V S

S

0

1
A

16



= ��0(S)
X
j2S

V S
j xj +

X
i2S

X
j2S

�iV
S
j x

i
j �

X
i2Sc

X
j2S

�
�iV

S
i � �i

�
V S
j x

i
j

= ��0(S)
X
j2S

V S
j xj �

X
i2Sc

X
j2S

�iV
S
i V

S
j x

i
j +

X
i2N

X
j2S

�iV
S
j x

i
j : (29)

Now, from Eqns. (1) in Theorem 1 it follows that

xj =
X

i2S\Cm

�ix
i
j +

X
i2Sc\Cm

�ix
i
j + (1� �(Cm))x

0
mj ; for m 2 M: (30)

Adding over m 2M(S) in (30) we obtain

M(S)xj =
X
i2S

�ix
i
j +

X
i2Sc\([m2M(S)Cm)

�ix
i
j +

X
m2M(S)

(1� �(Cm))x
0
mj : (31)

Now, simplifying (29) using (31) yields

b(S) =
�
M(S)� �0(S)

�X
j2S

V S
j xj �

X
i2Sc\([m2M(S)Cm)

X
j2S

V S
j �ix

i
j

�
X
i2Sc

X
j2S

�
�iV

S
i � �i

�
V S
j x

i
j �

X
m2M(S)

X
j2S

(1� �(Cm))V
S
j x

0m
j (32)

On the other hand, we have

b(S) =
1

2
V S
S

0
BSSV

S
S

=
1

2

�
V S
S

0
0

�
f(I �P )0�+�(I �P )g

0
@ V S

S

0

1
A

=
�
V S
S

0
0

�
(I �P )0�

0
@ V S

S

0

1
A

=

8<
:
0
@ IS �P SS �PSSc

�P ScS ISc �P ScSc

1
A
0
@ V S

S

0

1
A
9=
;
0

�

0
@ V S

S

0

1
A

=
�
�0S �0Sc � V

S
Sc
0
�
�

0
@ V S

S

0

1
A

=
X
j2S

�jV
S
j : (33)

Finally, substituting (33) into (32) yields directly identity (27).

(b) It follows from the de�nition of the S-workload process that

E
�
V S
�
=
X
j2S

V S
j xj ;

E
�
V S j Bm = 0

�
=
X
j2S

V S
j x

0m
j

and

E
�
V S j Bi = 1

�
=
X
j2S

V S
j x

i
j ;

17



which, combined with Eq. (27) yields

�
M(S)� �0(S)

�
E
�
V S
�

=
X
j2S

�jV
S
j +

X
i2Sc\([m2M(S)Cm)

�iE
�
V S j Bi = 1

�

+
X
i2Sc

�
�iV

S
i � �i

�
E
�
V S j Bi = 1

�
+

X
m2M(S)

(1� �(Cm))E
�
V S j Bm = 0

�
: (34)

Identity (28) now follows by simplifying Eq. (34) using the elementary relations

E
�
V S j Bm

S = 0
�
=

� (Sc \ Cm)

1� � (S \ Cm)
E
�
V S j Bm

Sc = 1
�
+

1� � (Cm)

1� � (S \ Cm)
E
�
V S j Bm = 0

�
(35)

and

� (Sc \ Cm)E
�
V S j Bm

Sc = 1
�
=

X
i2Sc\Cm

�iE
�
V S j Bi = 1

�
: (36)

Remark. Identity (28) in Theorem 4(b) may be interpreted physically in terms of work decomposi-

tion, as it says that the mean network S-workload decomposes into three components: 1) a constant

term, independent of the policy, 2) a linear combination of the conditional mean S-workloads during

the service of Sc-customers, and 3) a linear combination of the conditional mean S-workloads during

idle periods of servers who service S-customers. In particular, for S = N Eq. (28) yields

E
�
V N

�
=

P
j2N �jV

N
j

M � �(N )
+
X
m2M

1� �(Cm)

M � �(N )
E
�
V N j Bm = 0

�
; (37)

which means that the total mean network workload decomposes into a constant term plus a linear

convex combination of the conditional mean network workloads during servers idle times. Therefore,

identity (28) extends the work decomposition laws developed by Boxma (1989) and by Bertsimas

and Ni~no-Mora (1998) for single-station systems to multi-station MQNETs.

As an application of the work decomposition laws in Theorem 4 we present next a family of

workload bounds for MQNETs, which improve upon the workload bounds developed in Bertsimas,

Paschalidis and Tsitsiklis (1994). Let us de�ne a set function g(S) on subsets S of customer classes

by

g(S) =

P
j2S �jV

S
j

M(S)� �0(S)
+

P
i2Sc\([m2M(S)Cm)

P
j2S V

S
j max (0; �i + �j � 1)

M(S)� �0(S)

+

P
i2Sc

P
j2S

�
�iV

S
i � �i

�
V S
j max

�
0;

�i+�j�1
�i

�
M(S)� �0(S)

+

P
m2M(S)

P
j2S V

S
j max (0; �j � �(Cm))

M(S)� �0(S)
: (38)
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Corollary 3 (Workload bounds) Under any dynamic stable policy, the following workload bounds

hold:

X
j2S

V S
j xj � g(S); for S � N : (39)

Proof

Inequality (39) follows directly by combining work decomposition Eq. (27) in Theorem 4(a) and the

lower bounds in Theorem 2(b)-(c).

Remarks

1. The workload bounds in Corollary 3 improve upon the ones developed by Bertsimas, Pascha-

lidis and Tsitsiklis (1994): they showed that under any dynamic and stable scheduling policy,

X
j2S

V S
j xj �

P
j2S �jV

S
j

M(S)� �0(S)
; for S � N : (40)

2. In the special case of single-server MQNETs, it follows from identity (27) that the workload

bound in (40) is achieved under any dynamic nonidling policy that gives preemptive service

priority to S-customers over Sc-customers. This shows that performance measure x satis�es

the work conservation laws in Bertsimas and Ni~no-Mora (1996a), and it follows from their

work that the family of inequality constraints in (40), for S � N , together with the equationP
j2N V Nj xj =

P
j2N �jV

N
j =(1��(N )), formulate exactly the performance region of the xj 's.

7 Convex constraints for MQNETs with changeover times

We present in this section constraints on achievable performance that account for the e�ect of servers

changeover times. We �rst establish some elementary linear constraints on visit and changeover

frequencies (fj , fij ; see Table 1).

Proposition 1 Under any dynamic stable policy,

(a)

fi =
X

j2Cs(i)nfig

fij =
X

j2Cs(i)nfig

fji; for i 2 N : (41)

(b) If the policy is nonidling, then

X
i;j2Cm:i6=j

sijfij = 1� �(Cm); for m 2 M: (42)

Proof

(a) Eq. (41) formulates a simple ow conservation relation: the rates at which server s(i) visits and

leaves the i-queue are equal.
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(b) Eq. (42) formulates the elementary identity

X
i;j2Cm

P fBij = 1g = 1� �(Cm);

which holds under the nonidling assumption. Notice that we have used the identity P fBij = 1g =

sijfij .

In order to develop the new convex constraints we introduce the following concept from the

vacation queues literature:

De�nition 3 (Vacation) We say that server m 2 M is taking a vacation away from a set of

customer classes S � Cm when he is not serving S-customers.

Consider now the point process Nm;S of epochs at which server m initiates a vacation away

from S \ Cm-customers (which we refer to henceforth as a server m S-vacation), for S � N . We

also let Im;S be a random variable with the equilibrium distribution of a server m S-vacation

interval, and de�ne Bm;S(t) as the indicator that server m is busy at time t with an S-customer,

i.e., Bm;S(t) =
P

j2S\Cm
Bj(t).

In the next result we establish lower bounds for the mean number of j-customers in system

during changeover periods and during server vacations, respectively, and develop an expression for

mean server vacation times, in terms of visit and changeover frequencies. We de�ne set function

h(S) by

h(S) =
1

2

8<
:�j (1� �(S \ Cm)) +

X
r2NnS

�rprj max (0; �r � �(S \ Cm))

9=
; ; for S � N . (43)

Proposition 2 Under any policy that is static, nonidling and stable, we have:

(a) For m 2M and j; k; l 2 Cm, with k 6= l,

E [Lj j Bkl = 1] � �j
s
(2)

kl

2skl
+

X
r2NnCm

�rprjs
(2)

kl

2s2kl

max(0; �r + sklfkl � 1)

fkl
: (44)

(b) For S � N ;m 2M(S),

E [Im;S ] =
1� �(S \ Cm)P

j2S\Cm
fj

: (45)

(c) For S � N ;m 2M(S); j 2 S \ Cm,

E [Lj j Bm;S = 0] � h(S)
1P

j2S\Cm
fj
: (46)

Proof

(a) Consider the point process Hkl of k ! l server changeover initiation epochs. We introduce

random variable v�kl, the elapsed time of a typical k ! l changeover period that started at time

0, as seen by a random observer. Notice that, by random incidence, E [v�kl] = s
(2)

kl =2skl. Let
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us denote by zklj the mean number of j-customers arriving during time interval [0; v�kl). Since

E [Lj j Bkl = 1] � zklj , our next goal is to �nd a lower bound on zklj .

Notice �rst that, during a k ! l changeover period, the point process of j-customer arrivals has

a stochastic intensity at time t given by

�j +
X

r2NnCm

�rprjBr(t):

By de�nition of stochastic intensity (see Appendix A), we have, under static policies,

zklj = EHkl

"Z v�kl

0

�j dt

#
+

X
r2NnCm

�rprjE
Hkl

"Z v�kl

0

Br(t) dt

#

= �j
s
(2)

kl

2skl
+

X
r2NnCm

�rprjP fBr = 1; Bkl = 1g
s
(2)

kl

2s2klfkl
; (47)

since under such policies

EHkl

"Z v�kl

0

Br(t) dt

#
= P fBr = 1 j Bkl = 1g

s
(2)

kl

2skl

= P fBr = 1; Bkl = 1g
s
(2)

kl

2s2klfkl
:

Now, from

P fBr = 1; Bkl = 0g+ P fBr = 1; Bkl = 1g = �r

and

P fBr = 1; Bkl = 0g+ P fBr = 0; Bkl = 0g = 1� sklfkl

it follows that

P fBr = 1; Bkl = 1g � max(0; �r + sklfkl � 1):

Combining this inequality with Eq. (47), and with the relation E [Lj j Bkl = 1] � zklj yields the

result.

(b) The intensity of point process Nm;S is easily seen to be
P

j2S\Cm
fj . Now, under a nonidling

policy, the duration of an S-vacation for server m coincides with the total time that server is

not serving S-customers between two consecutive points of point process Nm;S. Therefore, under

nonidling static policies,

E [Im;S ] =
1� �(S \ Cm)P

j2S\Cm
fj

;

which proves the result.

(c) Consider the point process Nm;S of server m S-vacation initiation epochs. We introduce the

random variable Im;S
�, the elapsed time of a typical server m S-vacation period that started at time

0, as seen by a random observer. Notice that, by random incidence, E [Im;S
�] = E

�
Im;S

2
�
=2E [Im;S ].

Let us denote by zj the mean number of j-customers that arrive during time interval [0; Im;S
�). Since,

clearly, E [Lj j Bm;S = 0] � zj , our next goal is to �nd a lower bound on zj .

21



We �rst observe that during a server m S-vacation the point process of j-customer arrivals has

a stochastic intensity at time t given by

�j +
X

r2NnS

�rprjBr(t):

By de�nition of stochastic intensity,

zj = ENm;S

"Z Im;S
�

0

�j dt

#
+

X
r2NnS

�rprjE
Nm;S

"Z Im;S
�

0

Br(t) dt

#

= �jE [Im;S
�] +

X
r2NnS

�rprjP fBr = 1; Bm;S = 0g
E [Im;S

�]

1� �(S \ Cm)
; (48)

since

ENm;S

"Z Im;S
�

0

Br(t) dt

#
= P fBr = 1 j Bm;S = 0gE [Im;S

�]

= P fBr = 1; Bm;S = 0g
E [Im;S

�]

1� �(S \ Cm)
:

Now, from

P fBr = 1; Bm;S = 1g+ P fBr = 1; Bm;S = 0g = �r

and

P fBr = 1; Bm;S = 1g+ P fBr = 0; Bm;S = 1g = �(S \ Cm)

it follows that

P fBr = 1; Bm;S = 0g � max(0; �r � �(S \ Cm)):

Combining this inequality with Eqns. (48) and (45), and using the fact that

E [Im;S
�] =

E
�
Im;S

2
�

2E [Im;S ]
�

1

2
E [Im;S ]

yields the result.

The next result presents two families of convex constraints on performance variables.

Theorem 5 Under any policy that is static, nonidling and stable, the following convex constraints

hold:

(a) For m 2M and j 2 Cm,

x0mj �
X

k;l2Cm:k 6=l

�js
(2)

kl

2 (1� �(Cm))
fkl +

X
k;l2Cm:k 6=l

X
r2NnCm

�rprjs
(2)

kl

2skl (1� �(Cm))
max(0; �r + sklfkl � 1): (49)

(b) For S � N , m 2 M(S) and j 2 S \ Cm,X
i2Sc\Cm

�ix
i
j + (1� �(Cm))x

0m
j � h(S)

1� �(S \ Cm)P
j2S\Cm

fj
: (50)
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Proof

(a) The result follows directly by substituting inequality (44) to the elementary identity

x0mj =
X

k;l2Cm

sklfkl

1� �(Cm)
E [Lj j Bkl = 1] ;

valid under nonidling policies.

(b) The result follows directly from Proposition 2(c), by noticing that

E [Lj j Bm;S = 0] =
1

1� �(S \ Cm)

( X
i2Sc\Cm

�ix
i
j + (1� �(Cm))x

0m
j

)
:

Remark: Notice that constraints (50) are nonlinear, yet convex, which makes them computation-

ally tractable. Notice further that the nonlinear term in them involves the server visit frequencies

fi's, which are not known in general. However, the achievable values of the fi's are constrained

by linear equality constraints (41) and (42 ) in Proposition 1. Combining these constraints yields

improved convex bounds.

8 Positive semide�nite constraints

We present in this section a set of positive semide�nite constraints that may be used to strengthen

the formulations obtained through equilibrium relations. These constraints formulate the fact that

the performance measures we are considering are moments of random variables. The basic idea may

be outlined as follows: Given a vector z and a symmetric real matrix Z, consider the following

question: What is a necessary and su�cient condition that captures the fact that, for some random

vector �, z = E [�] and Z = E
�
��0
�
? It is easily seen that the required condition is that the matrix

Z � zz0, which represents the covariance matrix of �, be positive semide�nite, i.e., Z � zz0 � 0.

This condition is formulated in matrix notation as2
4 1 z0

z Z

3
5 � 0:

Applying this idea to the performance variables introduced in Table 1 yields directly the following

result.

Theorem 6 Under any dynamic stable policy, the following semide�nite constraints hold:

(a) 2
4 1 �0

� R

3
5 � 0; (51)
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2
4 1 1

�k
Rk�

1
�k
R�k Rk

3
5 � 0; for k 2 N : (52)

(b) If E

��P
j2N Lj

�2�
<1, then 2

4 1 x0

x Y

3
5 � 0; (53)

2
4 1 xk

0

xk Y k

3
5 � 0; for k 2 N , (54)

2
4 1 x0m

0

x0m Y 0m

3
5 � 0; for m 2M. (55)

Remark:

The problem of minimizing a linear objective subject to positive semide�nite constraints, called a

semide�nite programming problem, has received considerable attention in the mathematical program-

ming literature due to applications in discrete optimization and control theory. There are several

e�cient interior point algorithms (see Vandenberghe and Boyd (1996) for a comprehensive review)

to solve semide�nite programming problems. Theorem 6 adds a new and, we believe, interesting

application of semide�nite programming in stochastic optimization.

9 Summary of bounds and their power

In previous sections we used various equilibrium relations to derive constraints on performance

variables which are valid under all suitable classes of scheduling policies. While we have focused

there on the physical meaning of these relations, we show in this section how they can be used

to provide performance bounds for MQNETs by solving appropriate mathematical programming

problems.

We shall consider in what follows a linear cost function

c(x) =
X
j2N

cjxj ;

and denote by Z the minimum cost achievable under the appropriate class of policies (dynamic

stable or static, nonidling and stable) policies,

Z = min

8<
:
X
j2N

cjxj j x 2 X

9=
; :

We have summarized in Table 3 several lower bounds and their corresponding mathematical pro-

gramming formulations, obtained by selecting appropriate subsets of the constraints developed in

previous sections.
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Bound Formulation # variables # constraints Constraints

ZAG
a linear program O(N) O(2N ) (39)

ZLP1 linear program O(N2) O(N2) (1), (6), (7), (23)

ZLP2 linear program O(N3) O(N3) (1)-(3), (4)-(12), (23), (25)

ZSD1 semide�nite program O(N2) O(N2) (1), (4), (5), (7), (23), (51)

ZSD2 semide�nite program O(N3) O(N3) (1)-(3), (4)-(12), (23), (25), (51)-(55)

ZCONVEX
b convex program O(N2) O(2N ) (1), (6), (7), (23), (41), (42), (49), (50)

Table 3: Bounds and formulations.

aComputed by N-steps Klimov's algorithm
bBound accounts for changeover times

For example, the lower bound ZLP1 is obtained by solving the linear program

ZLP1 = max
P

j2N cjxj

subject to

(1), (6); (7); (23)

An index-based lower bound computed in N steps. The bound ZAG, shown in Table 3,

requires further explanation. We shall show how ZAG is computed in N steps by combining one-

pass Klimov's adaptive greedy algorithm with the workload bounds in Corollary 3. Klimov (1974)

developed his one-pass N -step adaptive greedy algorithm (shown in Figure 1) for computing the

priority indices that de�ne the optimal policy in the special case of a single-serverMQNET. Bertsimas

and Ni~no-Mora (1996a) analyzed Klimov's algorithm using linear programming. The bound we

present next is a byproduct of their analysis.

Speci�cally, let us run Klimov's algorithm on input (c;V ), where c = (cj)j2N is the cost vector

and V = (V S
i )i2N ;S�N , with the V S

i 's given by (26). The algorithm produces as output a vector

�y = (�y(S))S�N and a vector of indices  = (i)i2N . We assume for ease of notation that

1 � 2 � � � � � N :

Let set function g(S) be given by (38), and let us de�ne

ZAG = 1g (f1; : : : ; Ng) + (2 � 1)g (f2; : : : ; Ng) + � � �+ (N � N�1)g (fNg) :

Theorem 7 The value ZAG is a lower bound on the optimal value Z.

Proof
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Input: (c;V ).

Output: (�; �y;), where � = (�1; : : : ; �N ) is a permutation of N , y = (y(S))S�N and

 = (1; : : : ; N ).

Step 0. Set S1 = N ; set �y(S1) = min

�
ci

V
S1
i

: i 2 S1

�
;

pick �1 2 argmin

�
ci

V
S1
i

: i 2 S1

�
;

set �1 = �y(S1).

Step k. For k = 2; : : : ; N :

set Sk = Sk�1 n f�k�1g; set �y(Sk) = min

(
ci�
P

k�1

j=1
V
Sj

i
�y(Sj)

V
Sk
i

: i 2 Sk

)
;

pick �k 2 argmin

(
ci�
P

k�1

j=1
V
Sj

i
�y(Sj)

V
Sk
i

: i 2 Sk

)
;

set �k = �k�1 + �y(Sk).

Step N+1. For S � N : set

y(S) = 0; if S 62 fS1; : : : ; SNg:

Figure 1: Klimov's adaptive greedy algorithm.

Bertsimas and Ni~no-Mora (1996a) showed that vector �y is a feasible solution of the linear program

(LD) Z = max
X
S�N

g(S)y(S)

subject to
X

S:i2S�N

V S
i y(S) � ci; for i 2 N

y(S) � 0; for S � N ;

which is the dual of

(LP ) Z = min
X
i2N

cixi

subject to
X
i2S

V S
i xi � g(S); for S � N

xi � 0; for i 2 N :

Furthermore, they showed that

i � i�1 = �y(fi; : : : ; Ng); for i 2 N :

It thus follows that ZAG � Z. Since, in addition, we have by Corollary 3 that Z � Z, the result

follows.

Performance bounds for second moments. In previous sections we have focused our attention

on computing performance bounds for �rst moments of queue lengths. We now turn our attention

to �nding performance bounds for second moments. To the best of our knowledge, there has not
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been any characterization of the performance region of second moments in the literature, even for

single-server MQNETs.

We consider now a performance cost function that involves second-order moments. In particular,

given costs cj and hj associated with class j customers, we consider the problem of �nding a lower

bound on the cost X
j2N

�
cjE[Lj ] + hjE[L

2
j ]
�
; (56)

valid under all admissible policies.

We can compute a lower bound on the optimal expected cost by solving the semide�nite program-

ming problem with a quadratic cost function of minimizing objective (56) subject to the constraints

corresponding to the bound ZSD2 in Table 3.

9.1 Numerical Results

We performed some limited numerical experiments to assess the quality of some of the bounds we

derived. The network we considered consists of two stations. Class 1 arrives at station 1, then

visits station 2 forming class 2, it revisits station 2 forming class 3, visits station 1 forming class 4,

and �nally exits from the network. Both the interarrival times of class 1 and the service times of

all classes are exponentially distributed. The arrival rate � = 1. The mean service times satisfy:

�1 = 0:25�2 and �3 = 0:25�4: Therefore, the tra�c intensities at the two stations are �1 = �1 + �4,

and �2 = �2 + �3.

Classes 1 and 4 compete for service at station 1 and have changeover times s14 = s41. Similarly,

Classes 2 and 3 compete at Station 2 and have changeover times s23 = s32. We de�ne the changeover

ratio (CH): CH = s14=�1 = s23=�3, i.e., we select the changeover times so that the changover ratio

at each station is the same.

Table 4 reports computational results for parameters such that �1 = �2. We simulated all

four possible priority policies, and report the performance of the best one. While it is possible

that priority policies are weak policies, the lower bound ZCONVEX seems also weak, as the tra�c

intensity increases. The quality of the bound is insensitive to the changeover ratio.

10 From formulations to policies for MQNETs

We consider in this section the problem of designing a policy that nearly minimizes a performance ob-

jective
P

j2N cjxj . Unlike in the single station case, the relaxations we have considered for MQNETs

do not provide an optimal policy for this problem. In this section we propose two techniques to

extract heuristic policies from the relaxations.
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CH �1 �2 ZCONVEX ZPRIORITY

0.0 0.2 0.2 0.43 0.54

0.2 0.2 0.2 0.52 0.63

0.4 0.2 0.2 0.71 0.83

0.6 0.2 0.2 0.87 1.01

0.8 0.2 0.2 1.09 1.24

1.0 0.2 0.2 1.31 1.43

0.0 0.5 0.5 1.12 2.16

0.2 0.5 0.5 1.25 2.33

0.4 0.5 0.5 1.43 2.72

0.6 0.5 0.5 1.62 3.09

0.8 0.5 0.5 1.84 3.51

1.0 0.5 0.5 2.17 4.42

0.0 0.9 0.9 3.05 17.12

0.2 0.9 0.9 3.47 18.31

0.4 0.9 0.9 4.13 21.73

0.6 0.9 0.9 4.92 25.86

0.8 0.9 0.9 6.13 30.55

1.0 0.9 0.9 8.39 41.77

Table 4: The performance of the bound ZCONVEX , and the best priority policy as a function of the

changoever ratio CH , and the tra�c intensities �1, �2.

10.1 A priority-index policy for MQNETs

The �rst policy we propose is de�ned as follows:

1. Compute indices 1; : : : ; N by running Klimov's algorithm (see Figure 1) on input (c;V ).

2. Schedule customers at each station by giving higher preemptive priority to customer classes

with higher index i.

Notice that the policy is optimal for the single station case. In the multi-station case one needs

to consider the issue of whether the proposed policy is stable.

From a physical point of view, we can interpret the policy as follows: We create a new �ctitious

station, which can be interpreted as if all servers of the network are pulled into a single resource.

The arrival rates, processing times and routing information remain the same. The indices  are

exactly the optimal Klimov indices in this �ctitious single-server network. Notice that the indices

do not have any information on the structure of the network, namely which classes are served by

which server. They only take into account the work that the network needs to process.
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As in Klimov (1978), it can be shown that the index i may be interpreted as the maximum rate

of decrease in holding cost rate per unit of network processing time for a customer whose current

class is i, i.e.,

i = max
S3i

ci �
P

j2Sc pij(S)cj

V S
i

; for i 2 N ,

where pij(S) is the probability that a customer currently in class i 2 S visits class j 2 Sc after �rst

leaving classes in S. Notice that

pij(S) = pij +
X
k2S

pikpkj(S); for i 2 S, j 2 Sc.

10.2 Policies from relaxations for networks with �nite bu�ers

We assume that the total number of customers in each station in the network is bounded by C.

Recall that LS =
P

i2S Li. We introduce the following variables for i = 1; : : : ; N , m = 1; : : : ;M

and l = 0; : : : ; C:

zi;m;l = P fLCm = l j Bi = 1g ;

zm;l = P fLCm = lg :

Theorem 3 specialized for S = Cm gives the following equations:

�(Cm)zm;l +
X
i2Ccm

�ip(i; Cm)zi;m;l =
X
i2Cm

�i (1� p(i; Cm)) zi;m;l+1;

where zi;m;C+1 = 0.

We next consider the relaxation that involves both the variables z;Z, as well as the variables

x;X. The proof of the theorem is immediate and thus omitted.

Theorem 8 For C = 1 the optimal solution value of the following in�nitely dimensional linear
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program provides a lower bound on the minimum expected holding cost rate

Z = min c0x

subject to ��x0 � x�0 + (I �P )0�X +X 0�(I �P ) = (I �P 0)�+�0(I �P )

�(Cm)zm;l +
X
i2Ccm

�ip(i; Cm)zi;m;l =

X
i2Cm

�i (1� p(i; Cm)) zi;m;l+1; 8i;m; l

X
j2Cm

xij =

CX
l=0

lziml 8i;m

X
j2Cm

xj =

CX
l=0

lzml 8m

xj �
X
i2Cm

�ix
i
j ; 8j;m

zjl �
X
i2Cm

�izijl; 8j; l;m

zml � 1; 8m; l

x;X; z;Z � 0:

For �nite C, the above linear program does not give a formal bound, because equilibrium relations

(23) do not necessarily hold with �nite C. However, if we do not include these constraints and

remove variables xj from the formulation we do obtain a valid bound.

For C = 1, the above linear program is not interesting as it would be very di�cult to solve.

However, if we truncate the state space, by imposing the condition that zi;j;C+1 = 0, we heuristically

expect that the bound for �nite C would be close to the bound for C =1. Moreover, as the number

of variables of the linear program of Theorem 8 is O(NMC), the problem is tractable. Its main

advantage is that we can obtain heuristic policies from this linear program as follows.

A Heuristic Policy

1. We solve the formulation of Theorem 8.

2. When there is a service completion at station m, the server is set to work on class i with

probability

PfBi = 1 j LCm = lg =
PfLCm = l j Bi = 1gPfBi = 1g

PfLCm = lg
=
ziml�i

zml
:

The server selects to idle with probability

1�
X
i2Cm

ziml�i

zml
:

In general, the optimal policy would be to decide the probabilities that

PfBi = 1 j L = lg;
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where L = (L1; : : : ; LN) and l = (l1; : : : ; lN ). Under the proposed heuristic policy, the server bases

the decision of which customer to serve next, if any, on the total number of customers in its station.

The policy has the attractive feature of being decentralized once the linear program is solved, as it

only uses information that is local to the server.

A Some basic results from the Palm calculus of point pro-

cesses

In this appendix we review for the reader's reference some basic notions and results from the Palm

calculus of point processes that are used throughout the paper. For a thorough and rigorous treat-

ment of the subject we refer the reader to Baccelli and Br�emaud (1994).

Consider a discrete stochastic process fL(t)gt2<, with sample paths right-continuous with left

limits, representing the state evolution of a stochastic system, and let N = fTng
1
n=�1 be a point

process of related epochs, with � � � < T�1 < 0 � T0 < T1 < � � �. We may interpret L(t) as the

system state at time t, and Tn as the nth event epoch. We assume that processes fL(t)gt2< and

N = fTng
1
n=�1 are adapted to a common history fFtgt2<, and that they are stationary, which

captures mathematically the intuitive notion that the system evolution and the stream of epochs

are time-homogeneous.

For ease of notation we write L = L(0), L� = L(0�) and L+ = L(0+), where L(0�) and

L(0+) denote the left and right limits of L(t) at t = 0, respectively. We denote PfL = lg the

equilibrium probability that the system state at an arbitrary time (such as t = 0) is l, and write

the corresponding expectation as E [L]. We denote PNfL = lg the equilibrium probability that

the system state embedded at an arbitrary epoch is l, and write the corresponding expectation as

EN [L]. PNf�g is the Palm probability with respect to stationary point process N , and EN [�] is

the corresponding Palm expectation. By de�nition of Palm probability, T0 = 0, i.e., time t = 0

corresponds to an arbitrary epoch of N .

Intensity and stochastic intensity

We denote N [a; b) the number of points/event epochs that lie on time interval [a; b), with a < b.

De�nition 4 (Intensity) The expected number of points that lie in a unit length interval,

� = E [N ([0; 1))] ;

is called the intensity of N .

The intensity of a point process may be interpreted as a global measure of the rate of points/epochs

per unit time.
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In some applications, such as queueing systems, the frequency at which events take place may

depend on the current state of the system. For example, in an M=M=2 queue, departures happen

at a higher rate when the two servers are busy than when only one is. This intuitive notion of local

density of points/frequency of epochs in a point process is captured by the concept of stochastic

intensity.

Let f�(t)gt2< be a nonnegative process, adapted to the history fFtgt2<.

De�nition 5 (Stochastic Intensity) The process f�(t)gt2< is called an Ft-stochastic intensity of

N if

(i) it is locally integrable; that is,
R
B
�(s)ds <1 for all bounded Borel sets B; and

(ii) For all a < b,

E[N(a; b] j Fa] = E

"Z b

a

�(s) ds j Fa

#
:

The value �(t) may be interpreted as the instantaneous rate at which points/epochs occur at time

t.

Superposition of point processes

LetN1; : : : ; NK be stationary point processes, de�ned in a common probability space. Let �1; : : : ; �K

be their respective �nite intensities. Assume that point process N may be obtained through the

superposition of processes N1; : : : ; NK , i.e., process N has a point at time t if any of the processes

N1; : : : ; NK has a point at that time. We shall write then N = N1 + � � �+NK . The intensity of N

can be shown to be � = �1+ � � �+�K . The following theorem represents the Palm expectation with

respect to the composite process N in terms of the Palm probabilities with respect to the elementary

processes Nk.

Theorem 9 (Superposition) The following relation holds:

PN f�g =

KX
k=1

�k

�
PNk f�g :

Thinning of a point process and conditioning

Let A be a measurable event, and consider the point process obtained by counting only points from

process N at which event A happens. We refer to the resulting point process NA as a thinned

process. The next result relates the Palm probabilities with respect to the original process N and

the thinned process NA. Let �(N) and �(NA) denote the intensities of point processes N and NA,

respectively.
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Theorem 10 The following relations hold:

(a)

PNA f�g = PN f� j Ag :

(b)

�(NA) = �(N)PN (A) :

Relating time and event expectations: Papangelou's formula

Papangelou's formula is a fundamental and powerful result that provides the link between time-

stationary probability, Palm probability and stochastic intensity.

Theorem 11 (Papangelou (1972)) If N admits a stochastic intensity f�(t)gt2<, then

E [�(0)L(0)] = �EN
�
L�
�
:

Several important results of queueing theory on the relation between the queueing state distri-

butions at an arbitrary time and at an arbitrary epoch follow directly from Papangelou's formula.

Theorem 12 (PASTA: Poisson Arrivals See Time Averages) If N is a Poisson process, then

EN
�
L�
�
= E [L] :

Theorem 13 (Conditional PASTA) Assume that N admits a stochastic intensity f�(t)gt2<,

with �(t) = �B(t), and where B(t) 2 f0; 1g for all t 2 <. Then,

EN
�
L�
�
= E [L j B = 1] :
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