Optimization of multiclass queueing networks with
changeover times via the achievable region

method: Part II, the multi-station case

Dimitris Bertsimas * José Nino-Mora **

September 1996, revised August 1998

*Dimitris Bertsimas, Sloan School of Management and Operations Research Center, Rm E53-363, MIT, Cambridge,
MA 02139, dbertsim@mit.edu. This research was partially supported by grants from the Leaders for Manufacturing
program at MIT, a Presidential Young Investigator Award DDM-9158118 with matching funds from Draper Labora-
tory, and NSF grant DMI-9610486. This research was completed in part while the author was visiting the Graduate
School of Business and the Operations Research Department of Stanford University during his sabbatical leave. The
author would like to thank Professors Michael Harrison and Arthur Veinott for their hospitality, encouragement and

many interesting discussions.
**José Nifio-Mora, Department of Economics and Business, Universitat Pompeu Fabra, E-08005 Barcelona, Spain,

jnimora@alum.mit.edu. Part of this research was performed during the author’s stay at the Operations Research

Center of MIT as a PhD student and a Postdoctoral Associate.



Abstract

We address the problem of scheduling a multi-station multiclass queueing network (MQNET)
with server changeover times to minimize steady-state mean job holding costs. We present new
lower bounds on the best achievable cost that emerge as the values of mathematical programming
problems (linear, semidefinite, and convex) over relaxed formulations of the system’s achievable
performance region. The constraints on achievable performance defining these formulations are
obtained by formulating system’s equilibrium relations. Our contributions include: (1) a flow
conservation interpretation and closed formulae for the constraints previously derived by the
potential function method; (2) new work decomposition laws for MQNETS; (3) new constraints
(linear, convex, and semidefinite) on the performance region of first and second moments of
queue lengths for MQNETS; (4) a fast bound for a MQNET with IV customer classes computed
in N steps; (5) two heuristic scheduling policies: a priority-index policy, and a policy extracted
from the solution of a linear programming relaxation.

Keywords: Multiclass queueing network, changeover times, optimal scheduling, performance
region, linear programming relaxation, semidefinite programming, convex programming.

JEL classification: C61, C63.



1 Introduction

Multiclass queueing networks (MQNETS) provide a rich range of models for complex service sys-
tems in application areas that include manufacturing (see Buzacott and Shanthikumar (1993)) and
computer-communication systems (see Gelenbe and Mitrani (1980)). The practical needs to evalu-
ate and improve the performance of such systems have motivated extensive research efforts on the
analysis, optimization and stability of MQNETsSs.

Most relevant MQNET models have not yielded an exact performance analysis (evaluating the
system performance under a scheduling policy). This has only been achieved in a restricted range
of models, such as product-form MQNETSs (see Kelly (1979)), and certain single-server priority and
polling systems (see Levy and Sidi (1990)). A more feasible research objective for those seemingly
intractable MQNETSs is to obtain performance bounds which can be efficiently computed. These
bounds may be used to approximate the performance of a given scheduling policy, and to assess its
suboptimality gap with respect to a performance objective.

The performance optimization problem (computing the optimal system performance under a
range of scheduling policies, and finding a policy that achieves it) also appears computationally
intractable in most MQNET models, as shown by Papadimitriou and Tsitsiklis (1994). Exact results
have only been achieved in a range of systems that satisfy certain work conservation laws: for
them simple priority-index policies have been shown to optimize linear performance objectives (see
Bertsimas and Nino-Mora (1996a)). In more complex MQNETS researchers have focused their efforts
on designing heuristic scheduling policies that exhibit a good empirical performance (see, e.g., Wein
(1990)).

An important modeling feature that is absent in most studies on MQNETs with multiple service
stations is the inclusion of changeover times (which a server incurs when changing service from one
class to another). This is in contrast with the rather vast literature on single-station models with
changeover times (usually called polling systems; see the survey by Levy and Sidi (1990)).

In this paper we address the performance optimization problem in multi-station MQNETSs with
changeover times by means of the achievable region approach, with the objective of developing a
systematic method for computing performance bounds and designing scheduling policies that nearly
optimize performance objectives. We have investigated the corresponding problem for single-station

MQNETS in a companion paper (see Bertsimas and Nifio-Mora (1998)).

The achievable region approach to performance optimization of queueing systems. The
achievable region approach to performance optimization, surveyed in Bertsimas (1995), was intro-
duced by Coffman and Mitrani (1980). It draws on the mathematical programming approach to
optimization, as it seeks to characterize the performance region achievable by a system performance

measure under a class of admissible scheduling policies. The goal is to formulate explicitly this region



by means of equality and inequality constraints. Since it may not be possible to formulate the exact
performance region, we may have to settle for constructing a relazation that contains it.

Coffman and Mitrani (1980) first addressed with this approach the problem of minimizing the
class-weighted mean delay in a multiclass M/M/1 queue. They formulated exactly the system
performance region as a polyhedron, and showed that the known optimality of priority-index policies
(the cp-rule) follows from structural properties of this underlying polyhedron. The scope of the
approach has since been extended to tackle a range of increasingly more complex systems. Drawing
on earlier work by Federgruen and Groenevelt (1988) and Shanthikumar and Yao (1992), Bertsimas
and Nifio-Mora (1996) developed a unified approach for formulating the exact performance region
in a wide variety of MQNETSs that satisfy work conservation laws. They established that the
strong structural properties of these performance optimization problems (optimality of priority-index
policies) are a consequence of corresponding properties of their underlying polyhedral performance
regions.

Researchers have sought recently to extend further the scope of the achievable region approach,
with the aim of solving computationally hard performance optimization problems: restless bandits
(see Bertsimas and Niflo-Mora (1994)) and MQNETSs (see Bertsimas, Paschalidis and Tsitsiklis
(1994)-(1995) and Kumar and Kumar (1994)).

The two critical problems the achievable region approach needs to overcome when tackling a
performance optimization problem are (a) generating constraints on the performance region, and
(b) designing effective policies from the solution of the corresponding relaxations.

Regarding the first problem, an idea that has proven fruitful is to generate constraints by for-
mulating stochastic equilibrium relations satisfied by the system. The kinds of equilibrium relations

that have been so far used in the literature include the following:

1. Work conservation laws, which hold in single-server MQNETSs under nonidling policies (the
server never stops working when there are jobs in the system). These laws lead to an ezact

polyhedral characterization of the performance region (see Bertsimas and Nifio-Mora (1996a)).

2. Work decomposition laws, which hold in single-server MQNETS that allow server idleness (such
as that caused by changeover times). Bertsimas and Xu (1993), and Bertsimas and Nifio-Mora
(1998) have shown that these laws yield a convez relazation of the system performance region,

from which they obtain bounds and policies.

3. Potential function recursions, as developed by Bertsimas, Paschalidis and Tsitsiklis (1994)-

(1995), and by Kumar and Kumar (1994). The use of potential functions has proven to be

a powerful tool for generating a sequence of increasingly tighter polyhedral relaxations for
Markovian MQNETs.

Although they have proven their value as powerful tools for generating constraints, the above

approaches exhibit certain limitations:



1. The approach based on formulating work conservation laws is restricted to work-conserving

systems, thus excluding systems with server changeover times, and multi-station MQNETs.

2. The approach based on formulating work decomposition laws has only been developed in

single-server systems (see Bertsimas and Nifio-Mora (1998)).

3. The potential function method is algebraic in nature: it does not provide a physical insight
into the reason of its success.

The problem of designing in a systematic way effective scheduling policies for intractable MQNETs
from the solution of the relaxations remains an open challenge. Previous work in this direction in-
cludes the dual-index policy proposed in Bertsimas and Nifio-Mora (1994) for the restless bandit
problem, and the policies for polling systems proposed in Bertsimas and Xu (1993) and in Bertsimas

and Nino-Mora (1998).

Objective and contributions. Our objective in this paper is to support the thesis that the
achievable region approach is an effective tool for solving hard performance optimization problems.
We shall test this thesis by tackling via the approach the performance optimization problem in an
open multi-station MQNET model with changeover times. In Bertsimas and Nino-Mora (1998) we
address the corresponding problem in a single-station MQNET model with changeover times.

Our contributions include:

1. We develop new constraints on performance measures by formulating different kinds of equi-

librium relations than those considered previously in the literature.

2. We reveal the physical origin of the constraints given by the potential function method, as for-
mulating the classical flow conservation law of queueing theory L~ = LT. This understanding

leads to explicit and simple formulas for all higher order relaxations.

3. We provide the first known explicit relaxation for the performance region of second moments
of queue lengths in a multi-station MQNET. The relaxation is a semidefinite programming

problem, for which efficient (polynomial time) algorithms have been developed in recent years.

4. As a byproduct of the flow conservation constraints, we obtain directly new work decomposition
laws for multi-station MQNETSs. From these laws we derive a family of convex constraints that

account explicitly for the effect of changeover times.

5. We adapt Klimov’s one-pass algorithm for computing fast index-based performance bounds

for MQNETS.

6. We propose heuristic scheduling policies based on the solution of the relaxations. First, we
apply the flow conservation law appropriately in order to obtain relaxations for MQNETSs
with finite buffers, from which one can naturally extract policies. Second, we derive a bound

on the optimal performance for a MQNET based on a relaxation that defines indices in the



network. These indices, which for the single-station MQNET case correspond to the optimal
indices derived in Klimov (1974), naturally define priority-index policies for the multi-station

MQNET case.

Structure of the paper. The rest of the paper is structured as follows: Section 2 introduces the
MQNET model and formulates the corresponding performance optimization problem in terms of
the achievable region approach. Sections 3-7 develop different families of performance constraints by
formulating system equilibrium relations. The constraints presented in section 7 account explicitly
for the impact of changeover time parameters. Section 8 presents several positive semidefinite
constraints. Section 9 summarizes the bounds and the formulations developed previously and reports
computational results. Section 10 proposes two heuristic policies extracted from the formulations.
We have summarized in Appendix A some basic results from the Palm calculus of point processes

that are used throughout the paper.

2 The MQNET model

2.1 Model description

We consider a network of queues composed of M single-server stations and populated by N customer
classes. The set of customer classes N = {1,..., N} is partitioned into subsets C1,...,Cys, so that
station m € M = {1,..., M} only serves classes in its constituency C,,. We note that the single
class index i € AV of a customer used here carries the same information as the usual pair of indices
(,m) used in much of the queueing network literature (see, e.g., Kelly (1979)) for identifying jobs
present in the network, where an index denotes the job’s current type and the other its current
location. We further denote by s(i) the station that services class i customers (which we shall refer
to as i-customners). The network is open, so that customers arrive at the network from outside, follow
a Markovian route through one or several queues (i-customers wait for service at the i-queue) and
then leave the system. External i-customers’ arrivals follow a Poisson process with rate a; (if class
i does not have external arrivals we let «; = 0). The service times of i-customers are i.i.d., having
an exponential distribution with mean 3; = 1/p;. Upon completion of its service at station s(i), an
i-customer may be routed for further service to the j-queue, with probability p;;, or it may leave
the system, with probability p;p = 1 — Zje/\f pij. We assume that routing matrix P = (pij)i,jen
is such that a single customer moving through the network eventually exits it, i.e., matrix I — P is
invertible. We further assume that all service times and arrival processes are mutually independent.

The network is controlled by a scheduling policy, which specifies dynamically how each server
is allocated to waiting customers. Servers incur changeover times when moving from one queue

to another: if after wvisiting the i-queue the corresponding server moves to the j-queue he incurs a



random changeover time having a general distribution with mean s;; and second moment 55]2) Usual
stochastic independence assumptions hold.

We shall refer to the following classes of scheduling policies: dynamic policies, under which
scheduling decisions may depend on the current or past states of all queues; static policies, under
which the scheduling decisions of each server depend only on the state of the queue he is currently
visiting; stable policies, under which the queue length vector process has an equilibrium distribution
with finite mean. We shall allow policies to be preemptive (a customer’s service may be interrupted
and resumed later). However, we require that once a changeover is initiated, it must continue to
completion. We shall further refer to the class of nonidling policies, under which each server must
be at any time either serving a customer or engaged in a changeover.

We define next other model parameters of interest. The total arrival rate of j-customers, denoted
by Aj, is the total rate at which both external and internal customers arrive to the j-queue. The
A;’s are computed by solving the system

Aj:aj+zpij/\i’ for j € NV.
iEN
The traffic intensity of j-customers, denoted by p; = A;3;, is the time-stationary probability that
a j-customer is in service. The total traffic intensity at station m is p(Cpp,) = Zjecm pj, and is the

time-stationary probability that server m is busy. The condition
p(Cm) < 1, form e M

is necessary but not sufficient for guaranteeing the stability of any nonidling policy.
We assume that the system operates in a steady-state regime, under a stable policy, and introduce

the following variables:
e L;(t) = number of i-customers in system at time t.
e B;(t) =1 if an i-customer is in service at time ¢; 0 otherwise.

e B™(t) = 1 if server m is busy at time #; 0 otherwise; notice that B™(t) = > ;. Bi(t).

B;;(t) = 1 if a server is engaged in a i — j changeover at time ¢; 0 otherwise.
In what follows we shall write, for convenience of notation, L; = L;(0), B; = B;(0) B™ = B™(0)
and Bij = Bij (0)
2.2 The performance optimization problem

The main system performance measure we are concerned with is the vector whose components are

the time-stationary mean number from each class in the system, denoted by x = (mj)je > Where

zj = E[L;], for j € N.



Performance variables Interpretation

zj; ® = (z)jen E[Lj]

ol X = (ah)jen; @ = () jen E[L; | B; =1]

29" X0 = (29 ) mem,jen; 2" = (@)™)jen | E[L; | B™ = 0]

rij; B = (rij)ijen E[B;Bj]

ri; RY = (rf)igen E[B:B; | By, = 1]

roms RO™ = (P jen E[B;B; | B™ = 0]

Yij; Y = (Yij)ijen E[L;L;]

ks VP = ()i jen E[L:L;j | By = 1]

Yo YO = (Y0 jen E[L;L; | B™ = 0]

fiis F = (fij)ijen rate of i — j changeovers
fis £ = (fj)jen rate of server visits to the i-queue

Table 1: Network performance measures.

Given a performance cost function c(x) (possibly nonlinear), we shall investigate the following per-
formance optimization problem: compute a lower bound Z < ¢(x) that is valid under a given class
of admissible policies, and design a policy which nearly minimizes the cost ¢(x).

We shall approach this problem via the achievable region approach, as described in the Intro-
duction. Let X be the performance region achievable by performance vector  under all admissible
policies. Our first goal is to derive constraints on performance vector & that define a relaxation of
performance region X. Since it is not obvious how to derive constraints on @ directly, we shall pursue
the following plan: (1) identify system equilibrium relations and formulate them as constraints in-
volving auziliary performance variables; (2) formulate additional positive semidefinite constraints on
the auxiliary performance variables; (3) formulate constraints that express the original performance
vector, &, in terms of the auxiliary variables.

Notice that this approach has a clear geometric interpretation: It corresponds to constructing
a relaxation of the performance region of the natural variables, «;, by (1) lifting this region into a
higher dimensional space, by means of auxiliary variables, (2) bounding the lifted region through
constraints on the auxiliary variables, and (3) projecting back into the original space. Lift and
project techniques have proven powerful tools for constructing tight relaxations for hard discrete
optimization problems (see, e.g., Lovdsz and Schrijver (1991)).

We have summarized in Table 1 the performance measures considered in this paper.



3 Projection constraints

We present in this section several sets of linear equality constraints that express natural performance
measures in terms of auxiliary ones. These constraints correspond geometrically to a projection:
they allow us to recover the values of natural performance measures from the corresponding values

of auxiliary ones.

Theorem 1 (Projection constraints) Under any dynamic stable policy, the following equations

hold:
(a)

zj= Y pixi+ (1 =pCn))a™,  forjeN, meM. (1)
1€Cm
(b)
ry= 3 perly+ (L= pCal) T, forij e N, me M. @
keCr,

(¢) If E[(L1+...4+ Ln)?] < oo then
Yij = Z Pkyzk]“‘(l_P(Cm))y?]ma fOT’ ’La.] EN) m € M. (3)
keCn
Proof
The constraints in (a), (b) and (c) are elementary, as they follow by a conditioning argument, by

noticing that at each time every server is either serving some customer class in its constituency or

idling. |

4 Lower bound constraints

We present in this section a new set of lower bound constraints on auxiliary performance variables.

Our main result follows next.

Theorem 2 (Lower bound constraints) Under any dynamic stable policy, the following linear

constraints hold:

(a)

ri; > max(0, p; + p;j — 1), fori,jeN. (4)
(b)
5222 forij N, (5)
, it pi—1 -
ry> RO D i e . ()
i

pi — P(Cm)

9™ > max <0,
b 1 —p(Cr)

), forme M,jeN. (7)



(d)

Tki + Tkj

rfj > max <0, p
k

—1), fori,j,keN.
(e)

0om
Ty 2 Max

(0 max(0, p; — p(Cp,)) + max(0, p; — p(C))
’ 1- p(cm))

(f) IfE[(L1 + -+ + Ln)?] < oo then
Yij > Tij, fori,jeN,
yijrfj, fori,j,ke N,
y?]er?]m, fori,j € N, me M.
Proof
(a) The result follows directly by subtracting equation
P{B;=1,B;=0}+P{B; =0,B; =0} =1—-p;
from
P{B;=1,B; =0} +P{B;=1,B; =1} = p;.

(b) The result follows from

.

Tij

pi

(c) We have

2™ > P{Bj=1|B™ =0}

P{B;=1,B™ =0}
1= p(Cn) .

Now, by subtracting
P{B;=1,B" =1} +P{B; =0,B™ =1} = p(Cy,)

from

P{Bj:].,Bm:l}-l-P{Bj:].,Bm:O}:pj

we obtain

which, combined with (14) yields the result.
(d) The result follows directly by subtracting

P{B;=0,Bj=1|By=1}+P{B;=0,B;=0|B,=1}=P{B;=0|By=1}=1—

10

—1), fori,j € N, me M.

(13)

(14)

T'ki

Pk



Point process | Epochs Intensity | Stochastic intensity
AY external i-customer arrivals a; AA? (t) = a;

D? external ¢-customer departures | \;pio D! (t) = pipioBi(t)
T i — j customer routing AiDij i (t) = wipi; Bi(t)

Table 2: Elementary network point processes and their intensities.

from
P{Bizo,Bj:1|Bk=1}+P{Bi:1,Bj:1|Bk:1}:P{Bj:1|Bkzl}:%.
k

(e) The result follows by subtracting
P{B;=0,Bj=1|B™=0}+P{B;=0,B;=0| B™ =0} =P{B; =0| B™ =0}
from
P{B;=0,Bj=1|B™=0}+P{B;=1,B;=1|B"=0}=P{B; =1| B™ =0},

and then applying inequality (15).
(f) The inequalities in (f) are elementary, as they follow from the relation L; > B;. |

5 Flow conservation constraints

We present in this section a set of linear constraints on performance measures by formulating the
classical flow conservation law of queueing theory L~ = LT. This law states that, in a queueing
system in which the queue size can increase or decrease only by unit steps, the stationary state
probabilities of the number in system at arrival epochs and that at departure epochs are equal. These
constraints were first derived for multi-station MQNETSs by Bertsimas, Paschalidis and Tsitsiklis
(1994), and by Kumar and Kumar (1994), through a potential function approach. The corresponding
constraints for single-station MQNETSs were obtained by Klimov (1974) via transform methods.

Our contribution in this section is twofold: (1) we reveal that the physical origin of the constraints
produced by the potential function approach is the flow conservation law L™ = L*; (2) we derive
new closed formulae for all higher-order constraints (with the potential function approach these are
generated recursively).

In particular, we shall apply the law L™ = LT to a family of queues obtained by aggregating

customer classes, as explained next. Let S C V.

Definition 1 (S-queue) The S-queue is the queueing system obtained by aggregating customer

classes in S. The number in system at time t in the S-queue is denoted by Ls(t) =3 ;¢ L;(t).

11



As usual we write Ls = Lg(0), Lg = Lg(0—), LT = Ls(0+) = Ls(0).

We denote by Ag the point process of net arrival epochs to the S-queue, which consists of S-
customer external arrival epochs and customer routing epochs from a class in S¢ to a class in .S. We
can thus express point process Ag as the superposition (see Appendix A) of the elementary network
point processes shown in Table 2, as follows:

Ag = ZA? + Z ZRij;
jes i€Se jes
Similarly we denote by Dg the point process of net departure epochs from the S-queue, consisting
of S-customer external departure epochs and customer routing epochs from a class in S to a class
in S¢,
Ds=Y DI+ Y Y Ay
jes jesiese
Notice that we ignore customer routing epochs within classes in S, since they do not change the
number of customers in the S-queue.

For convenience of notation we shall also write
p(i,S) = Zpij
JjES
and

a(S) = Zaj.

JES

We denote the Palm probabilities and expectations with respect to point processes Ag and Dg by
PAs(.), EAs[] and PPs(-), EPs[], respectively. The time-stationary distributions and expectations
are denoted by P(-) and E[], respectively.

We state and prove next our main result, which formulates the law L~ = L™ as it applies to the
S-queue: The stationary state probabilities of the number of customers in the S-queue just before a
net customer arrival epoch and just after a net customer departure epoch to/from the S-queue are
equal. The theorem formulates this identity between Palm distributions as a linear relation between

time-stationary distributions, thus bridging the gap between them.

Theorem 3 (The law L~ = Lt in MQNETSs) Under any dynamic stable policy, and for any

subset of customer classes S C N and nonnegative integer l:

(a)
PAs{Lg =1} =PPs (L} =1}. (16)

(b) Identity (16) is equivalently formulated as

a(S)P{Ls =1} + > \ip(i,S)P{Ls=1|B; =1} => A (1—-p(i,S)) P{Ls =1+1|B; = 1}.
i€Se €S
(17)

12



Proof
Part (a) follows directly by applying the flow conservation law L~ = LT to the number in system
process {Lg(t)} corresponding to the S-queue.
(b) The key tool we shall apply for expressing the Palm distributions in part (a) in terms of time-
stationary distributions is Papangelou’s theorem (Theorem 11 in Appendix A). First, we notice that
arrival point process Ag admits a stochastic intensity (see Appendix A)
M) = alS)+ D Y i Bi(b), (18)
i€Se jES
whereas the stochastic intensity of departure point process Dg is
pS(t) =Y pi (1=p(i, ) Bi(t). (19)
€S
Let A5 = E [A%(0)] and p° = E [p5(0)]. Notice that, by flow conservation, AS = u5.
Now, by Papangelou’s theorem, Eq. (18) and the relation P {B; = 1} = p; we have

NPAS L =1} = MNEA[1{Ls(0-)=1}]
E[X5(0)1{Ls(0) =1}]
a(S)P{Ls =1}+ > _ > \ipijP{Ls=L|B; =1}, (20)

i€Se jes

and, similarly,

pSPPs{LE =1} psPPs L =1+1}

— B [u5(0)1{Ls(0) = 1 +1}]

= Y MN(1=p,8)P{Ls=1+1|B;=1}. (21)
i€S

Now, equating (20) and (21) (by part (a)), and using the fact that A% = y° the result follows. W

Taking expectations in identity (17) we obtain our next result, which formulates a linear relation

between time-stationary moments of queue lengths.

Corollary 1 Under any dynamic stable policy, and for any subset of customer classes S C N and
positive integer K for which E [(Ll + et LN)K] < 00,
a(S)E[LE] + > Xipi, )E[LE | Bi=1]=> X (1—-p(i,9) E [(Ls - )X | Bi=1]. (22)
iese ieS
The equilibrium equations in Corollary 1 corresponding to K = 1,2 and S = {i},{i,j}, for

i, € N, yield directly the system of linear constraints on performance variables shown next. Let

A = Diag(A).

13



Corollary 2 (Flow conservation constraints) Under any dynamic stable policy, the following

linear constraints hold:

(a)
—ax' —za' + (I — PYAX + X'A(I-P)=(I-P)A+A(I - P). (23)

(b) If E[(L1 4 --- Ln)?] < oo, then

a;yjj + Z Aeprjyi; — Nyl 20 (1 = pp)a; = N1 —pjj), JEN, (24)
reN
aiysi + gy + 20 + @)y + > Aebriyf; + D Aebritl;
reN reN
+ 3 20 (i + Pl — Nyl — Ny — 2\l — 2

reN

+2Xi (1 = pii — pi)x’ + 27 (1 — pji — pjj) ! —\ipij — Ajpji, 1,5 € N(25)
Remarks. 1. Egns. (23) in Corollary 2 were first derived by Bertsimas, Paschalidis and Tsit-
siklis (1994), and by Kumar and Kumar (1994) through a potential function method. In both
papers the authors assumed the stronger condition that the second moment of the total num-
ber of customers in the network is finite, i.e., E [(Ll R LN)2] < 00. We only require, as

in Kumar and Meyn (1996), finiteness of the corresponding first moment.

2. Bertsimas, Paschalidis and Tsitsiklis (1994) proposed a recursive algebraic procedure for gen-
erating higher-order constraints corresponding to Eqns. (22) in Corollary 1 (with K > 2). In
contrast to their approach, we present in Corollary 1 closed formulae that reveal the simple

structure of this family of equations.

3. Interestingly, for K = 1, it can been seen that all the equations in (22) for |S| > 3 are implied
by those with |S]| < 2.

6 Workload decomposition constraints

In this section we derive a new family of linear constraints by identifying and formulating new work
decomposition laws satisfied by the system. A work decomposition law is a linear relation between
the mean number in system from each class at an arbitrary time and at an arbitrary time during a
period when some servers are idle. Our contributions include: (1) a family of new work decomposition
laws for multi-station MQNETS, which extends the most general results known previously: Boxma’s
(1989) work decomposition law for multiclass M /G /1 queues, and Bertsimas and Nifio-Mora’s (1998)
work decomposition laws for single-server MQNETS; (2) tighter network workload bounds, which
improve upon the bounds derived by Bertsimas, Paschalidis and Tsitsiklis (1994); (3) new families of
convex constraints for MQNETSs with changeover times, obtained from the new work decomposition

laws.

14



The idea of deriving performance constraints from work decomposition laws was introduced by
Bertsimas and Xu (1993) in the setting of a multiclass M/G/1 queue with changeover times. They
derived a set of convex constraints by applying a work decomposition law due to Fuhrmann and
Cooper (1985). Bertsimas and Nifio-Mora (1998) have extended the idea to single-server MQNETSs
with changeover times, presenting a family of new work decomposition laws, and applying them to

formulate new convex performance constraints.

6.1 Work decomposition laws

In order to develop the new work decomposition laws we first present the following definition. Let

S C N be a subset of customer classes.

Definition 2 (S-workload) The workload process corresponding to the S-queue (see Definition 1)
is called the S-workload process, denoted by {Vs(t)}te%. V(t) is thus the total remaining service

time needed for first clearing the S-queue of all S-customers present at time t.

We shall denote by B (¢) the indicator of the event that server m is busy with an S-customer
at time ¢, i.e., B&(t) = Y ;cgne, Bi(t). As before, we write VS = V5(0), B¢ = BZ(0).

We next define parameters Vis , for i € NV, as the solution of the system of linear equations

v;? :ﬂi+2pijvjsa fori e N. (26)
JES

We shall refer to Vis, for i € S, as the S-workload of an i-job, as it represents the mean remaining
service time a current i-job receives until its class first leaves S following completion of its current
service.

In what follows we shall use the following matrix notation: if S,T C N, z = (z;)ien is an

N-vector, and A = (aij)ijen is an N x N matrix, we shall write
zs = (2j)jes, and Asrt = (aij)ies,jer-
For example, we write Eqns. (26) in matrix form as
Ve =Bs+PssV¢,
Ve =PBg + PsesVE,

where 8 = (8;)ien -

Furthermore, we shall denote by p°(S) the rate at which external S-work enters the system, i.e.,

P°S) =)oV,

JjES

15



and write

S)=> p;.

JjES
We state and prove next the new work decomposition laws, which formulate a decomposition
of the mean workload in the S-queue, for every S C A/. Let M(S) denote the set of stations that

service S-customers, and let M (S) = | M(S)| be its corresponding cardinality.

Theorem 4 (Work decomposition laws) Under any dynamic stable policy, and for any subset

S C N of customer classes:

(=)
(ME) = ()3 Via = eVi+ 3 Lavia

j€s j€s €8N (Umem(s)Cm ) 1€
+> Y (WVE =) Ve
€S jES
Y S (= pCo)) VIR @7
meM(S) jES

(b) Identity (27) is equivalently formulated as

(M) =) E[VI] = D pVi+ > WV —p) EVS| B =1]
jES ieSe
+ Y (1-p(SNC)E[VS| BT =0]. (28)
meM( S)

Proof
Let us define N-vector v by

and set function b(S) by
1 Sy,
S) = 522‘/@ Vibij,
i€S jes
where B = (b;j); jen is the matrix defined by
B=(I-P)YA+A(I-P).

We then have, by the flow conservation equations (23) in Corollary 2, that

b(S) = %v'{—am' —xza' + (I - P))AX + X'A(I - P)}v

!
Is—-P —Pss. Ve 7
0 S)ZVJ-S:L‘J- n s ss ss s AX S
]ES _PSCS ISC _PSCSC 0 0
Xss Xagse Ve
= OV ( 8 Be-VE)A
jJES Xses Xgege 0
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= —0"O)D VEm+ YD piViai = >N (AT - pi) Vel

JjES i€S jes i€Se jes
_ 0 S S1/S i S, i
SR AC) N/TED D WU RS Bp B!
jES i€Se jeS iEN jES

Now, from Eqns. (1) in Theorem 1 it follows that

Z p,a: + Z pla: + (1= p(Cm))ady;, for m € M.

i€ESNCm 1€5°NCm

Adding over m € M(S) in (30) we obtain

)T = Zplm; + Z pixh + Z m)) Tonj-

ies i€5°N(Umem(s)Crm) meM(S)

Now, simplifying (29) using (31) yields

b(S) = (M(S)-p"(9) Y Vi - X Vi
J€S i€S°N(Umem(s)Cm )jeS
S GRS P SRS
ieSc jeS meM(S) jES

On the other hand, we have

bS) = 5VIBssVi
1 , . Ve
_ §(V§ 0){(I—P)A+A(I—P)}< 05>

S

= (v¢ 0)(I—P)’A<‘:)S)

!
_ Is— Pss —Pgse Ve A Vs
—Pgseg Igc — Pgege 0 0
, Ve
— IBI IBI .- ‘/SC A
( s Bs g ) 0
= > oV

JjES
Finally, substituting (33) into (32) yields directly identity (27).
(b) It follows from the definition of the S-workload process that
Ve =2 Vi,
JjES
E[VS|B™=0] =) Vi
JES

and

E[VS|B;=1] =) V/ia,

JjES
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which, combined with Eq. (27) yields

(M) =S E[VS] = D pVi+ > piE [V Bi = 1]
jes ieScm(UmeM(s)Cm)
+3 ( E[VS| B =1]
i€S«e
+ > E[VS|B™=0]. (34)
meM( S)

Identity (28) now follows by simplifying Eq. (34) using the elementary relations

S°NCy, . —p(Cm .
E[V5|Bg”:0]:%E[stc:lh%mvsw =0]  (35)
and
p(S°NCR)E[VS|BE=1]= > pE[VS|B =1]. (36)

i€S°NCrm
|
Remark. Identity (28) in Theorem 4(b) may be interpreted physically in terms of work decomposi-
tion, as it says that the mean network S-workload decomposes into three components: 1) a constant
term, independent of the policy, 2) a linear combination of the conditional mean S-workloads during
the service of S°-customers, and 3) a linear combination of the conditional mean S-workloads during
idle periods of servers who service S-customers. In particular, for S = A Eq. (28) yields

B Eje,/\[ ij]N 1- p(cm) m _
E[VN]_m+m§AmE[VN|B =0], (37)

which means that the total mean network workload decomposes into a constant term plus a linear
convex combination of the conditional mean network workloads during servers idle times. Therefore,
identity (28) extends the work decomposition laws developed by Boxma (1989) and by Bertsimas
and Nino-Mora (1998) for single-station systems to multi-station MQNETS.

As an application of the work decomposition laws in Theorem 4 we present next a family of
workload bounds for MQNETSs, which improve upon the workload bounds developed in Bertsimas,
Paschalidis and Tsitsiklis (1994). Let us define a set function g(S) on subsets S of customer classes

by

s
Zjes ijjS Ziescm(umeM(s)Cm) Zjes V> max (0, pi + pj — 1)

g(S)

M(S) — /(5) M(S) — (9)
dicse 2jes XV = pi) Vjs max (0, %jjl)
" M(S) — (9)
S entis) Sies VE max (0, p; — p(Con))
i eM(S) ]\ZS(S) e _ (38)
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Corollary 3 (Workload bounds) Under any dynamic stable policy, the following workload bounds
hold:

S VSw; > g(S),  for SCA. (39)
JES

Proof

Inequality (39) follows directly by combining work decomposition Eq. (27) in Theorem 4(a) and the

lower bounds in Theorem 2(b)-(c). |
Remarks

1. The workload bounds in Corollary 3 improve upon the ones developed by Bertsimas, Pascha-
lidis and Tsitsiklis (1994): they showed that under any dynamic and stable scheduling policy,
VS

]ZE:SVJ‘S%Z%’ for S C . (40)

2. In the special case of single-server MQNETS, it follows from identity (27) that the workload
bound in (40) is achieved under any dynamic nonidling policy that gives preemptive service
priority to S-customers over S¢-customers. This shows that performance measure x satisfies
the work conservation laws in Bertsimas and Nifio-Mora (1996a), and it follows from their
work that the family of inequality constraints in (40), for S C A, together with the equation
dojeN V]-N:rj =D jen p]-VjN/(l —p(N)), formulate exactly the performance region of the z;’s.

7 Convex constraints for MQNETs with changeover times

We present in this section constraints on achievable performance that account for the effect of servers
changeover times. We first establish some elementary linear constraints on visit and changeover

frequencies (f;, fij; see Table 1).

Proposition 1 Under any dynamic stable policy,
(a)
fi= > fi= >, fin forieN. (41)

JECs )\ {i} JECs ) \{i}
(b) If the policy is nonidling, then
Y sifii=1-pCn),  formeM. (42)
§,jECm 1i#]
Proof
(a) Eq. (41) formulates a simple flow conservation relation: the rates at which server s(i) visits and

leaves the i-queue are equal.
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(b) Eq. (42) formulates the elementary identity

> P{Bij =1} =1-p(Cn),

4,j€Cm
which holds under the nonidling assumption. Notice that we have used the identity P {B;; = 1} =
sij fij- u
In order to develop the new convex constraints we introduce the following concept from the

vacation queues literature:

Definition 3 (Vacation) We say that server m € M is taking a vacation away from a set of

customer classes S C C,, when he is not serving S-customers.

Consider now the point process N,, s of epochs at which server m initiates a vacation away
from S N Cp,-customers (which we refer to henceforth as a server m S-vacation), for S C N. We
also let I, s be a random variable with the equilibrium distribution of a server m S-vacation
interval, and define By, s(t) as the indicator that server m is busy at time ¢ with an S-customer,
i.e., Bpy,s(t) = ZjeSﬁCm B, (t).

In the next result we establish lower bounds for the mean number of j-customers in system
during changeover periods and during server vacations, respectively, and develop an expression for

mean server vacation times, in terms of visit and changeover frequencies. We define set function

h(S) by

1
h(S) = 34 (1-p(SNCw)) + Z prpr; max (0, pr — p(SNCp)) ¢ s for SCN. (43)
reN\S

Proposition 2 Under any policy that is static, nonidling and stable, we have:
(a) Form € M and j,k,l € Cy,, with k # 1,

(2) urprjs,(j) max(0, pr + Sgifri — 1)

S
E[L: | By =1] > a; % + . 44
[Li | B =1 2 ! 281 re/\zf\:cm 253, fr (44)
(b) For S C N,m € M(S),
1—p(SNCm)
E[lys] = —22——m) (45)
ZjeSmCm fj
(c) For SCN,m e M(S),j € SNCp,
E[L; | By = 0] > h(S) — (46)

Proof
(a) Consider the point process Hy of k — [ server changeover initiation epochs. We introduce
random variable v}, the elapsed time of a typical & — I changeover period that started at time

0, as seen by a random observer. Notice that, by random incidence, E[v};] = s,(j)/stl. Let
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us denote by zfl the mean number of j-customers arriving during time interval [0,vf;). Since

kl
1

E[Lj| By =1]> z;?l, our next goal is to find a lower bound on z
Notice first that, during a k& — [ changeover period, the point process of j-customer arrivals has
a stochastic intensity at time ¢ given by
aj + Z urperT(t).
reN\Cm

By definition of stochastic intensity (see Appendix A), we have, under static policies,

vy Ukt
Zfl = EHw / ajdt| + Z 'urp,r]-EHkl / B, (t)dt
0 reN\Cn 0
51(5) Z 553)
= aj—+ Nrpr'P{Br =1,By = 1} L (47)
! 251 NG ! 253, fr
since under such policies
Vi 8(2)
Efu / B.(t)dt| = P{B,=1|By =1}t
0 251
o
= P{B,=1,By=1 .
{ T }) kl } QS%lfk[
Now, from
P{BT =1,By = 0}+P{BT =1,By = ].} = pPr
and

P{B, =1,By =0} +P{B, =0,By; =0} =1 —spfu

it follows that
P{B, =1,By =1} > max(0, p, + sp1frs — 1)

Combining this inequality with Eq. (47), and with the relation E[L; | By = 1] > zJ’-“l yields the
result.

(b) The intensity of point process Np, s is easily seen to be EjESﬁCm fj. Now, under a nonidling
policy, the duration of an S-vacation for server m coincides with the total time that server is
not serving S-customers between two consecutive points of point process Ny, s. Therefore, under

nonidling static policies,

1 _p(smcm)

E Im,S = ’
e S

which proves the result.

(c) Consider the point process Ny, s of server m S-vacation initiation epochs. We introduce the
random variable I, s*, the elapsed time of a typical server m S-vacation period that started at time
0, as seen by a random observer. Notice that, by random incidence, E [I,,, s*] = E [Imysz] /2E [Ip,,5].
Let us denote by z; the mean number of j-customers that arrive during time interval [0, I, ,s*). Since,

clearly, E [L; | Bp,s = 0] > zj, our next goal is to find a lower bound on z;.
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We first observe that during a server m S-vacation the point process of j-customer arrivals has

a stochastic intensity at time ¢ given by

aj + Z UrprjBr(t

reN\S

By definition of stochastic intensity,

Ln,s™
zj = ENm’S /0 Qi dt

Im,s™
+ Z UTprjENm'S [/ Br(t)dtl
0

reN\S
. Ellpns*
= E[Lns" 1+ Y. peprjP{B, =1,Bp s =0} M, (48)
L—p(SNCpm)
reN\S
since
Im,s™
ENm.s / B.(t)dt| = P{B,=1|Bs=0}E[L.s"]
0
E[I.s"]
= P{B,=1B =0} —=+——.
{ r » Pm,S }1 p(SﬂCm)
Now, from
P{B,=1,B,,s=1}+P{B, =1,B,, s =0} = p,
and
P{B,=1,Bns=1}+P{B, =0,Bp.s =1} =p(SNCp)
it follows that
P{B, =1,B,, s =0} > max(0, p, — p(SNCp)).
Combining this inequality with Eqns. (48) and (45), and using the fact that
EIn,s®] _ 1
El,s" = ——"—>-FE|[l,
I = 50, = 25 Hms]
yields the result. |

The next result presents two families of convex constraints on performance variables.

Theorem 5 Under any policy that is static, nonidling and stable, the following convex constraints
hold:
(a) For m € M and j € Cp,,

(2)

xOm > E %fkl +
J — _
kL ECm :k#l 2(1=p(Cm))
Hrprisgy)
) S PR max(0, pr + s fi — 1). 49
250 (L= p(Con) (0, pr + spi fre — 1) (49)

kJIECH kAL reN\Cr,

(b) For SCWN, me M(S) and j € SNCp,

) 1—p(SNCy
S gl (L= plC) 2™ 2 h(S) ),
i€ScNCop, JESNCm 77
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Proof
(a) The result follows directly by substituting inequality (44) to the elementary identity

0om Sklfkl
20" = MM BIL; | B = 1],
k’gm 1 _p(cm) [ J | kl ]

valid under nonidling policies.

(b) The result follows directly from Proposition 2(c), by noticing that

i€S°NCop

Remark: Notice that constraints (50) are nonlinear, yet convex, which makes them computation-
ally tractable. Notice further that the nonlinear term in them involves the server visit frequencies
fi’s, which are not known in general. However, the achievable values of the f;’s are constrained
by linear equality constraints (41) and (42 ) in Proposition 1. Combining these constraints yields

improved convex bounds.

8 Positive semidefinite constraints

We present in this section a set of positive semidefinite constraints that may be used to strengthen
the formulations obtained through equilibrium relations. These constraints formulate the fact that
the performance measures we are considering are moments of random variables. The basic idea may
be outlined as follows: Given a vector z and a symmetric real matrix Z, consider the following
question: What is a necessary and sufficient condition that captures the fact that, for some random
vector ¢, z = E[¢] and Z = E [¢¢']? Tt is easily seen that the required condition is that the matrix
Z — zz', which represents the covariance matrix of ¢, be positive semidefinite, i.e., Z — zz' > 0.

This condition is formulated in matrix notation as

1 =z

z Z

Applying this idea to the performance variables introduced in Table 1 yields directly the following

result.

Theorem 6 Under any dynamic stable policy, the following semidefinite constraints hold:
(a)

1 p

p R

=0, (51)
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1
1 p_kRk'

=0, forke N (52)
LR, R
[
2
(b) If E [(EjENLj) ] < 00, then
1
v >0, (53)
T
1zt
. . | =0 forke N, (54)
v Y”
1 xOm’
. . =0, for m € M. (55)
z'm y'’™

Remark:

The problem of minimizing a linear objective subject to positive semidefinite constraints, called a
semidefinite programming problem, has received considerable attention in the mathematical program-
ming literature due to applications in discrete optimization and control theory. There are several
efficient interior point algorithms (see Vandenberghe and Boyd (1996) for a comprehensive review)
to solve semidefinite programming problems. Theorem 6 adds a new and, we believe, interesting

application of semidefinite programming in stochastic optimization.

9 Summary of bounds and their power

In previous sections we used various equilibrium relations to derive constraints on performance
variables which are valid under all suitable classes of scheduling policies. While we have focused
there on the physical meaning of these relations, we show in this section how they can be used
to provide performance bounds for MQNETSs by solving appropriate mathematical programming
problems.
We shall consider in what follows a linear cost function
c(@) = cjxj,
JEN
and denote by Z the minimum cost achievable under the appropriate class of policies (dynamic

stable or static, nonidling and stable) policies,
Z=ming > ¢z; |z X
JEN
We have summarized in Table 3 several lower bounds and their corresponding mathematical pro-

gramming formulations, obtained by selecting appropriate subsets of the constraints developed in

previous sections.
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Bound Formulation # variables | # constraints Constraints
Zac® linear program O(N) o(2") (39)
Zrp1 linear program O(N?) O(N?) (1), (6), (7), (23)
Z1p2 linear program O(N?) O(N?) (1)-(3), (4)-(12), (23), (25)
Zsp1 semidefinite program |  O(N?) O(N?) (1), (4), (5), (7), (23), (51)
Zspo semidefinite program O(N?3) O(N3) (1)-(3), (4)-(12), (23), (25), (51)-(55)
Zconvex" | convex program O(N?) o(2") (1), (6), (7), (23), (41), (42), (49), (50)

Table 3: Bounds and formulations.

2Computed by N-steps Klimov’s algorithm
*Bound accounts for changeover times

For example, the lower bound Zj p; is obtained by solving the linear program

ZLpl = maxzjeN CjTj
subject to

(1), (6),(7),(23)

An index-based lower bound computed in N steps. The bound Z4qg, shown in Table 3,
requires further explanation. We shall show how Z4¢ is computed in N steps by combining one-
pass Klimov’s adaptive greedy algorithm with the workload bounds in Corollary 3. Klimov (1974)
developed his one-pass N-step adaptive greedy algorithm (shown in Figure 1) for computing the
priority indices that define the optimal policy in the special case of a single-server MQNET. Bertsimas
and Nino-Mora (1996a) analyzed Klimov’s algorithm using linear programming. The bound we
present next is a byproduct of their analysis.

Specifically, let us run Klimov’s algorithm on input (¢, V'), where ¢ = (¢;j)en is the cost vector
and V = (V;%);en,scnr, with the V;9’s given by (26). The algorithm produces as output a vector
y = (9(5))scn and a vector of indices v = (7i)iex. We assume for ease of notation that

NSy <N-

Let set function g(S) be given by (38), and let us define

Zac=mg{L....,NHh+ (e —7)g({2,...., N+ + (v —ww-1)g {N}).
Theorem 7 The value Z g is a lower bound on the optimal value Z.

Proof
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Input: (¢, V).
Output: (7,y,7), where 7 = (m,...,7n) is a permutation of N, § = (y(5))gcp and
¥ = (1)

Step 0. Set S; = N; set §(S1) = min

i

‘;él :iESl};

i

pick ™ € argmin{ Vcél 11 €5 };
set v, = y(S1).
Step k. For k=2,... N:
ci— 1?71 V.Sj* SJ'
set S, = Sp_1 \ {7Tk_1}; set Q(Sk) = min{ 21:15; v5) 21 €Sy o

V.

i

k—1

s
. . ci—y  _ Vilu(s)
pick m, € argmln{ = 11 €Sy };

v Sk

i

set Yo, = VYmpor T g(sk)

Step N+1. For S C N: set

7(S)=0, ifS&{Si,...,Sn).

Figure 1: Klimov’s adaptive greedy algorithm.

Bertsimas and Nifio-Mora (1996a) showed that vector § is a feasible solution of the linear program

D) zZ= mx Y aS)S)
SCN
subject to Z VSy(S) < ¢, forie N
S:ieSCN

y(S) >0,  for S C N,

which is the dual of

(LP) Z = min > cix;
ieN
subject to ZVisxi > g(9), for SC N
i€s

x; >0, forie N.
Furthermore, they showed that
Yi — Yi—1 :g({l,,N}), fOI“’L.E./V..
It thus follows that Zs¢ < Z. Since, in addition, we have by Corollary 3 that Z < Z, the result

follows. u

Performance bounds for second moments. In previous sections we have focused our attention
on computing performance bounds for first moments of queue lengths. We now turn our attention

to finding performance bounds for second moments. To the best of our knowledge, there has not
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been any characterization of the performance region of second moments in the literature, even for
single-server MQNETSs.

We consider now a performance cost function that involves second-order moments. In particular,
given costs c; and h; associated with class j customers, we consider the problem of finding a lower

bound on the cost

> (¢E[L;] + hE[L]]) (56)
JEN

valid under all admissible policies.
We can compute a lower bound on the optimal expected cost by solving the semidefinite program-
ming problem with a quadratic cost function of minimizing objective (56) subject to the constraints

corresponding to the bound Zgp, in Table 3.

9.1 Numerical Results

We performed some limited numerical experiments to assess the quality of some of the bounds we
derived. The network we considered consists of two stations. Class 1 arrives at station 1, then
visits station 2 forming class 2, it revisits station 2 forming class 3, visits station 1 forming class 4,
and finally exits from the network. Both the interarrival times of class 1 and the service times of
all classes are exponentially distributed. The arrival rate A = 1. The mean service times satisfy:
81 = 0.2503, and B3 = 0.258,. Therefore, the traffic intensities at the two stations are p; = 51 + (4,
and py = (B2 + Bs.

Classes 1 and 4 compete for service at station 1 and have changeover times s14 = s4;1. Similarly,
Classes 2 and 3 compete at Station 2 and have changeover times sa3 = s32. We define the changeover
ratio (CH): CH = s14/01 = s23/ 03, i.e., we select the changeover times so that the changover ratio
at each station is the same.

Table 4 reports computational results for parameters such that p; = ps. We simulated all
four possible priority policies, and report the performance of the best one. While it is possible
that priority policies are weak policies, the lower bound Zconvex seems also weak, as the traffic

intensity increases. The quality of the bound is insensitive to the changeover ratio.

10 From formulations to policies for MQNETSs

We consider in this section the problem of designing a policy that nearly minimizes a performance ob-
jective ZjEN cjz;. Unlike in the single station case, the relaxations we have considered for MQNET's
do not provide an optimal policy for this problem. In this section we propose two techniques to

extract heuristic policies from the relaxations.
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CH | p1 | p2 | ZcoNVvEX | ZPRIORITY
0.0 | 0.2 0.2 0.43 0.54
0.2 {0202 0.52 0.63
04 | 02|02 0.71 0.83
06 | 0.2 0.2 0.87 1.01
0.8 | 0.2]0.2 1.09 1.24
1.0 | 0.2 ] 0.2 1.31 1.43
0.0 | 05|05 1.12 2.16
0.2 {05105 1.25 2.33
04 | 05|05 1.43 2.72
06 | 0.5 0.5 1.62 3.09
0.8 | 05105 1.84 3.51
1.0 | 0.5 0.5 2.17 4.42
0.0 {0909 3.05 17.12
0.2 {09109 3.47 18.31
04 {0909 4.13 21.73
06 | 09|09 4.92 25.86
0.8 {09109 6.13 30.55
1.0 {09 0.9 8.39 41.77

Table 4: The performance of the bound ZconvEx, and the best priority policy as a function of the

changoever ratio CH, and the traffic intensities p1, pa.

10.1 A priority-index policy for MQNETSs

The first policy we propose is defined as follows:
1. Compute indices 71, ...,vn by running Klimov’s algorithm (see Figure 1) on input (¢, V).

2. Schedule customers at each station by giving higher preemptive priority to customer classes
with higher index ;.

Notice that the policy is optimal for the single station case. In the multi-station case one needs
to consider the issue of whether the proposed policy is stable.

From a physical point of view, we can interpret the policy as follows: We create a new fictitious
station, which can be interpreted as if all servers of the network are pulled into a single resource.
The arrival rates, processing times and routing information remain the same. The indices v are
exactly the optimal Klimov indices in this fictitious single-server network. Notice that the indices
do not have any information on the structure of the network, namely which classes are served by

which server. They only take into account the work that the network needs to process.
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As in Klimov (1978), it can be shown that the index -; may be interpreted as the maximum rate
of decrease in holding cost rate per unit of network processing time for a customer whose current
class is i, i.e.,

N 2 jese Pij(5)¢)

S3i ViS ’

forie N,

where p;;(.S) is the probability that a customer currently in class i € S visits class j € S after first

leaving classes in S. Notice that

pii(S) =pij + > _ papij(S),  fori€ S, jeSe.
kesS

10.2 Policies from relaxations for networks with finite buffers

We assume that the total number of customers in each station in the network is bounded by C.
Recall that Ls = ), L;. We introduce the following variables fori =1,...,N,m =1,...,M
andl =0,...,C:
zimg = P{Lc,, =1| B; =1},

Zmy = P{Lc,, =1}.
Theorem 3 specialized for S = C,, gives the following equations:

C“(C’m)zm,l + Z Aip(iacm)zi,m,l = Z Ai (]- _p(iycm)) Zi,m,l+1,

iecs, i€Co,
where 2,041 = 0.
We next consider the relaxation that involves both the variables z, Z, as well as the variables

x, X. The proof of the theorem is immediate and thus omitted.

Theorem 8 For C' = oo the optimal solution value of the following infinitely dimensional linear
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program provides a lower bound on the minimum expected holding cost rate

Z =min c=z

subject to —ax' —zd' + (I -P)AX + X'A(I-P)=(I-P)A+AN(I-P)
Ol(cm)zm,l + Z Aip(iacm)zi,m,l =
iecs,
> A (1=p(i,Cm) Zimag1,  Vism,l
1€ECm
' c
Z asz = leiml Vi,m
J€Cm 1=0
c
Z Tj = leml Ym
JECH (=0
€L > Z ptw;a V],m
i€Cm
Zj > Z piziji, Vj,l,m
i€Cm
Zmt <1, Vm,l
z, X,z2,Z > 0.

For finite C, the above linear program does not give a formal bound, because equilibrium relations
(23) do not necessarily hold with finite C. However, if we do not include these constraints and
remove variables z; from the formulation we do obtain a valid bound.

For C' = oo, the above linear program is not interesting as it would be very difficult to solve.
However, if we truncate the state space, by imposing the condition that z; j c+1 = 0, we heuristically
expect that the bound for finite C' would be close to the bound for C' = co. Moreover, as the number
of variables of the linear program of Theorem 8 is O(NMC), the problem is tractable. Its main
advantage is that we can obtain heuristic policies from this linear program as follows.

A Heuristic Policy
1. We solve the formulation of Theorem 8.
2. When there is a service completion at station m, the server is set to work on class ¢ with
probability

P{Bi:1|LCm:l}: { Cm P|{L; :}2}{ ¢ }:Zzzmllpz.

The server selects to idle with probability

1— Z ZimiPi

z
iec,, ™

In general, the optimal policy would be to decide the probabilities that

P{B;=1|L =1},
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where L = (Ly,...,Ly) and Il = (I1,...,Ix). Under the proposed heuristic policy, the server bases
the decision of which customer to serve next, if any, on the total number of customers in its station.
The policy has the attractive feature of being decentralized once the linear program is solved, as it

only uses information that is local to the server.

A Some basic results from the Palm calculus of point pro-

cesses

In this appendix we review for the reader’s reference some basic notions and results from the Palm
calculus of point processes that are used throughout the paper. For a thorough and rigorous treat-
ment of the subject we refer the reader to Baccelli and Brémaud (1994).

Counsider a discrete stochastic process {L(t)}ten, with sample paths right-continuous with left
limits, representing the state evolution of a stochastic system, and let N = {T},}32___ be a point
process of related epochs, with --- < Ty < 0 < Ty < Ty < ---. We may interpret L(t) as the
system state at time ¢, and T, as the nth event epoch. We assume that processes {L(¢)}ien and
N = {T,}5>_, are adapted to a common history {F;}tew, and that they are stationary, which
captures mathematically the intuitive notion that the system evolution and the stream of epochs
are time-homogeneous.

For ease of notation we write L = L(0), L= = L(0-) and LT = L(0+), where L(0—) and
L(0+) denote the left and right limits of L(¢) at ¢ = 0, respectively. We denote P{L = I} the
equilibrium probability that the system state at an arbitrary time (such as t = 0) is [, and write
the corresponding expectation as E[L]. We denote PN{L = [} the equilibrium probability that
the system state embedded at an arbitrary epoch is [, and write the corresponding expectation as
EN[L]. PN{-} is the Palm probability with respect to stationary point process N, and EN[] is
the corresponding Palm ezxpectation. By definition of Palm probability, 7o = 0, i.e., time ¢t = 0

corresponds to an arbitrary epoch of V.

Intensity and stochastic intensity

We denote N[a,b) the number of points/event epochs that lie on time interval [a,b), with a < b.

Definition 4 (Intensity) The expected number of points that lie in a unit length interval,
A=E[N(0,1))],

is called the intensity of N.

The intensity of a point process may be interpreted as a global measure of the rate of points/epochs

per unit time.
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In some applications, such as queueing systems, the frequency at which events take place may
depend on the current state of the system. For example, in an M/M/2 queue, departures happen
at a higher rate when the two servers are busy than when only one is. This intuitive notion of local
density of points/frequency of epochs in a point process is captured by the concept of stochastic
intensity.

Let {A(t)}ten be a nonnegative process, adapted to the history {F;}ien.

Definition 5 (Stochastic Intensity) The process {A(t)}ien is called an Fy-stochastic intensity of
N if

(i) it is locally integrable; that is, [, A(s)ds < oo for all bounded Borel sets B; and

(i) For all a < b,

E[N(a,b]| Fa] = E :

/Esz) as | 7.

The value A(t) may be interpreted as the instantaneous rate at which points/epochs occur at time

t.

Superposition of point processes

Let V1, ..., Nk be stationary point processes, defined in a common probability space. Let A1, ..., Ax
be their respective finite intensities. Assume that point process N may be obtained through the
superposition of processes Ni,..., Nk, i.e., process N has a point at time ¢ if any of the processes
Ni,..., Nk has a point at that time. We shall write then N = Ny + --- + Ng. The intensity of N
can be shown to be A = A\; +---+ Ag. The following theorem represents the Palm expectation with
respect to the composite process IV in terms of the Palm probabilities with respect to the elementary

processes Np.

Theorem 9 (Superposition) The following relation holds:
LS

PN {3y=N"ZkpNe .

DI St

Thinning of a point process and conditioning

Let A be a measurable event, and consider the point process obtained by counting only points from
process N at which event A happens. We refer to the resulting point process N4 as a thinned
process. The next result relates the Palm probabilities with respect to the original process N and
the thinned process N4. Let A(N) and A(IN4) denote the intensities of point processes N and N4,

respectively.
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Theorem 10 The following relations hold:

(a)

PNA{} =PV {-| 4}.
(b)

AN 4) = AN)PN (A).

Relating time and event expectations: Papangelou’s formula

Papangelou’s formula is a fundamental and powerful result that provides the link between time-

stationary probability, Palm probability and stochastic intensity.
Theorem 11 (Papangelou (1972)) If N admits a stochastic intensity {\(t) }ten, then
EN0)L(0)] = AEN [L7].

Several important results of queueing theory on the relation between the queueing state distri-

butions at an arbitrary time and at an arbitrary epoch follow directly from Papangelou’s formula.

Theorem 12 (PASTA: Poisson Arrivals See Time Averages) If N is a Poisson process, then

Theorem 13 (Conditional PASTA) Assume that N admits a stochastic intensity {A(t)}ien,
with A(t) = pB(t), and where B(t) € {0,1} for all t € R. Then,

EN[L]=E[L|B=1].
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