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ABSTRACT. This paper studies the rate of convergence of an appropriate discretiza-
tion scheme of the solution of the Mc Kean - Vlasov equation introduce d by Bossy and
Talay. More specifically, we consider approximations of the distribution and of the density
of the solution of the stochastic differential equation associated to the Mc Kean - Vlasov
equation. The scheme adopted here is a mixed one: Euler/weakly interacting particle sys-
tem . If n is the number of weakly interacting particles and h is the uniform st ep in the
time discretization, we prove that the rate of convergence of the distribution functions of
the approximating sequence in the L'(Q x R) norm and in the sup norm is of the order of
\/LH + h, while for the densities is of the o rder h + ﬁ This result is obtained by carefully
employing techniques of Malliavin Calculus.
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1. Introduction

In a series of recent articles (see [BT1], [BT2], [T]), Bossy and Talay study the numerical
approximation of the solutions to the McKean - Vlasov equation and to the Burgers equa-
tion. The McKean - Vlasov equation is obtained as the diffusive limit of a particle system,
describing the behaviour of a high density gas. Its solution is a probability law/density
and it can be represented as the law of the solution of an associated nonlinear stochastic
differential equation (for further details we refer the reader to [G]).

In their paper, Bossy and Talay choose to approximate the McKean - Vlasov limit by
replicating the behaviour with a system of n weakly interacting particles, each following a
sde discretized in time with step h € (0,1]. In [BT1] it is proved that when n — oo and
h — 0, then the empirical distribution function of these n particles converges towards the
solution of the McKean - Vlasov limit with a rate at least of the order \/LH +Vh. Through
some simulations it can be clearly seen that the rate in » is optimal but that the rate in h
is probably better than v/A.

In this article, we prove that the rate of convergence of the scheme constructed by Bossy
and Talay is actually at least of the order \/LH + h, as they also suspected on the basis of
some numerical simulations they ran.

To make our introduction more precise, we recall that the McKean - Vlasov equation
can be described by means of four Lipschitz kernels a(z,y), b(x,y), f(z,y) and g(z,y) from
B2 to R and of a differential operator, acting on the probability measures, defined by

sh(e) = o, [ ateman(o] 1)+ [ote, [ st

A family of probability measure {g; };>¢ is said to be the solution of the McKean - Vlasov
equation if it solves

d
A1) - < pg h >=<pg, L(p)h >, Yh € CF(R), (compact support)

ut:O = ,u(]a

where 1y is an initial probability measure. Applications and a general discussion about the
above equation can be found in Gértner ([G]).

By associating a martingale problem to the operator L. u; can also be characterized
through the stochastic differential equation (sde)

(1.2) X, = £+f0t a(Xs,f f(Xsay)dus(y))derfot b(Xs,fg(Xsay)dus(y))-dWsa

where j1; denotes the law of the solution X;, while W is a Wiener process on an extended
space, so that the natural filtration is extended with an initial independent sigma algebra



Go, to make £ an Fy-measurable random variable with law j19. As shown by Gartner, under
appropriate conditions on the coefficients, there exists a unique strong solution of (1.2),
X;, and its law, p; satisfies (1.1).

As we mentioned before, sde (1.2) is sometimes called non-linear, since its coefficients
involve at the same time X and its law. In [BT1], it is suggested that the numerical
approximation of (1.2) must act on two levels. On one, the usual time discretization (see
[KP]) is needed, based on simulations of the increments of the driving process W. On the
other, it is necessary to use some empirical measure in order to approximate the measures
is that appear in the coefficients. To this purpose, the simulation scheme is expanded
introducing n independent driving Wiener processes, each generating a particle through an
equation that approximates (1.2) (for details see Section 3). These particles, denoted by
X% i =1,....n, will interact with each other through their empirical measure, viewed as
an approximation of prs. By some kind of law of large numbers (or propagation of chaos as
it is better known), this interaction tends to disappear as n — oo.

Bossy and Talay prove that the empirical distribution generated by the X* converges
to the law of X and therefore give a method to approximate the solution of the McKean
-Vlasov equation (1.1). More exactly they prove the following result, which we report here
for the reader’s convenience, since we will comparatively refer to it.

Theorem 1.1: Let a(z,y) = b(z,y) = y and assume

(H-1) there exists a strictly positive constant ¢ such that g(z,y) > ¢ > 0, ¥(z,y) € R?;
(H-2) the functions f and g are uniformly bounded on R?; f is globally Lipschitz and g
has uniformly bounded first partial derivatives;
(H-3) the initial law p satisfies one of the following
(i) po is a Dirac measure at x,

(ii) 1o has a continuous density py so that there exist constants M,« > 0, n > 0 such
that po(2) < nexp(—a%) for |z| > M (if n = 0, py has compact support).
Furthermore, if u(t,-) is the distribution function of X; and u(t,-) the empirical distribution

function of the sequence X! for i = 1,...,n, then for any fixed t € [0,7]

(13) Ellu(t,) —a(t, Y < c% + V).

If we substitute (H-2) and (H-3) with the stronger conditions
(H-2") f € CZ(R?) and g € C}(R?).
(H-3) The initial law p1y has a strictly positive density py € C*(IR) and there exist constants

2

M0 > 0 such that po + |ph(2)] + [p(2)] < nexp(—a) for o] > M,
then u; has a density, denoted by pi(-), and

(14) Bl = 5 326X = 2}l < Clet —(—= + VA,

1
Ve vn
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where ¢.(2) = e” 5

- \/271'6 :
The goal of our work is to prove that the rate in (1.3) is actually \/LH +h under conditions

comparable to (H-1), (H-2) and (H-3). We will first establish the result for the densities
showing that the optimal rate in (1.4) is of the order ﬁ + h, when ¢ = h, rather than

ht 7=+ Vh+ 1L

Our efforts clearly drew inspiration from the remarks made by Bossy and Talay (see
[BT1] and [BT2]), who gave numerical evidence that suggested the rate of convergence was
faster than what they proved.

Here we are able to achieve this better rate, by using completely different techniques
from those in [BT1]. Indeed, we carefully employ Malliavin Calculus techniques together
with some ideas brought to light in a recent work by Kohatsu and Ogawa ([KO]).

Malliavin Calculus allows to establish when the marginal densities of the solution of a
sde exist and are regular, so it is indeed very apt to deal with equations, whose coefficients
involve probability densities. The introduction of these techniques in this setting enabled
us also to weaken the hypotheses on the coefficients as well as those on the initial density
function. We establish this result in Section 2 and it is quite related to similar ones obtained
by Florchinger (see [F]), who was interested in an application of Malliavin Calculus to
filtering theory, which required the study of the smoothness of densities for time dependent
systems.

The main difference between Florchinger’s results and ours is that we do not require
any boundedness for the coefficients, since we show that a global Holder property in t is
indeed sufficient. This property is in fact satisfied by the coefficients of (1.2), so we can
apply the same results of existence and smoothness of the densities to the process under
study. Another difference is the introduction of an initial random variable. If one were to
introduce an uniform Hérmander type condition on the coefficients, this difference would
be minor. But applications force the study of the case when the initial random variable
is supported on the whole real line. Therefore such an uniform Hérmander type condition
would be very restrictive. Here we only require some tail conditions on the initial random
variable. In order to carry out the proof in this case one needs to study carefully the
behaviour of all the bounds with respect to the initial random variable.

In Section 3 we study the approximation errors of the particle method used to approx-
imate the solution of (1.2), this analysis relies on a technique very different from the one
used by Bossy and Talay. We try to avoid as much as possible any L estimates in order
to obtain the rate h instead of /i in (1.3). This is obtained via an approximation method
which is briefly explained at the end of Theorem 3.7.

The basic idea is as follows: Consider formally the quantity

EEE(X0) ~ = 37 66 = )l
< B (X)) = B XDl + BB =~ 36X = o)l
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The second term is about the order \/LH (some correlation structure between the X7/ has to

be studied). The first is a term of the same kind that arises in classical weak approximation
procedures, except that in our case discretization both in time and in space (measure
discretization) is used. By analyzing separately the two discretizations one gets a rate of
convergence of the order of h 4+ \/LH

To carry out this idea is not as easy as explained above. It presents some extra compli-
cations with respect to the classical case of diffusions. But it is essential for our method to
work, that we run a separate study of the time and space discretizations.

The results for approximations of the distribution function of X; are obtained with
similar techniques as those used for the density functions. For this reason we decided to
explain in detail this second case, technically more demanding, and to sketch the proofs
for the first.

We hope the methods exposed here will help develop similar results also for the Burgers
equation and in general, for non-linear equations.

Our results can be easily written in the multidimensional case, but to keep notations
and proofs simple, we decided to restrict ourselves to only one dimension.

The paper is subdivided as follows. In Section 2, we give the preliminary results that
enable to conclude the existence and smoothness of the densities of the solution of (1.2).
This is where we modify Florchinger’s results to our needs. In Section 3 we establish our
results for densities, while in section 4 we summarize those and we derive the distribution
function case.

As usual we adopt the convention of writing the same letter (usually C) for a constant
even if it changes from line to line. This constant is always independent of h, n and the
partition of the time interval. Unless otherwise stated we will also assume without loss of
generality that all constants are bigger than 1.

2. Preliminary results

Let [0,7] be a finite time interval and (Q2,F, P) a complete probability space, where a
standard one dimensional Brownian motion, W, is defined. We consider the equation

(2.1) o= [ alX s geds + [ BN G 0) - W

where £ is an Fp-measurable random variable, such that £ € ﬂ Lf. By F(x;pus) or
p21

G(x;us) we denote the functions given by f C(x,y)dus(y) (¢ = f, g, respectively), where

is indicates the distribution of X,. Lastly, the functions
b,a R — R f.g R SR

are all smooth with bounded derivatives, let us call M the common constant dominating
these all. This set of hypotheses will hold throughout the paper and we refer to it as (HO).
We are going to study the existence and smoothness of the density of the solution of
(2.1). From now on, for ease of writing, we will call a(t,z) = a(z, F(x;u;)) and b(t,z) =
b(x,G(a;1e)). Next, we introduce a series of hypotheses that we need for our goal.



Assumptions:

(H1) There exist an integer m and a positive constant ¢, such that

i Z (0,6 >¢>0 ae.,

i=0vel;
where the sets I; are given by
Iy = {B}v sy I, = { [va]v [&77’7]7 RS In—l}

and ( [-,-] denotes Lie bracket. In this context, the coefficients are to be understood

as vector fields, that is b(t,2) = b(t,2) ).
(H2) The function b is bounded, let us say by the same constant M as in (HO).
(H3) £ has a density ug for which there exist positive constants 7, o, 3 and p such that

ug(z) < nexp(—azf) for |z| > p.

With this notation, the hypothesis corresponding to (H-1) in Theorem 1.1 should be
b(0,2) > ¢ > 0, for all # € R and it is clear that (H1) requires much less than this.
Hypothesis (H2) is similar to (H-2") in Theorem 1.1, note that the smoothness in the
coefficients is needed here to be able to study the smoothness of the density. Finally, (H3)
is slightly weaker than the corresponding (H-3).

Another difference is given by the fact that in Theorem 1.1 all three conditions are
assumed, while we are going to show, by means of Malliavin Calculus techniques, that is
necessary to assume only (H1) and either (H2) or (H3).

Since all the results in the paper rely heavily on Malliavin Calculus, we want to introduce
here some of its terminology very briefly.

For m € I, we denote by C7°(IR™) the set of C™° bounded functions f : R™ — IR, with
bounded derivatives of all orders and we assume that an m—dimensional Wiener process
is defined on a probability space, (actually we will use m =1, m =2 or m = 3).

If we denote by 5 the class of real random variables F' that can be represented as
f(Wyy, ..., Wy ) for some n € N and f € C;°(IR"™), we can complete this space under the
norm || ||, given by

IFI%, = E(FF) 4+ ZE [ pireasy? )

where DV is defined as DI F = Z aaf
T

i=
a Banach space, usually indicated with D%, Analogously, we can construct the space [DF?

by completing 5 under the norm

TOSTERS SiD S (8 U T R

J=1 k4 +km

(Wipsoo o s Wi Mo eq(s), for j = 1,...,m, obtaining
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where DI F = D: ...Di F. Finally, we denote D> = ﬂ ﬂ DkP,
pzlk>1
The adjoint of the closable unbounded operator

DI DY C L2(Q) — L2([0,T] x Q)

is usually denoted by 8/ and it is called the Skorohod integral. The domain of &/ is the set
of all processes u € L*([0,7] x Q) such that

T .
E ( f D} Futdt)
0]

for some constant (' depending possibly on w.
If u € Dom(87), then 8/ (u) is the square integrable random variable determined by the
duality relation

<C|F|, VFes,

T
E(§(u)F) = E(f DjFudt)y Y FeD"2.
0

In the multidimensional case we consider é = Z]‘ 6.
Finally, for a, possibly d-dimensional, random variable £” we denote its Malliavin covari-
ance matrix by vp and it is defined as

m T
*y%-,k:Zf < DIFM DIFY >ds  hk=1,..4d.
j=17"

The Malliavin covariance matrix plays a key role when one wants to determine the existence
and the smoothness of the densities of the solutions of stochastic differential equations.
Namely, following [N1] (Proposition 2.1.1, page 78), we have that for any random variable
F e Dllf; for some p > 1, if vp is almost surely invertible, then the law of F’ is absolutely
continuous with respect to Lebesgue measure, moreover if I’ ¢ D12 and 7§1DF is in
Dom(é) then F has a continuous and bounded density given by

f(2) = B (s vy DF)).
In particular we will use the fact that if F' € [D° and |y5'| € (ps1 L7 then [ has an
infinitely differentiable density (see [N1], Corollary 2.1.2).

Having introduced all the necessary terminology we first quote a result from [KO] about
existence and integrability of the solution of (2.1).

Theorem 2.1: Let us assume that (H0) is satisfied, then there is a unique strong solution
of (2.1) such that, for all p > 1
E(sup | Xs]7) < o0.
s<T
Furthermore X, € D™ for all s € [0,T].

We are now able to state and prove the main result of this section about the marginal
densities of X. We remind the reader that. from now on, we will assume all our quantities
to be one dimensional and we will use the multidimensional notation for Malliavin Calculus
only later on, when needed. In this setting the Malliavin covariance matrix clearly reduces
to yF = ||DF||%2(T)-



Theorem 2.2: Assume that (H0) and (H1) are satisfied together with either (H2) or (H3).

Then 'y;(tl € ﬂ IP and Xy has a smooth density.
pz1

PROOF: As a starting point, let us remark that equation (2.1), with the new notation, can
be rewritten as

(2.2) X, :§+ft a(sts)ds—l—ft b(s, X,)-dW,,
0 0

where in fact the coefficients are time dependent. Moreover, because of (H0), @ and b are
smooth in space with bounded derivatives (hence they are also globally Lipschitz) and they
are globally Hélder of order 1/2 in time. Indeed, for s,t € [0,7],

b(t,2) — b(s. z)| = [b(z, ] gz, y)dps(y)) — bz, ] g, y)dpna(y)

<M ] oz, y)dpe(y) — ] g y)dps ()] = M| E(g(z. X,) — g(z, X,)|
< MPE(|X, - X.|) € MPE(|X, - X, )} <Ot — 5|3,

the same applies to a. Renaming M properly, we may assume without loss of generality
that there exists a common constant M bounding both the derivatives and the Hoélder’s
constant C'.

If it is (H2) to hold, one can follow exactly the same proof as in [I'] (Theorem 1.2.7),
with only two slight modifications and for this reason we refer the reader to Florchinger’s
paper, indicating only what formal changes are needed.

The first difference lies in the fact that Florchinger considers both coefficients to be
bounded, while here we are taking only the diffusion one as such. By examining carefully
his proof, it can be realized that the boundedness of the coefficients is required in order to
define a certain constant, denoted Kx in inequality (1.17) of page 208

Kx = sup sup (| X, (t,2)| + | DX, (t, 2)],
re{0,...,m} (¢,v)€[0,T]x

where Xg is the drift coefficient, while Xy,..., X, are the diffusion ones. In truth, the
hypothesis on the drift coefficient is redundant, in fact the proof involves only the diffusion
ones, therefore it is holds if we simply drop the requirement for » = 0. In our case this
amounts to using the constant

Ky = sup  (|b(t,)| + [Db(t, ),
(t,z)€[0,T]x

which is certainly bounded, by virtue of (H2).

When b is bounded the second difference becomes minor. This difference consists of
changing the initial condition in [F] from a deterministic to a random one, the same ar-
gument goes through, thanks to the integrability of £. One then proceeds along the same
lines and proves the smoothness of the densities of the solution.



Let us now assume (H3). Here the fact that £ is random creates a significant problem as
b is not bounded anymore. In fact bounds for £ will show up in almost all the expressions
(through the presence of 7) when using the Lipschitz property of b. This argument is
somewhat involved, although the basic idea may be simple. As quite a few changes are
required, we explain the technique more at length.

In this case @ and b may be not bounded, but we are able to compensate this drawback
by the fact that they are Holder uniformly on the whole space, while in [F] this property
is satisfied only locally.

Let (; denote the derivative of the stochastic flow associated with equation (2.2) and

¢~ the inverse flow, then both sup |¢:(€)] and sup|¢;7'(€)] € ﬂ I? and we can write the
s<t s<t
> - = p>1
Malliavin derivative as D, X; = ()¢ (€)b(s, X5) (see [N1], page 109).
Since we already noticed that X; € ID°°. to conclude the existence and regularity of the
density, it is enough to check that

7w = G [ (G X e (1

p>1

Using the L? boundedness of (;(£) and Lemma 2.3.1 in [N1], this amounts to show that for
all p > 2 there exists €y(p) such that for all € < ¢y(p)

(23) P [ oy < ) <o

In order to do so, we divide this probability into two parts, by fixing 7 € R

t t
PO GO b X Pds < € < P (GHEO s, X, ds < €] < 1)+ (| = 7)
0 0
= p1 + p2.
Clearly for py we will use hypothesis (H3), which gives P(|¢| > 1) < Cexp(—ar?) for

T > p. At the end of the proof, we will specify how to choose T to have (2.3) satisfied.
As for pp, we first note that, given (H1) and || < 7, one also has that

(2.4) Z Z v(s,y)? > % >0, ae.

for |y — €] < R and s < R?, where we can chose

ML(L+7)+ VL2 + 1)+ L)

(Here L = 21 max  K,(K, + |[v(0,0)|), where K, denotes the maximum of the

vel; i=0,...,m

Lipschitz and the Hélder constants of » for v € I;, i = 0,...,m).
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Moreover the following property holds:

C C

AL(2(L4+7)4¢) 4L

(2.5) Re] ];

for some universal constant ¢. Let us fix the quantities r = R/2 and t* = R?/2; clearly,
without loss of generality, we can assume that t* < ¢, moreover we define the stopping time
o=inf{s: |X,—¢ >ror|(;'(&) — 1] > 3} At". To subdivide further p;, we take a

partition 0 = tg < t; < ... < tx = t with mesh |t;y, —t;| < §:= ¢* and N = [%] + 1, so
that we can write

<P (f Z (¢ (€)b(s, Xo))* — (¢, s(g) (ti, X, s))2|1[fh¢i+1)(s)d$ > %,|€| < 7')

3¢
+ P ([ Z Cr (bt X, )P sty (8)ds < ER €] < 7')

= p11 + P12,

where X, ; stands for the process defined as the solution of
Xti,s = Xti —|—f a(tiaXti,u)du‘l'f B(ti,X“’u) . qu
T t;

and similarly ¢;, , stands for the derivative of the flow associated to the above equation.
The rest of the proof consists of proving the following two assertions

(A.1) pi1 < O(e?)
(A.2) pra < 7U70(e?),  for some fixed v > 0 and any ¢ >0, 7 > p.
To prove (A.1), one has to estimate for t; < s A o the difference under the integral sign

1),
[ (¢ (E)b(5, X))? = (G, w()D(ts, Xo, )7 |
=l (¢ )5( Xo) = G w(b(te, Xe, o) |1 ¢TH(E)B(s, X ) + ¢ L (E)b(ts, Xo, o) |
<16 = Gra (O b, Xo)l + Iz, L (O] 1b(s, X ) = b(ti, X, )]}
UG = (OB, Xl + 16 L (O] [bls, X ) + b(ti, X, )] |
< {16718 = G (O [Ibls, Xo) = (s, )] + [b(s,€) — b(s, 0)] + [b(s,0)]]
+ 1Ce s (O] [1B(s, X ) = b(s, Xep o)l + [0, Xo, o) = b(ts, Xo, )] }
AIGTHE) = G WO [Ib(s, Xo) = b(s. )] + [b(s,§) — b5, 0)| + |b(s,0)]]
+ G [Ib(s, Xa) = b(s, Ko, )| 4 1B(s, Xe) = blts, Xy o)l + 2[b(ti, X, o)l -

11



But the function & is continuous, hence sup [b(s,0)] = cy < oo; besides it is globally
s€[0,T]

Lipschitz in = and uniformly Hélder in t of order 1/2 with constant M in the whole space.

Taking into account all these factors and the running hypotheses (mainly, s < o), we have

[b(s, &) = b(s,0)] < M[¢]
[b(s, X,) = b(s, )| < M|X, — €] < Mr
|6(s, X,) — b(s, X;, S S MIX, — Xy,
16(s, Xy o) = b(ti, Xo, )| < M|s — ;|7 < M§7 = Mé.

By choosing ky = max{ey, M}, we may conclude

(b, X)) = (G, (€)b(ts, Xe,0))°|
<EHICTHE) = G s (OI0 + 1€+ 1) + 10 (O = X, o + )}
IO = G O +IEl+ 1) + 16 WOIBIX =X o] + €+ 2(r + €]+ 1))}
<er{|¢7HE) — G ,s(€)|( HIEL 1)+ 16 (ONNX = X o] + 7))
A1) = GO+ 11+ D)+ 16 S (ONX s = Xy o+ €+ r + (6] + D}
where ¢; was chosen as 3k7. This estimate is the first difference between the argument

presented in [F] and ours. Applying it, one obtains (from now on, we omit the dependence
in £ and we denote by J; the intervals [t; A 0,t;41 A o) )

N
P s ZP (Cl fjl{lél?l — G+ 1E+ D+ G LN, = X o[+ )
{|C51 Ct s|(7‘+|£|+1)+|Ct s|(|X Xt s|‘|’€ ‘I’T‘|’|€|‘|‘1)}d8> |€|< )

To evaluate the right side of the previous inequality, for a fixed K € R, we introduce the
following sets

A= {sup |7 = GTL S Key, By = {sup |X, — Xo,| < Ke),
sed; ’ seld;

AT = A0 {[¢| <), B = B;n{l(] <7}

Just for briefness, in the next few lines we will indicate with L, the process under the
integral sign in the estimate of p;;. With this notation we have

N

pngép(c f Lyds > 5= [¢] < ) Z[P ({clfisds>%}ﬂ(%lfm8{))]

+§; [P ({clfj%sds > SN (AFU BN {le] < T}H '

12



Let us consider the first probability; by construction, on (A7 N B]) we have
€| < T, sup |(7' — (5| < Ke and  |X, — Xy, ;| < Ke.
seJ; ’

Because of the way we chose the partition, we know that |J;| < § = €?; besides, all its
points are less than or equal to o, so necessarily (7! < % for s € J;, which, jointly with
the fact of being on A7, implies

3 .
|Ct_“15| < > + Ke.

Also, the random variable V. = V (&, 7) = r+|£|+ 1 is bounded on those sets. Consequently,
on (A7 N BT ) for all s € J;, we obtain

{1 = GV A G UXS = X T+ @MU = GOV H G UXS — X[+ €4 V)
=16 = GV H e a0 = Xl + )+ VI = GLulV A+ 16 (XS — Xepof + €]

S[KV + (54 KOelh + O + VI = GulV A+ (G + KX = X + 7)),

Therefore we can conclude
N
ZP ({clf L.ds > —} N(A] OBT))
=0
N 3 €
< Z P ({cl f KV + (5 + Ke)(K + €))%ds > E} N (A7 N Bf))

+ZP{6clv2sup ¢t = ¢kl >

1=0

12N}m(A‘me )

—|—ZP{6C1V —|—]x€)sup|X — Xy 4| > }N (A7 N BY))

€
12N

+ZP (V3 + KO > Loy (A7 0 BD))

12N

Recalling that § N < t° + § < 2t°, we can dominate the above by

ip ({clf Lods > 55} 01 (A7 OBT))
=

< Z{P(?ecllfzvz

1=0

3 20 7 2 €
16t0) + P(2¢;¢” (2A + ) (K +¢) > 16t0)}

+Z{Pc1v sup|cl sl > 550}

24t0

4 p(e 1V(3 L Ee)er > — )

3
_|_Z:{P(61V + Ke)sup | X, — Xy, | > 2410

SEJ 24t0
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It is clear that the second probability can be made equal to zero, for € small enough.
Also the random variable V is in LP, for all p, therefore, if we take € small, we have
% + Ke < % + K = ks and by Chebyshev’s inequality the first and fifth probability can be
dominated by

1
P(2cc, K*V? > 1@) (32¢1t" K*)P el (V)

3
PleV (5 + Ko > 24%) (241 ks P e E(VP).
It remains to estimate the thlrd and fourth probability, again by using Chebyshev and
Holder’s inequalities, we obtain

24¢,t%)P L )
(e1 sup [ 24150) & (EIVTD=( [Sg}) G = G lI)
3 24,1k, P 1
P(61V( + K 6) sup |X Xt s| 0) < [ C1 2] (E[VZP]E[SUP |Xs _ Xti,s|]2p)5-
sed; 24¢ €P sel,

At this point it is enough to follow the same proof as in Lemma 1.3.2.6 of [F] and one can
show that

(2.6) Esup [CTHE) = G W (OF) < CrPe
s€d;

(2.7) E(sup |X; — Xy, 5|P) < Co6P e,
seJ;

for all p > 2. These last two inequalities help us complete the estimation of py, in fact,
if we call C3 = 32¢,t” max(K?, k), applying (2.6) and (2.7) for € < €5, with ¢y sufficiently
small,

N
T S O R CHIALICEL)

p N 1 1
FOES e BV BV ) Bsup | G4 ) [E(V ) E(sup| X, —X,, ()]}
i=0 sed; seJ;

N N
<Y PAFUBY) + CEY (2 E(V) 4 [(E(VT))2C) 4 (E(V))2Cé7 e}

1=0 =0

< _ P
Z AG SLE( sup [omreny HE(SS}’ | Xs — Xi, s 7))

+C§N€p{2E[V2p] +[(E[V)ZCL + (E[VT))? Ca)é7)

Si(]fri)p (Ch + Co)6P e + CENE{2E[VP] + [(E[V#]):C, + (E[V2]): 467}

<er—igg {%p(cl )60 4 CEREV] 4 [(EVH))ECy + (EWZPD%CQ]‘SP}}

and the proof of (A.1) is finished, once we choose p > 4, because V & ﬂp>1 L
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In order to prove (A.2), we remark that, given (2.4), because of the definition of R, the
following Hérmander’s condition holds.

(2.8) Z Z v(s,y)* > % >0, ae.

for |s| < R?%, |y — & < R.

For the probability pi2, we can apply the standard techniques for diffusions with coeffi-
cients not depending on time, as explained in [N1], Section 2.3.3. Indeed, the coefficients
of the stochastic differential equation governing X, ; are independent of ¢, since they have
been “frozen” at time t;. Furthermore the necessary Hoérmander condition (2.8) is satisfied.
Since this last point is computationally elaborate, we sketch the main steps here, referring
to Theorem 2.3.3 of [N1], whenever our passages are an exact replication of those explained
there.

The probability p;» can be split in the following manner

pis < Z (f Z (G Bt X1, ) iy (5)ds < s 0 € [tataga), 6] < 7)
and let us consider each term in the sum
oAty 3¢
pla= P (G0, X0 ds < 1€ < 7
N
phy = P(Z[ ( t_iylsg(ti)Xti’s))zds < %, o€ [th,try1), €| <7) fork > 0.

Since C(,jsl(g) € L? for all p > 1, it is a standard argument (see the proof of Theorem 2.3.3

in [N1]) to prove that the first probability verifies p’s < Cy(1+ 7)P€*?, for every p > 2 and
for some constants A > 0 and C4, depending only on ¢,r,t1, L and p. For all the others,
we first notice that they can be dominated by

41 _ 3
p13 > ZP f Ctiylsb(tiaXti,s)) ds < ka o> ti—l—lv |€| < T)

k-1 .
AP 3e
<SPG X)) < S0 >t €] < 7 me

1=0 i
where o; = inf{s > #; + |X;, — Xy, ;| > R—ror | — Ct_,ls| > 1/4} A t;yq. Besides
condition (2.8) implies that the following Hérmander’s condition is satisfied
(2.9) ZZ (tiyy:)* C>0 a.e. if t; < o and |y7;—Xt.|<R—7‘:E.
9 - ’ =~ il > 5

Jj=0vel;

15



We now have all the necessary ingredients to obtain the last estimates by following similar
steps as in Theorem 2.3.3 in [N1]. Thus we decompose pi¥, even further, by means of the
sets

3e
Eo {f Ct 1sb(t17Xt s)) ds < k, a > ti+1}7

By =(3 [t Yo s < GO o el < 7 () =2

vel;

and if we call " = N7_,E;, we have
pili = P(Ea0[l€] < 7)< POF OISl < 7H+ ) POE; N Ef Nl < 7)),
j=0
As in step 1 of Theorem 2.3.3 in [N1], we consider the first part

P(FN{¢l <) <PZZ] (¢ hv(ti, Xe,0) d5<z YU o> iy, €] < T)

Jj=0vel;

If o; —t; > (1)” for some 0 < v < n(m), then (2.9) implies for € < ¢,

szcmmxmd_ﬁﬁ,

j=0vel;

so the above event can be partitioned between {o; —t; > (1)”} and its complement, the
first intersection being empty for € small enough. Recalling the definition of a;, this implies
that

PFOAIEI 7)) < Plos — 1 £ (5)")

R 1

< P( sup | Xy, s — Xy 2 )-I—P( sup |Cts Ct1|>4)
t<s<t+(E)” ti<s <)

S Cp(l + T)P(%)Vp

?

8L2(147)+ c].

C

The

2
where we used inequalities (2.6), (2.7) and the fact that 2 <

constant (, hence depends on C'y,Cy, d;,d>.
Analogously, as in step 2 of Theorem 2.3.3 in [N1], we can obtain a similar estimate for
all the other terms, that is to say

m

S P(E; 0V Ef 4 Ol S 7)) S Gyl 7P (5)

j=0

16



Substituting back we get that for p > %,

N-1k-1 N—-1k-1
A 1 €y
RS 3ol T TR 3 SAIReete
k=1 i=0 k=1 =0
N-1

SO+ 7P + O+ Y KT <O+ e,

1

o
[l

where (' depends on all the previous constants, v and t°, so (A.2) is proven.
Putting all our ingredients together, we finally obtain that for any ¢ > ¢, for a proper

qo0,
P(fo (C7HE) (s, X ) ds < €) < pi +po < CO[(1+ 7)1 el + exp(—ath)]

and choosing 7 = O(|log(¢?/*)|'/7) the result follows. [

JFrom the previous theorem we know that there exists a unique solution to (2.1) with
smooth density, which we denote by p;(#), that we are eventually interested in approxi-
mating.

In order to relate the unique solution of (2.1) to the McKean-Vlasov equation we recall
that, under appropriate conditions (see [G]), the distribution function of X, denoted by
u(t,x), satisfies the equation

(2.10) thL(t ?) = ;aa (b (2, G ut, x)))%(t,l‘)] - a(ac,F(w;u(t?x)))%(t’x)

u(0,2) = P(£ <z).

Assuming enough regularity of the solution, by differentiating the above equation, one
obtains that the density of Xy, denoted by p;(2) = p(t, ), satisfies the following non-linear
equation

2.11) . :%aa—;[b%ﬂ(x; [_ﬁg,wdy»p(t,xn 3 {o(t, ayala, Iz f_;g,y)dy))]

u(0,2) = po(z)-

Therefore, it becomes of interest to approximate both the distribution and density function
of X, for fixed t > 0.

In order to do this, in the next section we introduce a particle method described in
Bossy and Talay [BT1] and [BT2] and we evaluate the rate of convergence of this method
to the solution.

17



3. Particle method

In this section we describe the actual particle method that we use to approximate p;(2),
the density of the solution of (2.1).
In order to do so, we proceed by steps.

(1) Approximate the density p;(x) by Gaussian densities, i.e.

pi(z) = f oz (y)pe(y)dy ~ f on(y — 2)p(y)dy = E(on( Xy — ),

2

where ¢p(2) = \e/;—QT_hh
(2) Consider the difference

pi(a) = E(on (X —x)).

(3) Given a partition 7 = {0 =ty < t; < --- < t, = T}, which without loss of
generality we assume to be uniform with mesh h,i.e. h = At = t;41 — ¢; for any ¢,
we define the Fuler scheme for equation (2.1) as

(3.1) Yy = Yo + a(Yye), F(Yas vpy))(E = 0(2)) + 0(Yyce), G(Yy(0)5 vy W = Wiy ),

where 1(t) = sup{t; <t : t; € 7} and F(z;0,) = ff(m,y)dvn(t)(y), with o,

denoting the distribution of Y;.
(4) Consider the difference

E(on(Xy —2)) = E(on(Yi — @)

(5) Generate n independent copies of the Euler scheme, that we denote by Y* and
consider the difference

E(én(Y: — ) ——Zm ! ).

(6) Consider the Fuler/weakly interacting particle system given by
(3:2) X = X o) (X5 0y FOX0 03 Ty 0))) (= 0(8) 4D X0y, GOX 3 Ty )WY = Wyy)

where un(t) (dx) 26 n(t) (dz).

(7) Consider the d1fference
BN j BN j
- D oY —a) - ~ > on(X{ — ),
j=1 j=1

A similar procedure is followed to analyze the approximations for distributions functions,
where the role of ¢, is played by its distribution function ¢5(z f on(y)dy. Our aim
is to show the following result

18



Theorem 3.1: Assume (H0), (H1) and either (H2) or (H3). Then for any fixed t € (0,T],

(3.3) fE u(t, ) 21{X3< 1 de <o+ 7)

(3.4) e ——Z¢m—m>| fo < Clh+ =+ ).

§

Furthermore, if we choose n = O(%)k for some k > 0, then for each p > 1, there exists a
positive constant C, independent of h (and n) such that

1
(3.5) supE lu(t, ) — —Zq)h X —2)) <cC »(h+

ﬁ)v
j=1 \/ﬁhT

(3.6) sup I | |pe(2) — —Z(bh (X{ —2)|] <C (b + !

z€ f fhl__)

Before moving toward this goal, we want to mention a result from [KO], that will provide
an important requirement for the subsequent proofs.

Lemma 3.2 ([KO]): Let X; and Y, be defined respectively by (2.1) and by (3.1) and Iet
condition (HO) be fulfilled.
Then X;,Y, € D™ for any t € [0,7T] and for any n = 0,1, ... and any fixed ¢ > 1 we have

sup  E[sup|Ds, ... Dy X:|*Y+ sup E[sup|D,, ... D, Y]] <C,
S1,..,5.<T t<T S1,..,52<T t<T

sup  E[sup|D,, ... D, (X, — Y;)[*] < Chi,
S1,..,5.<T t<T

with C' a positive constant that depends only on M, ¢, n and T.

By virtue of this Lemma, we can prove the following result about the Malliavin covari-
ance matrix that, later on, will help us establish the convergence rate of the approximations
towards the solution.

In the rest of the article we will assume that (H0), (H1) are satisfied and that either one
of (H2) or (H3) is satisfied.

Lemma 3.3: Let v be a constant in [0,1] and let W denote a Wiener process independent
of W, then for any fixed s,t € [0,T] and p € N, we have

sup |[v(YVi—X)+aW, |1, < KiVh+Kaa, sup sup ||y
ve[0,1] he(0,1] ve[0,1]

Xi+u(Vi—Xo)+/2W, HP < o0
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PROOF: Let us denote by (Q, F, P) the canonical space where W lives and let us define the
Sobolev norms for the product space Q x  in the natural manner, that is to say (having
denoted by P/ = P x P and £/ = E x F)

|F||E = E UW’+§: > |

J=lkitka=j

2]{72 1kl 2 . 5
f f DSJ’ 8 DS] koS F| dS]...dSl)Q ?

where D' = D and D? = D. We want to show that for any a € R,

(3.7) sup ||v(Y: — X;) 4+ aW, ||, < K\Wh + Kaa.
ve[0,1]

By definition, we have
[v(Ye =Xo) + aWo|l§, =L ([v(Yy —X1) + aW, Ip)+E'[(f 1Dy (v(Ye =Xe) + aWy ) dr)?]
0
T r
P D (Y= X0 + WP,
0

which, by independence, becomes

(Ve = Xo) + aW, |1, = E'(Jv(Ye — Xo) + aW, ')

+ E[(fOT VD, (Y, = Xo)Pdr) 2] + E[(fOT a*| D, W, [Pdr)?]
< 2T E(Yy = X)) + af E(JW, )]
+wwxfﬁum—&wwﬁ+m®%
SO ||Ye = Xe|lYp + o [WLIT ).

But Lemma 3.2 gives that

E(sup Yy = XoF) + sup E(sup [D,(Y: — X,)[P) < Oy, h77°.
t<T r<T  t<T

Thus, applying this in the previous inequality, we get
lo(Ye = Xo) + aW, |11, < Crph +a || Wll7 .

so our inequality is satisfied.
For the second inequality, we subdivide the proof in steps.
Step 1: By Theorem 2.2, we have already proved

(3.) Il < oo,
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Step 2: we want to show

11

(3.9) "7xt+y(Yt Xi)+aW, Il = sa?’

Applying the definition of Malliavin covariance matrix, we have

T T
VxﬂﬂfLng:f|aﬁﬂ+WE—XﬂWW+/‘ﬁwﬂuﬁh
0 0

t
= f |1 D, Xi(1—v) + vD, Y| dr + a*s > a*s.
0

Consequently we obtain (3.9).
Step 3: Let us consider the set A = {|vx 1,0v,—x,)4aw, — Tx:| < =[x, |]- It is then clear
that we have

Ex i guve-xoraw. 1) = Bk v xpraw 1) + B (0% v x o, [P 147
<2 E(]vy, P1a) + El(|7Xt+u(Yt Xt)—l—aWs| 1a<)

< 2B (g, F1a) + P E (v xpaw, |7

since from (3.9) we know that EI(|7)_(3+V(Yf—Xt)+aW 12P)z < -1, by taking « = V/h and

using (3.8), we can conclude the proof if we notice that

PI(A%) < QkEl(h)_(tl|k|7Xt+u(Yt—Xt)-|—hWt - 7Xt|k) < Chkma

for any k. Taking k£ big enough, one obtains the result. O

In the light of the previous lemma, we can consider the first step of our approximation
procedure and obtain the following

Lemma 3.4: With the above notation and the hypotheses of Theorem 3.1, we have

(3.10) Sup () — Bln(X: — )] < Ch,
(3.11) (/mt E(én(X, — 2))ldx < Ch,

with C' independent of h.

ProoOF: In order to evaluate (3.10), as we did in Lemma 3.3 let us consider a Brownian
motion W, independent of the original one and let FE’ denote the expectation on the
canonical product space, while D and D are the Malliavin derivatives with respect to W

and W.
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The difference in (3.10) can be written as
pu(@) = B(on(Xe — 2)) = pe(a) — E'(n(Xe + hE)) = B[ (X) — 6a(X, + hET )L

But as X; and X, + Az W, have smooth densities, it is known that ¢,(y — z) — 6.(y) as
a — 0, so the last equality leads to

pe() = E(on(Xe = 2)) = lim E'[pa(Xe —2) = 6u(Xe + hZ W) — )]
= — lim E'(¢/,(X, — z)hT W, + %(b;’(@ — 2)hWE),

where we used the Taylor expansion up to the second order and &; represents a midpoint
between X, and X, + hz2W,. By virtue of the independence between X and W, we also
have

pe(x) — B(éy(X, — ) = — lim BEE(6,(X, — e E'(W)) + 3 B(S(E — 2)hW7)
= —lim ShE((6 —2)W7).

Given this last equality, let us focus our attention on &. We remark that for any smooth
function f we may rewrite the mean value theorem for two random variables M and N as

(3.12) FOD) = FON) = [ £ 4 0¥ = M))av(dt - )

and consequently in our case, we have

1
E@6 — W) = B[ X4 VR = )W)
(3.13) 0
_ f E'(S(X, + /AW, — 2)WE)do,
g

where in the last passage we used Fubini’s theorem. In order to prove all the statements
involving a random midpoint one uses this exchange of integrals to work with specific
processes rather than random midpoints.

Following [N2], for any two random variables M, N € D, so that 7541 € Nps1LP and
f € €7, the following integration by parts formula holds

(3.14) E(f")(M)N) = E(f(M)H,,(M,N))  for m>1,
where H,,(M,N)=H(M,H,,_1(M,N)) and
H{(M,N)=H(M,N)= 6Ny, DM)+ 6(Ny3; DM)
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with § and & the adjoint operators of D and D respectively.
Moreover (see [N2] page 41), for any p > 1, there exist indices py, p2, p3, a1, as, depending
on m and p and a constant C' = C'(m, p, p1, p2,p3) such that

(3.15) 1 (M N < Cllvag 15 1M IV g

m+41,p2

by |||l a5 We mean the Sobolev norm, relative to (D, D), as define d in section 2. Since the
proof is based on Holder’s inequality for Sobolev norms, if the index ps > p is assigned,
the other two indices py,p2 can be determined accordingly. We can reexpress (3.15), in a
handier form, by saying that there exist integers h, k, [, ajao

1 (ML N < Cllvag i I TV L

for a properly chosen constant ' = C'(m, p,h,k,1).
In our case, applying the integration by parts formula (3.14), we obtain

1
P = WD) = [ Y+ VBT = s
= fl El(¢a(Xt + V\/EWl — m)Hg(Xt + V\/EWl — I,le))dl/,
0

where by ®, we mean the Gaussian distribution function with density ¢,. Let us remark
that by definition, H results to be independent of x, hence Hs(X; + VW, — v, Wi =
Hs(X; 4+ VAW, W2) for any x € . Besides, as ® is a distribution function, 0 < &, < 1,
so from (3.15) for some constants k,d,b,d’, b’ and ¢' we may conclude that

1
B~ WD) < [ E(@u(X0 4 oVBIW: = o) [Ha(Xe o+ o/ WD)
g
1
<€ [ 5L, 181X+ VR, IV g

By the independence of W and X, for any k, || 7)_(t1+u\/FW1 | & §H’y;(t1 ||, which is finite by
Theorem 2.1. In this way this quantity is dominated independently of h and v. Moreover
| W2 g < oo and || X, +vvVEW || ap <|| Xe || a2+ || vVAW, || a3 and the two terms are
bounded, the first because of Lemma 3.2, the second can be made bounded independently
of v and h, if we assume without loss of generality that A < 1.

Consequently we may conclude that there exists a constant €' independent of h, @ and
2 such that

(6 — 2 W7)] <
that implies
pie) = B(6u(Xe — 2))] < 3Ch,
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which concludes the proof of (3.10)
It remains to show inequality (3.11). We have

] pi(2)— E(én(X, — 2))|de = ] [ lim 2 1606 — )Wl

h - _
= 5] |;1_r>% E'([0 ! ( Xy + vVhEW, — 2)dvW )| de

IA

h ! . .
5] lim [ |E (X, 4+ VAW, — 2)WE)|dvdz

a—0 0

:—hmff |E'(¢o( Xy + vVAW, — 2).

2 a—0
Ho( Xy + vVhW,, W2))|dvda

hoft -
< 5] E'(|Ho( X, 4+ vVRW,, WE)|)dw.
0

In order to assure the interchange between the limit and the integral in the fourth passage.

we are going to show that the family of functions is uniformly integrable. This will conclude
the proof of (3.11).

Uniform square integrability suffices, so we want to prove that

1
stip f f ' (6a( X, + oV/EW — 2)Ha(Xo + VR, W) 2dvda < oo,
a€(0,1]

by exploiting the classical estimates on the exponential tails of the Gaussian density. For
fixed K € BT, let us divide the integral into two pieces

fzf -I-f =1 + Is.
|| <K | > K

Using the same proof done for (3.10) we have that SUP4e(o,1) 1 < 2KC%. For Iy, let us

consider A = {| X, + vVAW,| < %} and let us notice that if we consider the function
Vo(z) = —(1 = a(2)){pnoy + Pal2)ljz<ny, then Wi (2) = ¢4(2), hence by applying the

integration by parts, I can be rewritten as follows and
1 — — —
Iy = f f |E (W ,(X; + WhWy — ) Hs(X; + V\/EW1,W12)(1A—|—1AC))|2dI/dx
> K
1
< 2] f |E/(U,(X; 4+ vVAW, — 2)Hs( X, + vVAW,, W14 2dvda
> K
1
+ 2] f |EN(U (X, + VW) — 2)Hs( X, + vVhWy, WE) 140 ) 2dvda.
> K
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On A we have that | X, + VAW, — 2| > 2l thus for |z| large enough, we can use the

29
estimate )

_)7

a2

U, (X, + VAW, — ) < exp(—

so that

1
f f |EN(W( Xy 4+ vVAW, — 2)Hs(Xy + vVAW, W) 14) |2 dvda
|>K

2 1 _ —
§f e_;?f E'(|Hs(Xy + vVRW, , W) [} )dvde < C < oo Va e (0,1].
|| > K

0

On A“, it is enough to apply a Chebyshev’s inequality to obtain that

1
f f |EN(W (X, + vVhWy — 2)Hs( X, + vVAW, W1 40 ) Pdvda
o] > K
1
gf f E'(|Hs(X, + vVhWy, W2)2)P(A®)dvde
o> K Jo

gf f B (X, + VR WE) e B + oV BI s < C < o,
ol K

for k> 1and all e € (0,1]. O

We can pass to the second step of our procedure. This is rather more complicated than
the first one and it will need several lemmas for its proof. Here we introduce the first one

Lemma 3.5: Let W and W be two independent Brownian motions, so that equations
(2.1) and (3.1), defining X and Y, are driven by W, while the independent copies of those,
X and Y, are driven by W. E” = E x I denotes the expectation on the canonical product

space Q x Q. Let V' Z" be two sequences of processes adapted to the filtration generated
by W, such that

sup  E'[sup |D,,...D, VIH] < Cy
S1,..,5.<T t<T

sup  E'[sup |Ds,...D, ZM*) < Cy
S1,..,5.<T t<T

(3.16)

for some constants Cy,Cz > 0, for some ¢ > 4 and for alln = 0.1,..
Moreover let

4.

9

a:R* SR, y:RYTXxR* SR F:RT RS SR

be differentiable real valued functions such that there exists positive constants C,,, Cjs, C,
upper bounds for the following respective quantities

10®lleo, and [a(0,0)]. sup |3l and  sup |3:(0,0)
(3.17) s€[0,T] s€[0,T]

sup |[v47]|ec and  sup |y,(0,0)],
s€[0,T] s€[0,T]
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foralli=1,....4 (f(i) denotes any partial derivative or order ).

Letusset U, = (U, U?) = ((Xn(s),Yn(s),)zn(s),ffn(s)),(XS,YS,XS,?S)), then we have

(3.18) 13 < CvCZCaCr@CWCht,

1 s
Vﬂza(ﬂf)] Zfﬂs(Qs)f( )vn(r)(gé(r))dwgldwgg
0 n(s

where dW? = ds, and (W', W?) = (W, W) and ji,j5 = 0,1,2, with C' a positive constant
depending only on the constant appearing in Lemma 3.2 and independent of h and all the
constants Cy,Cz,Cy,Cs,C.

Let W be a Wiener process independent of W and W and let E" = E x I x E denote
the expectation in the cross product space supporting all 3 independent processes. Then

ifin (3.16) we take ¢ > 32, i = 1,....p+ 3 and o(U}) = (X}, Y;) = ¢(Ep)(Xt + (Y, — X))+
\/EW% — x), we have that
El

(3.19) < Oy CzCsC,Cht,

1 s
Via(Xe Yy [ 20 | g Ul Wi aw
n(s)

0

uniformly for v € [0,1] and p € {0, 1}.

Obviously the constant (' in (3.19) is different from the one in (3.18) and we are taking
C, = co. We will sometimes use the notation Z;”W =Xe+vYo—Xi)+ \/EW%.

ProoF: We will prove (3.18) only when j; = 1, j2 = 1, which is computationally the most
cumbersome case, all the others can be treated similarly by applying the integration by

parts once or twice less. Later we will specialize the calculations for o = d)(f). To simplify
2

notation, we are going to omit the arguments of the functions.
Applying the integration by parts formula of Malliavin Calculus with respect to W, we
have

1 5 1 5
|Wm%[2%[ wwmmwzwﬁiuW@@@/vwmwm
0 7(s) 0 n(s)
1 5
=w¢/[ D, (D, {V}a} 2" B,y ydrdsl)
0 Jy(s)
1 5
s[]'wmmWAW@ﬁmm@WMa
0 Jy(s)

It is then clear that to obtain (3.18), it suffices to show that

sup |EH[DT[DS{VthO‘}Zfﬂshn(r)” < CVCZCaCﬁCWCv
s€[0,1]
r€(n(s),s]
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where (' is a positive constant that depends only on T and the constant appearing in
Lemma 3.2.
Applying assumption (3.16) and Hélder’s inequality, we get

|E"( Do{ DAV a} 22 85 110
<B [1D- DAV 0} 2L Bty | + DAV 03 D2 20 Bevain| + DAV @} 22D, B ]
<1t 13§22 1401 8 | D2 DAV Lot 11 DB L4 | DAV} )

11D 2] 4] Bl Da (Vi a} ]}

;From now on, we will denote each component of U by U? for ¢ = 1,...,8. We are going to
analyze each single term, indeed by assumptions (3.16) and (3.17) and Hélder’s inequality,
we may dominate each of them in the following manner

(A) Hﬁmﬂ%HDﬁMS%;
4
7 r 2
(B) H%@ﬂh<H§: “<Hfm+wwmr<m4§cw§juau4+1x
=1
08, . 5.
(C) H@m4<u§j Uil 180 lla < Co (11Tl + 1)
=1
8 5 d0,
() rw@m<nﬁDW S DS < ColID Kol + 11D, )
o o o
IWN¢MMQWMW 92 VT @@t IV (DXt 5Dl
=1
8 .
(E) <CAIDVIs(UDNUH)+IVs(1[Ds Xells+ Do Yells)}
=5

8
< OvCal) U ls+ 1+ 11D X ls+ 1D, Yalls];

i=5

da .
O Ut llo )

4
1D Dy VP la < 11D, DVl (

2 2
Jdo i da 7
+ ||Dthh||8||Zax D, U+ [g + ||Dthh||8||Z—ax_DsUt+4||s

F 82
" VIS 2 5 o Ds UFAD, U] s+ | Z Ga DD U]

1,j=1,2 1,j= 12

SCvCa{Z 1T ]ls + 1+ 2(11D, U7 [Is + 1D U7 ls)
1=5

+ (||DSU755||16 + ||DSU756||16)2 + ||DrDsUt5||8 + ||DTDSU756||8}-
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By virtue of all the previous estimates and using Lemma 3.2, we may conclude that X and
Y together with their Malliavin derivatives are bounded in the L? norms (p < 8) uniformly
in t, let us say by a common constant ', so we finally get

sup |E"[Dr[Ds V) a} Z! By € CvCzCaCpCo(4C 4+ 1)(8C + 1)(4C7 + 200 + 2).
s€[0,1]
reln(s),s]
To prove the second result in the statement, with ¢(f) in place of «, we restrict to the case

J1 = 2,j2 = 1 (also to give an idea on how to deal with a different case) and we denote by
Zt”’W =Xi+v(Yi—Xy)+ \/EW%. The main difference with the previous proof lies on the

fact that we lose the uniform bounds on the derivatives of «, but a double application of
integration by parts will help us. Again by integration by parts, the problem is reduced to

showing that |E’”[l~)r{Ds[Vth¢(§)(Zf’W — )] 22 B }n(r]] is bounded uniformly in s, 7 and
v. Carrying the calculations out, we get

[EDAD V(2 — 2)) 25 Y0
<|E[BE (2 = 2y DV ZE DB+ | B2 Y= ) D 20 i VI 22D )|
=B [@ 5 (20 — ) Hpr (2™ N+ B [®4 (2] — ) Hpya (207 N2,

where N! and N? have been obviously defined.
By applying (3.15) to the above terms we may conclude

I v, W
"D AD V027 — )20 B |
- my VyW e - T V7W T2
<Cpt1 H’VZ:,W | 71 | Z™ P+2,q2 | N' Hp—l—l,qa + Cpt2 | ’VZ;,W | d; 127 | p+3,ds | N? Hp—|—2,d3

but || 'ygylw | g5 | Vg | 4,, are bounded by virtue of Lemma 3.3, moreover we know
t t

I Zt”’W lpt3.q0 < N Xellpas,go + |[Yillpt3,4. < +00 and by the increasingness of the Sobolev

norms, this implies that also the term || Z;"" | p42.4, is bounded.

So it remains to evaluate || N!|[,41 4, and || N?|| 42 4., we will show the boundedness
only of the first term, as the proof is the same for both.

If we apply the Hélder’s inequality for Sobolev norms, we obtain

N Ypt1,05 < o DV ZE D, By [p11,40
< ey 1,00 125 VI ot 1,00 122 pt 1,00 11D Bl pt1,0, b
< CvCzlmillp+1s, 1D, By |lp+1,5.
where % + % + é + i = q%. On the other hand it is easy to prove that, if f is a smooth

function with its derivatives and |f(0)| uniformly bounded by a constant A and ( is random
variable, then

O p41,g < AA[IGpg1,ng5
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for appropriate A and n. Consequently in our case we have

||7n(r)||p+1,bl < AICW(HXn(r)Hp-I—l,nbl + ||Yn(r)||p+1,nbl)
||DT'68||P+1,IJ4 < AQC,@p(C)v

for some fixed polynomial function p and constants Ay, A, and integers m, n, which con-
cludes the proof. O

Remark 3.6:

The same technique applies also to prove that if 3 depends only on X, Y and verifies (3.17),
then for j = 0,1 and p = 0,1 we have

) ¢ ‘
B (@ (2 )V} ] 21 6,dW1)| < P(C)Cy CsCpt
2 0

for some properly chosen polynomial P. Indeed, for j=1
() 1. W t t W
v, h h j -1 ma v, Mo h rzh
|E’(¢%p (Zt — $)‘/t j(;ZS 6de£)| S]{; |:||7Z:,Wl|q1 ||Zt ||p—|—2,q2||Ds‘/t Zs 68||P+1,g3

- W W xrh r7h
+ ||'VZV,WHZII 1Z; ||Z-|2-3,d2||Dst Vi 2 Bsllpt2,a, |ds
t

and we may proceed as before.

Another point that we would like to remark is that in the previous proof one might
assume a lower degree of integrability in (3.16), provided one chooses to penalize more the
other terms, when apllying Hélder’s inequality.

The main result for the second step is summarized in the following

Theorem 3.7: Under the same hypotheses as in Theorem 3.1, the following inequality
holds

(3.20) Sup |[E(on(X: —2) — ¢p(Y; — 2))| < Ch,

with C' independent of h.

ProoOF: By applying the mean value theorem to the difference under expectation in (3.20),
we have

E(én(X: =) = én (Vi — ) = E(¢n(Xy + VAWL —2) — 61 (Vi + VAW) — 7))

MBS

= El(¢/ (é}l + \/EW% — $)(Xt — Yt)):

[MES
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where £ is a random midpoint between X; and Y;. ;From the definitions of X and Y, it
is easy to see that the difference verifies the following equation

t
X, -Y, :f [a( X, F(Xs5us)) — a(Yn(s),F(Yn(s); vn(s)))]ds
0

1
+ j(; [b(ijG(Xs;us)) — b(Yn(s)aG(Yn(s)§Un(s)))]dWs .

Let us remark that, due to the regularity of the kernels f and ¢, the coefficients I, GG result
differentiable, hence adding and subtracting the proper terms in the above expression and
applying the mean value theorem on each of the differences we obtain

Xt f {aiﬂ( (stus))(XS —Ys)‘|‘(1y(1/577’};)[F(X5;us)—F(YS;US)]}dS
+f0 {aa(Coy F(Ya303)) (Vs = Yogo)) + ay (Y 0y, 0)[F (Y 05) = F(Y(5)3 096 )] s
+f0 {62 (&5, G(Xy3u0))( Xy = Yi) + by (Yo, ) )[G( X ws) — G(Yi10,)] AW

+f0{bw( E,G(YS; US))(YS - YH(S)) + b ( n(s )703)[G(K977)8) - G(Yn(s);vn@))]}dws-

JFrom now on we adopt [V'; 7] as standard notation to indicate the interval with the random
variables Z,V as endpoints, therefore in the above we have that

27 53 € [Xsays]v 517 C52 € [Ys;Yn(s)]v
€ [F(Xgug) F(Yssvg)], 02 € [G(Xgius); G(Yysv))]

0; € [F(ifsa Us);F(Yn(s)vvn(s))] ) 03 S [G(ifsa Us);G(Yn(s)avn(s))]v
where the midpoints are really to be intended in the notation of formula (3.12). By adding
and subtracting F(Y,;us) in the second term of the first time integral, G(Y;;u,) in the
second term of the first Brownian integral and applying once again the mean value theorem
to those, we get

X~V = [ (€2, F(X3 ) 4 a, (Ve FU(ES (X, = Vi)ds
¥ ] g (Vs i (V) — F(Yei 0]} ds
b 0 FOG R~ Vo) 4 g Voo 8LV 0] = POV o1
[ B GO 00) 4 b Vo) X = VoW,
b [ e G - GOV,
102 GO0 D% i)+ Yoo GOV 500) = GV T
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with &2, &3 € [X,;Y,]. For simplicity of notation, from now on we set
as = [aq (67, F(Xssus)) + ay (Yo, 1) F (655 0],
B = [bo(&, G( X3 us)) + by(YsanE)G/( i),

H, :fo {ay (Yo g )l (Yesus) = F(Yes00)] + g (Vo) 0)[F (Yes v:) = F(Yy0003000) )]s

t
+f{by(st773)[G(Ys3 US) - G(Ys3 US)] + by(Yn(S)v 03)[G(Ys37)8) - G(Yn(8)3 Un(s))]}dwsv
0]

dK, :ax(C;,F(Ys;vs))dS + bx(Cf,G(Ys;vs))dWs : Ko =0.

With this new notation, the above equation becomes
¢

¢
X, -V, :f (X5 —Yi)(a, ds—l—ﬂde)—l—Ht—l—f (Ys = Y 0))d K,
0 0
whose explicit solution is given by
1 B
(3.21) Xy, -V, = Etf ETHdH, + (Y, — Y(s))dK, — d[f BedWy, H+(Y =Y,) K]},
0 0

where & denotes e o(@s=02/2)ds+ ¢ 5:dW: Ty order to simplify even further and to regroup
the terms in ds and in dW;, we consider the process U; = Et_l(Xt —Y;). With a few
computations, from the definition of H, (3.21) can be rewritten as

t
U, - f EHYs — Yy AK, — Beby(C2.G(Yerv,))ds]
0

+ fogs‘l{ay(Ysmi)[F(lé;us) — F(Ys30)] + ay (Vo). 0)[F (Ysi05) — F(Yy6)3 0ps)]
= Ba(by (Yo, )G (Va3 )= G (Va3 )]0y (Y00, O G (Ve 00) =G (Y505 i))D s

t
+f gs_l{by (stng)[G(Ys3 US)_G(YS 3 Us )]"’by (Yn(S)v 03)[G(Ys3 US)_G(Yn(Sﬁ Un(s))]}dwsv
0]

On the other hand, the differences in F' and GG can be reformulated making use of their
respective kernels. Indeed if we introduce independent copies of X and Y, say X and V
and the canonical space (QJ—:P) where they live, we can look at those dlfferences in the
following manner

F(Yisug) — F(Yasvg) = E(f(Ye, Xo)) = E(f(Ye, o)) = E(fy(Ye, E)(Xs = Y4))
G(Yeiu,) — G(Yoiv,) = (g, (Y, E)( X — 17))
F(Yg;v5) = F(Y06)3vpcs)) :E(f Yo Ya) = F(Yo(s): Yars)))
) = FYe, Vo) + 1V, Yarey) = F(Vgens Vo))
o) Yesy = Vo) + £ (Yo, CHY = Vi)
G(Yivs) — G(Yy(s)ivp(sy) = E(g( )= 9V Vi)

= (g ( 547}7 )( n(s) — )+gy( 5753)(175 _1777(5)))7
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where E denotes the expectation in ((L F, ]5) and where we used once again the mean value
theorem, with £1,&7 € [X,;Y,] and (2, (I € [Vy);Ye] and (), ¢F € [Y(5):Ys]. Similarly, if

we take an independent copy of &, say £, the above equation for U, is transformed into
¢

U= [ €710 = Yy K, = ba(L GOV o))
0

+f0 E7 M ay (Yoo i ) E(fy (Y €0)EUS) = Beby (Yo, 03) Egy (e, £)E, U, ) ds

n [ E7 Y, = Vogu )y (Vo BV BCL(CE Vo)) = Buby (Vygus 82V E(ga (2, Vo))V
+fogs_1[ay( n(s)> s) (fy( SvC )( n(s) ™ )) Bsb ( 77(5)7HE)E(gy(stEsz)(f/n(S)_Ys))]dS

t
+ f E7 by (Yo, 12 E(gy (Ys, E2)E, U5 )dW,
0

‘|'f0 gs_lby(Yn(S)vgg)[(Ys - Yﬂ(S))E(gw(ijyn(S))) + E(gy( SaCZ)( n(s) — S))]dWs-

We are finally in condition to rearrange the terms and obtain a simpler form for (3.21)

Ut If gs_l[ay(i/s,nsl)E(fy(}/saésl)gsﬁs) _ﬂsb (1/87ns)E(gy(Ysaég)gSﬁs)]ds
(3.22) 0

4

1
T f by (Yo, 52 gy (Ve E2)E. 0, )WV, + f elaz, .
0 0

where we set

A7z, = (Y, () (Asds + BodW,) + E(Y, = Yy)) Ay )ds + E((Ys = Yy0)) Bo)dW,
Bs = by (CMG(Ys,vs)Hb (Vo) 0V E (g2 (¢, Yiey)

Ay = ag (G F(Yii0,)) + ay(Yy(), 0, (fx(C (1)) — Bs B

Bs:y( n(s)> 07 (s;C)

Ay = ay(Yy(0),05) fy (Y, &) = B By

It is easy to show that equation (3.22) has a unique solution and that the sequence of
iterates defined as

0utt) = [ &7 E ([ay 02V = Ay (Ve V2 EE D1 () s
(3.23) b [ e 0B (9,1 EDE T () dIW, + ot
0]
Uo(t) = f elaz,
0]
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converges to the solution (see [KO]).
By virtue of our initial remark, we can say that our proof is complete if we show that
there exists a constant R independent of £,z and ¢ such that

(R)!
gt

(3.24) [E'(@ (6 + VAW —2)EUk(1) S h Y

Then by dominated convergence theorem, this implies that
(¢ (& + VAW = 2)&Un)] = lim [B'(¢, (& — 2)EUx(1))] < heT

and the first part of the theorem is proven. 0[O

In order to prove (3.23), we proceed by induction, the first step being carried out in the
next lemma and the general case in Lemma 3.9.

¢
Lemma 3.8: Let £ and Uy(t) = f E71dZ, be both defined as before. Then there exists

0
a deterministic constant A depending on M, but independent of t,z,Uy, such that the
following holds

(325) (BG4 VAW, — 2)EUo(0)] < Ath,  |B(u(X,, ¥)ETo(1))] < Ath.

Here u : Q x B? — R is any smooth random measurable function with its first 4 derivatives
bounded by M uniformly in €.

ProoF: Recalling the definition of 7, we can rewrite
B¢ (& + VAW, — 2)€Uo(1))]

§|El |:¢/ (gtl + \/EW% - m)gtfo gs_l{(YS - Yn(S))AS + E((ffs - }777(8))/18)}‘%5} |

MBS

B [@(@1 VAW = 0)6 [ &Y = Vo) B + BT - %)Bs)}dm] .

We focus on only one of the above terms and we show that it verifies inequality (3.25) with
an appropriate constant. The proof of all the other terms runs along similar lines. The
most complicated term is the fourth one and we concentrate on it. As an independent copy
of V.Y must verify an analogous equation

Yo = Yoy = @Yoy FVyiayi oy D(s = 1)) + 0V GV 03 2o N(We = Wiy,
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so substituting the latter in the fourth term of the previous inequality, this becomes

( (gt + \/7W1 - m)gtf Bsa(ffﬂ(s)’F(Y/ﬂ(s);Uﬂ(S)))f( )dT] dWS)
n(s

( (gt ‘|‘ \/7W1 — $)gtf ~5b(l~/ﬂ(s)7G(l~/ﬂ(s);Uﬂ(s)))f( )dWr] dWS) .
n(s

0

w|?

w|?

Again we look only at the last term, since the other can be treated similarly. As we
already mentioned, the midpoint ¢! is to be understood in the sense of expression (3.12),

so recalling the definition of Zt”’W, under the expectation E on Q x Q x Q, we have
Bob(Y,s )7G(Y/77(8)3”n(s)))f dWr] dWs)

1
(fm ) —m)dué’tfgs_lﬁ
0 n(s)

fOE’” (¢2( 70V )&, fs LB (Vs ),G(E(s);vn@)))f( ?WrdWs) dv,
(s

and we are in condition to apply Lemma 3.5. If we recall the definition of B and we
translate the midpoints 82 and (? there appearing in the notation (3.12), we obtain that
this last term can be actually expressed as

[rme
f f f B8y (2 AR fot E by (Vo) (1= G(Yy0)10ys)) + €G(Yis v4))

-gvy,(}/s7 (1— ﬂ)ffn(s) + ,uf/s) f( : b(ffn(s)j G(an(s); Un(s)))dWTdWs]dudel/.
n(s

(3.26)

wle ™

1 s
(Z 7 _m)gtf gs_lb ( n(s)s s)gy( 87C )[( )( n(s)aG(Yn(s)3Un(S)))dWTdWS)dV
nes

Indeed, by virtue of hypothesis (HO0), the functions

) = o, [ glor, 2y
Bay, xe,23,24) = by(xl,(l—f)f g(zy, 2 )dvn( )+ €f g(x1,2)dvg)gy (s, (1—p)xg + ps)

respectively applied to Y,y and (Yn(s),ffn(s),Ys,ffs), verify condition (3.17), with bound
Cy = 220+ A120+2) for the derivatives of order 1, in the worst of cases. Besides &; and its
inverse are solutions to SDE’s with smooth initial condition and coefficients with bounded
spatial derivatives. Therefore it is not difficult to prove that they satisfy for n =0,1,...,4
and g € N ( see [N1], theorem 2.2.2),

(3.27) sup  Efsup|Ds,...D, &[]+ sup Efsup|D,,...D, &%) <C,
S1,...,5.<T t<T S1,..,52<T t<T
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for some positive constant C' independent of h.
So we can take Z" = €71V = &, p = 1, v and 3 as above, satisfying (3.16) and
(3.17). From here, we conclude that (3.26) is bounded by some constant A; > 0 and

dWs)

Repeating the same argument with all the other terms, we can find a proper constant A
such that the thesis is satisfied. The proof for the case |E(u(X,;,Y;)EUn(t))] < Ath is
similar. O

B b( 77(5)7G(Y/77(5);U77(5)))f dWT < A th.

n(s)

E (qﬁ;(@l + VAW, — m)Etf ENE
2 2 0

We now prove the second step of the induction in the lemma that follows.

Lemma 3.9: There exists a constant R > 0, independent of t,h,x such that

k-l—l
/(¢ (& + VAW — 2)E UL (1) |<hz

j=1

]'

ProoF: We proceed by induction. On the basis of the previous Lemma we are going to
prove the step k = 1. From (3.23), we get the first of the iterates

Ui(t) = ] E71E ([ay(Voonh) Fy (Vor 1) = Baby (Ve 119y (Y2, E2)1E,T0(5)) ds
—I_](; 5;1by(Ysa773)E (gy(stég)gSﬁU(S)) dWS + Uo(t),

whence, evaluating our expression we get

(64, (€ + VRWy — m)E ()] < /(6 (€] + VAW, — n)ET(r)

It €+ V16 [ €7 (a0 nl) 0, €8 00() d|

P €+ VW )E [ €7 (3, (Vo) (V)8 00f)) do
PP € VA — 218 [ €700 E 0V £ D)) ).

By the previous lemma, the first term in the right hand side of the inequality is certainly
less than or equal to Aht, hence let us focus our attention on the other two terms.
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First of all let us rewrite the above inequality, by using the midpoint notation (3.12),

therefore, recalling the definitions of ;. 3

5 1 2
57 s 580 nsaa“nd s, We have

[/ (66 + VRW, — 2)&UL(1)| < Aht

ff \E' (&, (20" —m)é}fo E b ay (Yo, FOE(f, (Yo, £9E,Uo(s))ds)|dedy

2

+f ] (07 >sf b (22 G, 10, ) by (Vo2 ) gy (Ve E2)E, T (5))ds ) [dNdedy
[ et e [ e 0, G620 B0y i, €8Tl e

2

ffw (W —m)é}f E7 by (Y, G E(gy (Ve E)E,Un(5))dW, )| dedy
2 0

where we set Ff = (1 — e)F( X us) + eF(Yisv,), G5 = (1 — 6)G( X5 us) + €G(Yy3v,) and
7r =Xy + MY — Xy), for 0 < A\ v,e < 1.
Let us notice that the functions

Bu(es,na) = ay (2o, (1= €) [ Flos.2)du() + ] F(e, 2)do,(2))

Ba(25,76) = bal(1 = )5 + Az, ] g5, 2)dpia(2))

Balzs,5) = f go((1 = Nys + Awa, 2)dpus ()
Bs(xs,76) = Bal2s,76)B3(75,76) + 53(1‘57906)@(%57906)

all have derivatives up to order 4, uniformly bounded by a fixed constant depending on M,
that we will denote with (.
At this point we want to apply Remark 3.6, taking V,* = &, 7" = 53_1E~(fy (Y, ENEUn(s))
or 2" = Es_lﬁ(gy(Ys,éf)gsﬁo(s)) and fBg(21,...,28) = Bi(z1,22), 1 = 1,2,5, so we have
to verify that the hypotheses of Lemma 3.5 are satisfied. We have to find a bound for
| Z2 || 4, for ¢ large enough and n < 4. For this, first note that & and &' verify (3.27).
Let us remark that here we are meaning the Sobolev norms with respect only to W, just
like in Remark 3.6.
Using the usual midpoint notation, our task is made equivalent to finding a bound for
||E;1E(uy(Ys,Z§)E~s ﬁO(S))Hn,qa where 77 is defined as Z* and u = f, ¢, that be indepen-
dent of Uy and of 7 € [0, 1].

By Hoélder’s inequality we have

1€ Euy (Yo, ZDE o) [ln,g <NET g 1 ECuy (Ve Z1)EUo(5)) 1,2
< Cu | E(uy (Ys, 27)E,s U( )l g2
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with — —|— = = =. For example, consider the case when n = 2. We derive our estimate only
in thls case to keep the computations more understandable. By differentiating we obtain

D, E(uy (Y, Z1)E,T0(3)) = Dy Yo Euyo(Yy, 27)E,To(s))
D, Dy E(uy (Yo, ZD)E,Uo(8)) = Dy DuYs Etuyen(Ye, Z7)EUo(5))

and consequently we have that

1 ECuy (Y, ZD)EUo(s) 18, < E(1E(uy(Ya, Z])EUal(5))[%2)

+ K

T
([ |DrYs|2|E(uyw(YsaZ;—)gsﬁ(l(‘s)ﬂzdr
0

92

2

T T
[ |DTDUYS|2|E<uym<mZ:)ésﬁo<s>>|2dudr)
0 0

But uy, (Y, Z;) and uym(Ys,Z;) have derivatives uniformly bounded by M independently
of w, therefore we can use Lemma 3.8 and conclude that

which implies || E(uy (Y, Z1)EUo(8)) || 2,00 < Ahs(14 || Yy || 2.4,) < CAhs, by identical
distribution. Summarizing, it is possible to find a constant C' independent of all the pa-
rameters that depends polynomially on the constant M and the constant ¢ in Lemma 3.2
such that

2

(328)  |E'(&h (€L + VAW, — 0)&T(1)] < Aht + Cle Absds < h(Rot + R3S)
2 0

having chosen Ry = max(A,C'Cy), which is independent of ¢,z and h.
Similarly as in Lemma 3.8 one proves that for a random function u : Q x B2 — R with
derivatives bounded by M uniformly in Q x B? one has that

2

BV, XOETH ()] < ARt + RES)

where Ry only depends on M and C appearing in Lemma 3.2. Taking R = max(Rq, R1)
the proof for £ = 1 finishes noting that R only depends on M and C of Lemma 3.2.

Now that the step k& = 1 is proven, it is clear that the same proof, without changing
the constants, goes through substituting U; and Uy respectively with Uy and Up_;. This
concludes the proof. [

We now want to establish the same result as Theorem 3.7, for the L' norm.
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Theorem 3.10: Under the same hypotheses of Theorem 3.1, the following inequality hold
(3.29) f |E(on( Xy —2) — op(Yy — 2))|de < Ch,

with C' independent of h.

PrROOF: Since the proof is a slight modification of that of Theorem 3.7, we are going to
sketch it only.

By following exactly the same steps as before, we have by dominated convergence theo-
rem that

f E(6n(Xy — o) — (Vs — 2))|dz = f [E(64, (6] + VAW, — 2)(X, — ¥)|d
= [ 1@+ VR - gt
= lim f [E'(h (& + VEW, — 2)EU(1))|dx
On the other hand, studying the sequence of iterates we can see that

(3.30) f|E’( (¢ +WW1 — )& Us(t))|dz

wlr

is dominated by a sum of a finite number of terms of the type

| 1"' A SEI ((b%(zfyw_l’)[ﬂl( zv Mt(ls)r(ﬂla---vﬂl))
(3.31) ffo fofofn(s

—I_H (ZVW Mt(i)r(/ulanul))]) deSd:UJI---d:uldV|dx7

where [ <4 is a fixed integer. In (3.30), we will study the term

E///( %(gt + \/7W1 — m)é}f f n(s),G(an(s);Un(s)))dWTBSdWS).

In this term we have [ = 2 and

mY = D, &EED( n(S)vG )/LZny(YSvY )D Yb( () G( ~77(8)37”77(8)))

t,s,r

M) = Dz €87 (Vo) GE )Gy (Yo, VIV DoV ib(Vo a1, GV Oas)))

Gt = (1= )GV vge) + G (Vi3 04)
Vi = (1- NZ)?H(S) + HY.
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To simplify the notation we will omit some of the arguments for the rest of this proof.
Since (ﬁ% is a density function, it is positive, therefore (3.31) is bounded by

1 1 p1 pt ps B
f f f f f f B (6o (207 ) (207 M) 4 Ho(207, M) drdsdpdpsdvde
0.JoJo Jo n(s)
1 1 1 pt ps
:fffff Em(f(bi( o —a)de [Hi(Z VWM(U)‘FH (ZUWM(Q)N)desdmdugdy
0.J0 J0 JO n(s) 2
1 p1 p1 pt ps B -
:fffff E(H (20W, M)+ Ho(20W M) )drdsdp, dpsdv,
0 J0 J0 JO 77(5)

v,W

where we used Fubini’s theorem and the fact that ¢%(Zt’

[v)

— ) integrates to one, as a

density function, no matter what the value of Zt”’W is. Following the same steps as in the
proof of Lemma 3.8, it is possible to prove that the integrand is bounded, independently
of v. Since no other quantity depends on z, we may conclude that

f B/ (€} + VAW, — 2)&Us(1))|dw < Aht,

with A a constant independent of ¢, h and Uy. We then proceed by induction; using the
definition of Uy (equation (3.23)), we arrive at the following inequality

7 (ts)=H (Z”’W,Etgs_la (YS,FSHQ)E(fy(YS,Zfl)gsﬁk_l(s)))

20 T by (Vi G2 gy (Vs Z8)E T (5)))

(2
73 (t,s) =H (Z”W D EE by (Ye, G2 ) Egy (Y, 27 )ésﬁk_l(s)))
74 (t,s)=H (Z”W D, 20V g, 87 b, (Y, GH2)Eg y(YS,Zfl)gsﬁk_l(s))).
4 k
As before, the density function integrates to 1 and ZE”’ \Zi_(t,8)]) < R Z
By passing to the limit, our statement is proved. = O =
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We can pass to the next step in our procedure and consider the difference
1 :
ElFE Y, — - — Y/ —
(on(Ys — ) — — ]2_1 on(Yy —x)| |

where the Y7 are independent copies of Y. By using Strong Law of Large Numbers we
have that the difference converges to zero almost surely as n — oo for fixed h. Moreover
we can find the rate of convergence in L!(P), in fact

B(on(Ye = 2)) == S on(V =)l = [ SIB(on(Y: — ) = 6n (Y7 — o)

thus, by taking into account the independence of the copies, formula (3.7), Lemmas 3.2
and 3.3 and the boundedness of ®;, we obtain

B | S0 — ) = (Y — o)

E/(6, (Vi + VWi 4 - 2))
2\/@71

:%|El(q>%(1@ + \/EW1/4 — m)H(i/t + \/EW1/47 1))|

C 1
< — - —
- hn H 7Yt+\/h“’1

<> Hon(Y— ) =

- C
2 Y £ VAW <
/4” I|Y: + 1/4”1711_\/571

for some a, b positive constants and for all z € R. Consequently

C
Vh

(3.32) sup E(| E(n (Vi = 2)) = = 3 0n(47 = )] <

3

Also we have
[ (1B =)= 2 Y — o)) do
j=1

= 2\/71T7hn f B¢

We are ready to proceed with our last step.

(3.33)
C

Vhn

(Ve + \/EW% —z))dz <

ISE
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Theorem 3.11: Under the same hypotheses of Theorem 3.1, for each p > 1, there exist
positive constants C, and C, independent of x,t and h, such that

1 < : 1 : 1
(3.34) ilépE E‘;qﬁh(yf —x)—E;¢h(Xf — ) Scphl_ﬁ\/ﬁ

for n = O(+)* for some k > 0.

1 — : 1 — :
(3.35) I S 0! =0 =0 N ekt o | s €

5l
3

PrOOF: As usual, by applying the mean value theorem we may write
on(Y{ — ) — on(X] — 2) = ¢} (o] —2)(V{ — X)),

with p‘g € [Ytj;Xf]. Following the same procedure as before, it is clear that the difference
in (3.34) becomes

L[S0 — ) —an(x] = 2l] ) = 2B ([ ehiel - m07 - )
j=1 j=1

SNy
=1

n -
J

IA

In the case of (3.35) one can easily see that
J £ (htod = anvd = xil) de = ( [ f1ol = stontol — araaly? - x11)

9 : :
=\ = B(YE - X)),

T

In the case of (3.31), with analogous notation as before, for Z{7 = (1 — v)X] + vY{ we
have

1

(336) B (ol - oV? - Xi1) = [ 8 (iehzr - oy - X av

0
Therefore, choosing 1% + % = 1, by Holder’s inequality, the integrand can be dominated as
(3.37) E (164207 = )7 = X{1) (209 = )llp1Y7 - X{ |l
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Furthermore, by the properties of the Gaussian density

; 1 1 . i
B6h(207 = 2)) = s s B(1Z0T = a6, (2 — )
\/27rp_ \/f)hT_i P
1 1 V 7.7 _ ,] —

B~ ( )

=T vh vh
<C —\ff P () (Vhy + 2)dy,

where p!/(y) denotes the density function of V"4 = 27 4 Zh—le The proof of (3.34)

is finished once we prove that f |y|p¢%(y)pf’j(\/gy + z)dy is bounded, for which it is

enough to show the boundedness of pf’j(y). The link described at the beginning of section
2 between the density of a random variable and its Malliavin derivative ( we are now
considering the space Q x Q with derivatives D, D), can be applied here and we have that
there exist positive constants a and b such that

(3.38) P’ (y) = (L jyris y HV 1)) SHV‘;;,J' la Vi 1 < o0

By definition, it is clear that || V"7 || 15 <[ V7 [ Lo+ | X7 = Y7 1ot |4/ 95 Wi |l 1. Sinee,

by Lemma 3.2, we know that || Y7 || 1,5 is finite, the whole question is reduced at evaluating
1Y) — X e, | X] =Y/ || 14, for b>1 and H’y‘;ij |- The first ones are proven in the next
t

Lemma, while the second is shown in Lemma 3.13. Applying these results to (3.36), (3.37)
and (3.38), we obtain our thesis. O

Lemma 3.12: For any p > 1, we have

» N 1
E(Y! - X]F)» <C— Y] X] <(C—=
¥/ —xih <o o < 0oz

ProoF: We will only prove the first assertion for p = 2. The proofs of the second inequality
and of the general case are similar. The difference Y] X] verifies the following equation

+ [b(Y,f(t)a G(Yj(t), Un(t))) - b(X;;(t)a G(X;;(t)7 ﬂn(t)))](W Wn(t))

We want to show that Ytj - X‘tj is uniformly bounded in the L? norm. In order to show
this, by virtue of the mean value theorem, we linearize the above equation. ;From now on,
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we denote by Z = Y — X* then

7} = Zyeoy + aa(E ) (D) F(Yogeys V) Zy o (8 = (1))
+ ay (X Oy (ONF (Y ongey) — FOX 3ty ))(E = (1))
b (60 (0): G(Yyays 0 Zoy gy (Wi = Wiy

by (X 0y Oy (DG (Y03 09y = GIXG 3 ) IOV = W),

(3.39)

with 01@)( i) € [F( ;(t);Un(t));F(X;(t);ﬂn(t))]v 073@)( D) eGY, n(t)? Vye)); G(X;(t);ﬂﬂ(f))] and
fn(f)( i), fn(t)( i)ely: (1) ;(f)]' By recalling the definition of I’ and &, and keeping in mind
that the copies of X and those of Y are respectively identically distributed, we can write

F(Yy5090) = F(X)5 ) = f Oy 9w (dy) = %Zn:f(x’i“)’X’é(”)
j=1
:% Zn:[Ej(f( v Yoo D= F Ve Vi + = Z[f( 31 Vo= (X X300
j=1
:% S F Yy Vi) = F Vs Vi)
j=1
+% Zn;{fw iy Vo) Zacoy + Fa (X Ai) 20 )}
j=
with E/ denoting the expectation relative to W/; similarly for the terms in &
G(Yoayi vaey) — G(Xp0)5 tyc) Z[E (Yt Yy ) = 90500 Vi)
e zl{gw N Vo ey + (X A2 )70 ),
j=

2,7 4,5 j
and A2 A7 € V)03 X)) )

1
where A7

3,1 ) 7,'
ey M) € Wi Xpe]
Hence Equation (3.39) becomes

4

1
Zf:f n<>n<>+2An<>n<>d5+f n()ﬂ()—l_ZBﬂ()ﬂ()dWZ
(340) J#i FE=)

t t
+f Chts >d5+f Ty Vs
0
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where for ¢, 7 =1,...
AV = ag(E1(1), F(Y 3 0.)) + ay (X1, 01(i fo ADLYT) fy(XZ AZ)
AV = (XZ Hi)— fy( n(t)a 77(;5)) LF ]
B = 0, (€2(1), G(Y 3 0.)) 4 by (X, 67(i Zgw (At Vi) + gy (XT N5k
i : 1 . .
B =—b (X_jO?(z))—gy( n(t)?A:(t)) L]
Cl=ay Z[Ef FOEYY) = fYE YY)

TH= by (X7, 6% Z[Ef (YLY7)) = g(YE YT,

form the entries of the matrices that we denote by A and B and of the vectors C' and J.
So equation (3.40) can be written in vector form as

t

where we are using * to denote the transpose of a matrix and dN/ = ALJds + BiJdW?

and dH} = (Cn(s)ds + J! (s)dWs - Cn(s)ds +J (s)de). At the points of the partition,

the process Z is given by Z; = Z Z{(Nf . — N/ )+ H ., which has unique solution

Tr41

(Protter (1990), page 271).
(3.42) Zr, = U, Y (U {(H?LH = HE) = (I Ny, = [H7 N7] )

where U* and (U*)~! are respectively the unique solutions of the matrix equations

(343)  U; :1+f UrodN: (U7 :I—fo (d(N™ = [N*, N*D)U") -

Let us remark that the entries of the matrices A and B are uniformly bounded, namely it
is immediate to see that

.. .. . . M?2
|AY, |BY| < M*4+ M and |AY|, |B"|< — fori#j.
n
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JFrom (3.40), keeping in mind that (Z ) <n Z z? and Jensen’s inequality, we get
=1 i=1

1
2

%) 1|2 V] J 1|2 )
+|f B,y Zyoy W, +|f %:BMs)Zn( SlA +|f IS
E

Taking the supremum over [0,t] and the expectation, by employing Doob’s inequality for
martingales we finally obtain

. t M4
B s 17 <6r([|r =0 s (2P + 20 Y sy |7+ (65 ] ds
0<s<t 0 0<r<s i 0<r<s
t M4
poa([ 032 P sup (ZF + 25T sup |7+ 1] ds)
0 0<r<s i 0<r<s

summarized into

9;(t) < fot(ﬁm Zﬁ )+ Kszi(s))ds

JE

where 9;(t) = E(Oiupt|ZZ| ), x1(s) = (|JZ( )|2 n(s )| ):

and K, = Ks(M + MQ) . Gronwall’s inequality then implies

+ |C? K3 = 6T +24, Ky = KsM*

: bK
E( sup |Zs|2)§eK1Tf E[==3" sup [Z7 4 Ka([ 7" + i ))ds
0<s<t 0 n iz 0Sr<s

(3.44)

ZE sup |ZZ K4TIX f ZE | (s)| + |Cn(s | )dS

0<s<t

with Ky = 1T Ky and K5 = 17 K. Consequently the problem is reduced to analyzing
the vectors ' and J. We can evaluate the last two expectations by the propagation of
chaos. We focus our attention only on E(||Cy, ||?) (|| - || here means the euclidean norm),
as the other case is similarly carried out.

Since the sequence Y* is formed by independent copies of the original process Y, also
the processes f(Y:,Y7) and f(Y?,Y!) result conditionally independent, given Y prov1ded
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j # 1, so for each ¢ and each r = t,, the following inequality is fulfilled

2

BUCP) = B oy (X, 81(0) 5 U2 (07 =30, SO0

< 2B (Y = O YOI GO YD) = SO
il
1<

Z[E] (YY) = FOVLYDIE (FYLY) = FL YDNY)]

4M*

o
4t A

n

_|_

Substituting in (3.44), we finally obtain

n—1
. M* A A
E§ sup |Z¢ <eK4TAF§:t —t = ¢, < =T
(Z-ogth“') 5k0k+1 k) " =7

for an appropriately chosen constants I', A and, of course, the same inequality holds for
each component.
To prove the second statement, it remains to show that for all j,

n T - ‘ ‘ 1
2 J I\|2 <
;:1]0 E(|DHY{ — X1)*)ds < C—\/ﬁ.

Starting again from (3.41), it is possible to show that for each i the matrix process (D ZJ ) =
X(]i)(s,t) verifies the linear matrix sde

¢
X((s.1) = Kiy(s, 1) —|—fs Xiy(s,m)dNG (s,7),
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where the matrices are given by
(dN(*i)(s,r))jk = DAY dr for j £ 1
(AN (s,7))ir = DIAL dr + DB AW
f((ki)(s,t) = D'HF for k # 1
K{iy(s.t) = DM} + (27 BY)'.
With computations similar to those shown before, it is possible to deduce an inequality
analogous to (3.45) with the coefficients of K(; in place of those of H, from which will

descend the result by propagation of chaos and so we conclude the proof. [

We would like to remark that when we apply the inequality of Lemma 3.12 to our terms
in Theorem 3.11 we have

1
\27h

1
NG

1
Vnh’

1 1 < : - . 1
- E(Y! — X715z < AT)z n<(C
Ve o U XIS Ga (AT <

giving the right order of convergence.
It remains to check the boundedness of the last factor

Lemma 3.13: Let V4 = 77 4 w/2'11—131/1/1 and n = O(4)" for some k > 0, then the
following holds

sup  sup H*y‘;]}] |p < oo forallpe N andte (0,T].
he(0,1] ve[0,1] t

PrROOF: Let X/ denote the unique strong solution to (1.1) when the stochastic equation
is driven by W/7. The three main points that one needs to check in order to prove the
boundedness of the Malliavin covariance matrix are

. 1
i) sup ||V — X/ < O(— + Vh);
( ) Ve[ 1] H t t Hlyp (\/ﬁ )

(ii) H*y;(gl |p < oo for all p € I¥;

(i) | 9L llp < Ch7

The first and the third inequality come directly from Lemma 3.3, in particular using
formula (3.7), while the second one was proven in Lemma 2.2 for the process X, but clearly
the same is true for the copies. [O
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4. Proof of Theorem 3.1

This brief section is dedicated to gather all the results that we exposed in the previous
ones and to finally obtain the proof of Theorem 3.1.

The statement of Theorem 3.1 deals with both density and distribution functions, but as
we announced, we focus our attention only on the proof for the first ones, for which we have
laid out all the necessary results. To get the same conclusion in the case of distributions,
the whole procedure should be reconstructed, but we will just describe it briefly.

For the densities, we first consider the L' norm (3.4)

[ (@)= Y ontxi = o do < [ pita) = Bon(X — plda
+ [ 1B (X = ) = an(Y: 2o

s [ QB Y =20 = 3D oY) - ) ds

b [ B 0 =)= 1Y an(x] - o)

1 1
<Ch+ —=+4+ —).
KRVE RV
The above bounds follow from Lemma 3.4, Theorem 3.10, (3.33) and Theorem 3.11. The
analogous result (3.6), when adopting the norm of the supremum follows by applying
instead Lemma 3.4, Theorem 3.7, (3.32) and Theorem 3.11.

Consider now the proofs for distribution functions (3.3):

1 n
j=1
1 n
+ | [E(Lyi<ay — - Z Liyicay)l lde
=1

] — 1 —
+fE 22 vice) = 5 22 Lxiew | 42
j=1 j=1
= A1+ As 4 As

Let us consider the quantity Aq, for this one has to prove that there exits a positive constant
(' independent of € € (0,1] and A such that

B(®(r — X0)— ®(x — Y| < Ch
|E(®(x—Yy) — 1{YtS$})| < (Cle.
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The first and third assertion are proven by the same argument as in Lemma 3.4 (note that
we know that ﬂyil—l—\/EWl € Np»1 LF(Q) by taking v = 0 in Lemma 3.3), while the second

one is proven along the lines of the proof of Theorem 3.7.
The quantity As can be analyzed in the same way as we showed (3.33), while for As,
we have

1 ¢ sy
fE 2 tien — 5 2o Yixisa] dwgEZE(f|1{Y35w}_1{XfSw}|d$)
j=1 J=1 j=1

1 & : :
< EZEOY{? - X)) <
j=1

ER

This finishes the proof of (3.3). For (3.5) the proof is similar to the one for (3.4). O

Conclusions

In this work, we have analyzed the rate of convergence of a particle method introduced
by Bossy and Talay in order to approximate the solution to the Mc Kean-Vlasov equation
and we showed that the rate of convergence is faster than the rate obtained by the authors
in their article. On the other hand, the rate of convergence obtained here seems to match
their simulations run in the particular case of the Burgers equation.

We also analyzed the rate of convergence when approximating the marginal densities of
the solution. In order to carry out the necessary calculations we had to study the existence
and smoothness of these densities.

The problem of obtaining the optimal rate of convergence for the Burgers equations
is still open and the authors hope the method developed here might apply, if properly
adapted, also to this case.

Some straightforward generalizations of the above results were not included in our expo-
sition for reasons of space. For instance, it is not difficult to consider the case when also the
initial random variable has to be approximated or when the measurements of the error is
done through the variances (i.e. L?(Q2)) rather than through the expectations. Yet another
generalization is to consider approximations of the type ¢, rather than ¢; if e = O(h") for
some 7 > 0 a similar analysis can be carried out.

Finally we remark that the condition n = O(3)* for some & > 0 in Theorem 3.1 (used
to obtain Lemma 3.13) is merely technical rather than restrictive, since k can be chosen
freely.
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