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Abstract

Connections between Statistics and Archaeology have always appeared

very fruitful. The objective of this paper is to o�er an outlook of some

statistical techniques that are being developed in the most recent years

and that can be of interest for archaeologists in the short run.
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1 Introduction

Scienti�c research is not outside the world-wide extension process that many
aspects of the live are experimenting at the end of the century. Connections
between di�erent areas are easier and easier. On the other hand, specialization
is almost a requirement to be able to contribute signi�cantly in any �eld of
the scienti�c spectrum. So it is frequent to �nd researchers coming from very
di�erent areas who work on the same kind of problems.

This atmosphere favors that links between Statistics and Archaeology be-
come even stronger than they traditionally were. This paper attempts to throw
some light on the topics that statisticians are dealing with, in the hope that
archaeologists are incorporating them to their usual research activities.

There are many stages in an archaeological research process where statistical
problems are present. The problem of data collection appears �rst. Sampling
techniques and experimental design o�er good classical solutions and no new
contributions are being referred here. We just turn to remark once again that
an appropriate random selection of the data is crucial to validate posterior
inference procedures.

Once data have been collected, the archeologist is concerned about see her
data. Exploratory Data Analysis is then to her service. Here we refer to that
matter when we explain some nonparametric methods (subsection 2.1) and mul-
tivariate methods (section 4).

Statistical inference is broadly present in Archaeology. Dating methods, ty-
pology (cluster analysis) and discriminant analysis are maybe the most popular
of these procedures. Recent advances are compiled in sections 2, 3 and 6. Boot-
strap and other resampling methods are the content of section 5. They turn out
to be useful general tools for validating and calibrating inference methods.

A common problem in many practical studies is the simultaneous presence
of qualitative and quantitative information. Some of the techniques developed
here are specially adequate to deal with this problem. It is proper to emphasize
multivariate methods based on distances (subsection 4.3) and Bayesian methods
(section 6).

Section 7 quickly reviews some statistical packages. It also includes a list of
Internet resources where statistical software related with Archaeology is acces-
sible.

We are not reviewing the �eld known as Spatial Statistics notwithstanding
that it is an important connection area between Statistics and Archaeology.
Only some recent references are listed: Gri�th (1997) is dedicated to Spatial
Statistics, and Buck, Cavanagh, and Litton (1996) has a chapter about the
Bayesian analysis of spatial data.

The rest of the paper is organized by statistical topics. It is hoped that at
the end of the paper the correspondence between reviewed statistical methods
and archaeological problems looks clear.

2 Nonparametric methods

We call nonparametric methods to the statistical techniques dealing with the
estimation of functionals of the density or regression function. There are no
parametric assumptions involved in the estimation (for instance, no normality
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assumptions are made) or we can think that the parameter space has in�nite
dimension (for instance, each possible density function could be a parameter;
then the parameter space would be the set of all possible functions, who has
in�nite dimension). Strictly speaking, nonparametric methods are not a novelty
neither in Statistics nor in Archaeology (a simple histogram is a nonparametric
estimator of a density function), but in our opinion all their potential has not
been fully explored. We present here density estimation by kernel methods, and
regression function estimation performed by three di�erent approaches.

2.1 Kernel density and regression estimation

The objective is to estimate the density function (i.e. the value f(x) of the
density function of a random variable X at a point x, given a random sample
ofX : X1; : : : ; Xn) or the regression function (i.e., the conditional expected value
E(Y jX = x) given a random sample of the variable (Y;X): (X1; Y1); : : : ; (Xn; Yn)).

Kernel techniques are characterized by the use of a weight function (the
kernel function) that permits give more mass to observed data Xi (or (Xi; Yi))
near the point x when f(x) (or E(Y jX = x)) is estimated.

Kernel density estimation can be considered as a way of smoothing the his-
togram. A speci�c reference in Archaeology is Baxter and Beardah (1997).
More generic references are Silverman (1986) and Simono� (1996)

Example 1

This example is based on data and ideas from Baxter and Beardah (1997).
From 105 specimens of Romano-British waste glass, 11 variables were obtained
measuring its chemical composition. Figure 1 represents the estimated density of
the scores on the �rst principal component for each individual. The estimation
is done with Beardah's routines KDE (see section 7). Clearly, there are two
groups of glasses along the �rst principal component. 2

Nonparametric regression (also know as smoothing techniques) is motivated
as follows. Assume we have a dependent variable Y that can be explained by
the independent variable X . A way to make more 
exible linear regression is
passing from

E(Y jX = x) = b0 + b1x to E(Y jX = x) = m(x);

where m is an unknown function. The nonparametric estimation of m(x) is
done by computing local mean values:

m̂(x) = faverage of values Yi corresponding
to values xi that are near the value xg = AveragefYijxi are near xg.

This is a sample version of E(Y jX = x). A general reference is Simono� (1996).

Example 2

We use again data from Baxter and Beardah (1997). In the �gure 2 of that pa-
per, we can see the scatter plot of the scores on the second principal component
versus the scores on the �rst one. As we know, there is no linear relation between
these two variables, but we can �nd nonlinear relation by using nonparametric
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Figure 1: Example 1. Romano-British waste glass.
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Figure 2: Example 2. Nonparametric regression for Romano-British waste glass.
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regression: the second principal component can be nonlinearly explained by the
�rst one. Figure 2 shows the result. 2

Applications of nonparametric density and regression estimation include ex-
ploratory data analysis, cluster analysis (Baxter and Beardah 1997) and gener-
alized additive models (GAM).

2.2 Generalized additive models (GAM)

We consider now the multiple linear regression model

E(Y jX) = b0 + b1X1 + b2X2 + : : :+ bpXp:

A nonparametric extension of it is the additive model:

E(Y jX) = b0 + f1(X1) + f2(X2) + : : :+ fp(Xp);

where fi are unknown functions that can be estimated by smoothing techniques.
A complementary extension is the Generalized Linear Model (GLM). For a
known function g (the link function),

g(E(Y jX)) = b0 + b1X1 + b2X2 + : : :+ bpXp:

For instance, in the logit model Y is a 0-1 variable,

E(Y jX) = Prob(Y = 1jX) =
eX

0�

1 + eX
0�
:

The logit model is a GLM: if we de�ne the logit transformation as l(p) =
log(p=(1 � p)), for p 2 [0; 1], then l(E(Y=X)) = X 0�. The Generalized Addi-

tive Model (GAM) extends the original linear model in both directions:

g(E(Y jX)) = b0 + f1(X1) + f2(X2) + : : :+ fp(Xp):

Venables and Ripley (1994) has some chapters dedicated to GLM and GAM.
Comprehensive references are cited there.

2.3 Classi�cation and regression trees (CART)

Classi�cation and regression trees (CART) are nonparametric techniques for
discriminant analysis and multiple regression. The key reference on this �eld is
Breiman, Friedman, Olshen, and Stone (1984). Let us look at the simple case
of discriminant analysis for two population. We observe

(Yi;X1i; : : : ; Xpi); i = 1; : : : ; n

where variable Yi is 1 or 2, according to what population the case i is coming
from. The objective is to predict the value of Yi, given the information brought
by X1i; : : : ; Xpi. CART selects one of the p explanatory variables (that one
with the biggest discrimination power, for instance, X1) and divide the original
sample into two parts: cases with X1i � C1 (say, Subsample 1) and cases with
X1i < C1 (say, Subsample 2), as Figure 3 indicates. The choice of C1 is done
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Figure 3: CART: �rst step.

in a way that these two new subsamples are as similar as possible to the original
classes identi�ed by Yi.

Now, the same procedure is done in Subsample 1 and Subsample 2. A
binary tree is the output of the procedure. Each node is divided into two
branches according to an observed variable. The �nal nodes have associated
one of the values of Y : 1 or 2.

To classify a new observation (X1; : : : ; Xn), we let this new case running the
tree from the �rst node to a �nal node (according to its values of Xi and to the
splitting rules de�ning the successive intermediates nodes of the tree) and it is
�nally classi�ed into the group indicated by the corresponding �nal node.

Example 3

Data consisting on measurements of 150 male Egyptian skulls from 5 di�erent
time periods (-4000, -3300, -1850, -200, 150) are considered. Data and original
source can be found in Manly (1994). The objective is to discriminate between
time periods based on the measures. Thirty skulls are measured from each
period. Four measures are taken from each skull (see Figure 1.1 at Manly
1994):

V 1 Maximal Breadth of Skull
V 2 Basibregmatic Height of Skull
V 3 Basialveolar Length of Skull
V 4 Nasal Height of Skull

Figure 4 shows the �nal classi�cation tree as the commercial package S-plus (see
section 7) produces. Each �nal node contains a label indicating to which one of
the �ve periods would be classi�ed a skull with measures according to the path
going from the original node to the �nal one. 2

3 Arti�cial neural networks (ANN).

Arti�cial Neural Networks are very popular tools in Arti�cial Intelligence and
Engineering. They are based on the connection of many very simple mathemat-
ical models, the arti�cial neurons, that imitates the work of a real neuron. We
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can think about an arti�cial neuron as a mechanism that transforms numerical
input information into numerical output information:

Inputs!

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
! Output

Output = g(Input 1; : : : ; Input p);

The function g is an activation function, that takes values near 1 for great inputs
and values near 0 for low inputs.

Inputs for neuron B are the (weighted) outputs of other neurons A1; : : : ; Ap.

A2

A1

A3

B

OutputB = g(w1OutputA1 + : : :+ wpOutputAp);

Moreover, the output of B (modulated by some weights) is one of the inputs of
(many) other neurons C1; : : : ; Cq.

A1

A3

BA2

g

C1

C2

C3

W

W

W

A1,B

W

B,C3

W

WB,C1

B,C2

A2,B

A3,B

There can be a lot of these B neurons. In fact, neurons Ai and Ci are of the
same type as B. When many neurons and many interactions are considered, we
obtain an Arti�cial Neural Network.

As an example, we present the one hidden layer feed forward propagation

ANN with a unique output. There are three neuron layers (A, B and C) and
the information goes from the �rst layer to the second layer and then to the
third one.
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The structure of the net is as follows.

� separate external information is given to each neuron in layer A,

� gA is the identity function,

� gB = gC = g,

� there is only a �nal neuron in layer C, and

� the information produced by layer C is return outside.

Let xi be the numerical information given to the i-th neuron in layer A and
let y be the output obtained from neuron C. Then,

y = OutputC = g(wBC
1 OutputB1 + : : :+ wBC

p OutputBr) =

= g

0
@ rX
j=1

wBC
j OutputBj

1
A =

= g

0
@ rX
j=1

wBC
j g

 
pX
i=1

wAB
i OutputAi

!1
A =

= g

0
@ rX
j=1

wBC
j g

 
pX
i=1

wAB
i xi

!1
A :

This ANN is a parametric family of nonlinear functions from IRp to IR that,
given inputs (x1; : : : ; xn) returns the output value y. Each set of parameters
fr; wAB

i ; wBC
j g determines a di�erent function.

The fundamental property of the ANN is known as Universal approximation

property and tells that every function from IRp to IR can be approximated by
one of these one hidden layer ANNs.

This property originates the statistical interest for ANN. Given observations
(yi; xi); i = 1; : : : ; n, generated by the model

yi = �(xi) + "i;

we can estimate � by means of a one hidden layer ANN.
Strictly speaking, this is a particular case of a nonlinear regression analysis.

ANN literature has been developed (quite) independently and it has provided

10



important contributions. For instance, the estimations process (or net train-

ing process) is implemented in a very di�erent way in ANN and in nonlinear
regression analysis. More connections between both topics are needed.

Statistical applications of the ANN include discriminant analysis, regression,
cluster analysis and nonlinear multivariate analysis.

4 Nonlinear multivariate analysis (NLMVA)

We present here some alternative tools to the well known Principal Component
Analysis and Correspondence Analysis. Some of these techniques are quite
recent, but others have been introduce in the statistical literature in the 80's.

4.1 NLMVA for discrete data: The Gi� system

Albert Gi� is the nom de plume for a group of authors related with the De-
partment of Data Theory at the University of Leiden, The Netherlands. These
authors compiled their work of more than 10 years in the book of Gi� (1990).

The book presents the particular idea of MVA that the Gi� team has. For
instance, they a�rm that all we can observe is discrete (but not all the discrete
are equally rich). Moreover, no random variables are needed to be assumed the
origin of data: data are enough to make Statistics.

The basic principle of the proposed techniques is the concept of homogeneity.
The observed data and the observed variables are jointly transformed (in a
nonlinear way) in order to obtain transformed objects as much homogeneous

as possible. Not all transformation is always allowed: it depends on the data
richness.

One special case of the proposed methodology is equivalent to Multiple Cor-

respondence Analysis (MCA), but the scope of the book is wider than MCA.
Continuous data can also be analyzed after a preliminary codi�cation.

Some of the procedures developed in this book are included in the commercial
package spss:

� Homals, similar to multiple correspondence analysis,

� Princals, a nonlinear version of principal components also available for
ordinal data,

� Overals, a nonlinear version of canonical correlation analysis.

4.2 NLMVA for continuous data: Principal curves

Principal curves are parameterized one dimensional curves that passe through
the middle of a p-dimensional cloud of data. They are nonlinear generalizations
of the �rst principal component. They were introduced in the work of Hastie
and Stuetzle (1989). Some work has been done since then, but principal curves
have not been very used, mainly because of the di�culties in the de�nition and
implementation for the second (and posterior) principal curves, and also because
the existing associated software has not been widely di�used. Other references
are LeBlanc and Tibshirani (1994), K�egl, Krzy_zak, Linder, and Zeger (1997),
and Delicado (1998).
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Figure 5: Example 4. Principal curve for Romano-British waste glass.

There exists a parallel neural network approach: Self-Organizing Maps and
Generative Topographic Mapping. See, for instance, Bishop, Svens�en, and
Williams (1997).

Example 4

Figure 5 shows the �rst principal curve in the data set of the 105 glass scores
on the two �rst principal components. 2

4.3 Distance based methods

We have observed p characteristics of n objects, for instance,

Characteristic 1 : : : Characteristic p
Object 1 1 : : : 22.5

Object 2 0 : : : 29.0
...

...
...

...
Object n 1 : : : 17.3

Sometimes it is easier to give a distance between objects matrix D = (dij),

dij = Distance(Objecti;Objectj);
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based on the p observed attributes, than proposing a joint model for these at-
tributes. It is possible to mix qualitative and quantitative information (Gower's
distance, for instance, but there exist alternative methods).

In the last years many work has been done in order to develop usual multi-
variate statistical analysis (principal components, discriminant analysis, regres-
sion analysis) from a distance matrix. In the Universidad de Barcelona there
is an active group of researchers in this �eld (see Cuadras, Fortiana, and Oliva
1997). Multidimensional scaling is a precedent to this line of work.

Talking about distances, we have to refer to cluster analysis. Alternatives
to the usual hierarchical methods are the pyramidal clusters, where the resulting
clusters are allowed to be overlapped. More 
exibility is obtained at the prize
of more di�cult interpretation of the results. As a reference, see Diday (1986).

5 Bootstrap and other resampling methods

Let us assume that we are interested in a particular characteristic X of a pop-
ulation and that we observe the value of this variable in a sample of similar
objects. For instance, X can be the volume of some cups. Let X1; : : : ; Xn be
our observations.

We can think that each Xi is the realization of the random variableX , which
has unknown distribution function FX .

1
X

x

F (x)

�!

8><
>:

X1

...
Xn

Let � = E(X) be the theoretical mean volume. Inference about � is based on
the sample mean

�̂ = �Xn =
1

n

nX
i=1

Xi:

Con�dence intervals for � can be constructed if we assume that FX belongs
to a particular parametric family and/or by means of asymptotic results. For
instance, if V ar(X) <1, we know that�

�Xn � 1:96
SXp
n
; �Xn + 1:96

SXp
n

�

is an asymptotic 95% con�dence interval for �. Let us observe that this interval
has the form

(LA; UA) ;

where LA is the 2:5 percentile of the asymptotic distribution of �Xn, and UA is
its 97:5 percentile.

An alternative way to provide a con�dence interval for � could be as follows.
Assume that we know FX , so we can repeat as many times as we want the
sampling process:
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Sample 1 X
(1)
1 ; : : : ; X

(1)
n �! �X

(1)
n

...
...

...
...

Sample N X
(N)
1 ; : : : ; X

(N)
n �! �X

(N)
n

We have a size N sample of �Xn from which we can build a con�dence interval
for � as follows,

(LN ; UN ) ;

where LN is the 2:5 percentile of the sample �X
(1)
n ; : : : ; �X

(N)
n , and UN is its 97:5

percentile.
The problem of this approach arises when we realize that we do not know FX .

When a statistician does not know a population characteristic, usually he or she
estimates it from the data. So we estimate the theoretical distribution function
FX by the empirical distribution function Fn of our initial sample X1; : : : ; Xn:

Fn(x) =
1

n

nX
i=1

I(�1;x](Xi):

n
1

x

F (x)

�!

8><
>:

X�

1

...
X�

n

Efron (1979) introduces the term bootstrap to designate this resampling proce-
dure (there exist other resampling methods, as the jacknife, also covered by this
book). He proposes instead of sampling from FX , taking samples from Fn, or
equivalently, drawing values from the set fX1; : : : ; Xng with replacement:

Bootstrap sample 1 X
�(1)
1 ; : : : ; X

�(1)
n �! �X

�(1)
n

...
...

...
...

Bootstrap sample N X
�(N)
1 ; : : : ; X

�(N)
n �! �X

�(N)
n

We resample our original sample. It is a valid procedure in many cases,
but bootstrap does not always gives appropriate answers. Two are the direct
advantages of bootstrap: �rst, in many cases bootstrap gives better results
that asymptotic arguments, and second, sometimes the only possibility to make
inference is by a resampling procedure.

The scope of bootstrap methods includes, among others, con�dence intervals,
hypothesis tests (as an example, see Delicado and del R��o 1994) and times series.
Two references are advisable: Efron and Tibshirani (1993) is a very well written
book, recommended also as a very good book in Statistics; Davidson and Hinkley
(1997) presents an updated review of this broad topic.

6 Bayesian methods

The Bayesian approach to Statistics is not at all new. Nevertheless we have
considered appropriate to include it in this paper for several reasons. First, in
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the last years the Bayesian contribution to the Statistics research is dramatically
increasing. Moreover, the use of powerful computers permits to give a Bayesian
answer to many problems that where not accessible to Bayesian statisticians
few years ago. And �nally, the Bayesian methodology is not widely used in
Archaeology.

Recently has appeared a book that introduces Bayesian methods to archae-
ological community: Buck, Cavanagh, and Litton (1996). We can read in its
preface:

The major advantage of the Bayesian approach is that it allows

the incorporation of relevant prior knowledge or beliefs into the anal-

ysis.

This sentence words an essential point of Bayesian Statistics.

6.1 An introduction to Bayesian methodology

We analyze a simple problem. We want to date a red pigmented ceramic found
in a excavation. There are three possible periods for that kind of objects, Period
1, Period 2 or Period 3, and we know that

Prob(redjPeriod 1) = 0:2,
Prob(redjPeriod 2) = 0:5,
Prob(redjPeriod 3) = 0:8.

The classical (or frequentist) answer is the following:

I should date my ceramic in the more likely period.

That is, we take the maximum likelihood estimator, and the result is:

estimated period = 3.

The Bayesian answer is as follows. A priori, before observing the ceramic,
we can assume that the three periods are equally probable:

Prob(Period 1) = Prob(Period 2) = Prob(Period 1) =
1

3
:

The Bayes' Theorem permits to calculate the probability of the event

Ai = \The ceramic corresponds to Period i"

conditioned to the observed fact

B = \The ceramic is red".

P (AijB) =
P (Ai \B)

B
) P (Ai \ B) = P (AijB)P (B):

But also,
P (Ai \ B) = P (BjAi)P (Ai):

So
P (AijB)P (B) = P (BjAi)P (Ai))

P (AijB) =
P (BjAi)P (Ai)

P (B)
(Bayes' Theorem)
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Figure 6:

We can compute Prob(Period ijred) and also Prob(red):

P (red) = P (redjPeriod 1)P (Period 1)+

+P (redjPeriod 2)P (Period 2) + P (redjPeriod 3)P (Period 3) = 0:5

and

P (Period 1jred) =
0:2� 1

3

:5
=

2

15
;

P (Period 2jred) =
0:5� 1

3

:5
=

5

15
;

P (Period 3jred) =
0:8� 1

3

:5
=

8

15
:

So our prior beliefs have been modi�ed in the experimental stage (the observa-
tion of the color of our ceramic) and now we have \a posteriori" beliefs.

A summary of Bayesian methodology could be as follows:.

1. Prior information is expressed as a probability distribution over the pa-
rameter space.

2. Likelihood function is, in fact, the conditional distribution of the observa-
tions given the parameter values.

3. Bayes' Theorem is used to combine prior information with experimen-
tal information and transform them into posterior information: another
probability distribution over the parameter space.

Some of the positive points of Bayesian Statistics are the following. Bayesian
approach is conceptually appealing (and simple). For instance, the probability
that a parameter belongs to a Bayesian 95% con�dence interval is really 0.95.
Moreover, it is possible to include prior qualitative information into the inference
process. It is also possible to progressively update the beliefs: the \posterior"
information of today is the \prior" information of tomorrow.
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On the other hand, some di�culties are inherent in Bayesian methodology.
A prior distribution is always needed, even if you do not have such \a priori"
information, and some results will strongly depend on that prior. Moreover, in
medium and large size problems, the computation of the posterior distribution
is extremely di�cult. Many times only approximate solutions are available, as
the produced by the Gibbs sampling method (see subsection 6.2).

We refer to Buck, Cavanagh, and Litton (1996), pp. 208-, to follow an
application example of Bayesian methods to radiocarbon dating. There, it looks
clear the superiority of these techniques when qualitative information has to be
included in the analysis.

6.2 Computer intensive methods

The Bayes' Theorem version for absolutely continuous random variable is:

f�(�jX = x) =
fX(xj�)f�(�)R
fX(xj�)f�(�)d�

;

where (X; �) are random variables, � is the unobserved parameter (that can be
a vector of parameters), X is observed, fX(xj�) is the likelihood function and
f�(�) is the prior distribution of �. The result of the experimentation was the
observation of the value x for X .

In many cases, we need to solve the denominator integral (and usually this
is not an easy task). In other cases, we do not want the posterior distribution of
all the parameter vector, but only the posterior distribution of some parameters.
For instance, � = (�; �) and we want to know the posterior distribution of �
given the sample, with no attention of �. Then,

f�(�jX = x) =

Z
f�(�; �jX = x)d�:

Again, we need to integrate.
The integration operation is usually not feasible. Then, Monte Carlo meth-

ods can help us to approximate the integrals. One of the most used Monte
Carlo methods in this area is the Gibbs sampling (see again Buck, Cavanagh,
and Litton (1996)). This technique has an additional advantage: only marginal
conditional distribution must be speci�ed

f(�j�; x) and f(�j�; x)

instead of
f(�; �jx):

7 Recommended Statistical Software

At our knowledge, no program exists implementing all the procedures presented
in this paper. Nevertheless we could list some packages.

� S-plus. Many statistical developments are done in S-plus, and object ori-
ented statistical commercial program that incorporates many of the most
recent statistical techniques. A good book for S-plus is Venables and
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Ripley (1994). S-plus is possibly the most updated commercial pack-
age. It also includes a module on Spatial Statistics. Some related web
sites are http://www.mathsoft.com (the o�cial web page of S-plus) and
http://www.stats.ox.ac.uk/pub/MASS.

� OxCal. Bayesian inference (including Gibbs sampling) is possible by using
this package from the Oxford Radiocarbon Laboratory. It is accessible at
http://units.ox.ac.uk/departments/archaeology.

� KDE: Kernel Density Estimation MATLAB toolbox, by C.C. Beardah.
See also Beardah and Baxter (1995). The routines can be downloaded at
ftp://ftp.maths.ntu.uk.ac/pub/ccb.

� Some other Internet resources:

{ Statlib (http://www.stat.cmu.edu/statlib) for Statistics and S-
plus.

{ Neural classification and regression trees. Ntree is a C
library for the estimation of neural network smoothed versions of
CART. (http://www.informatik.uni-freiburg.de/pub/neural/).

{ Neural networks in MATLAB. See the web site http://neural-
server.aston.ac.uk/GTM/.

{ Gifi system. Source code for di�erent compilers are available at
http://www.ucla.edu/gifi/.

{ Principal curves. The original S-plus program from Hastie and
Stuetzle (1989) can be download at http://www.stat.cmu.edu/S/
principal.curve. Many complete information about principal curves
and software related with K�egl, Krzy_zak, Linder, and Zeger (1997) is
available at http://www.cs.concordia.ca/%7Egrad/kegl/research
/pcurves. At http://www.econ.upf.es/%7Edelicado/prcu, you
can �nd MATLAB routines implementing the principal curves ap-
proach described in Delicado (1998).

8 Conclusions

The possibilities of interaction between Archaeology and Statistics are extremely
appealing. Joint projects of archaeologists and statisticians are certainly very
promising. We borrow some words (here in italics) that Clive Orton (Orton
1997) write in the review of Buck, Cavanagh, and Litton (1996) for the Journal
of Archaeological Science, and we �nish the paper with a �nal advice:

My advice to archaeologists is bear in mind Statistics, and then

be sure that you know a sympathetic statistician.
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