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Abstract

Principal curves have been de�ned (Hastie and Stuetzle 1989) as

smooth curves passing through the middle of a multidimensional data

set. They are nonlinear generalizations of the �rst principal compo-

nent, a charazterization of which is the basis for the principal curves

de�nition.

In this paper we propose an alternative approach based on a di�er-

ent property of principal components. Consider a point in the space

where a multivariate normal is de�ned and, for each hyperplane con-

taining that point, compute the total variance of the normal distribu-

tion conditioned to belong to that hyperplane. Choose now the hy-

perplane minimizing this conditional total variance and look for the

corresponding conditional mean. The �rst principal component of the

original distribution passes by this conditional mean and it is orthogo-

nal to that hyperplane. This property is easily generalized to data sets

with nonlinear structure. Repeating the search from di�erent starting

points, many points analogous to conditional means are found. We

call them principal oriented points. When a one-dimensional curve

runs the set of these special points it is called principal curve of ori-

ented points. Successive principal curves are recursively de�ned from

a generalization of the total variance.

Key Words: Fixed points; Generalized Total Variance; nonlinear

multivariate analysis; principal components; smoothing techniques.

JEL: C10; C14.
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1 Introduction

Consider a multivariate random variable X in IRp with density function fX
and a random sample from X, namely X1; : : : ; Xn. When the distribution of

X is nearly elliptical the �rst principal component is a good way to summarize

the information of that sample. As a data analysis tool, the �rst principal

component is the straight line that \better" passes through the cloud of data.

As a distributional concept, the �rst principal component is roughly speaking

the straight line that runs through the highest density areas of X in IRp.

Hastie and Stuetzle (1989) introduce principal curves as an extension

of the �rst principal component to distributions with nonlinear structure.

They de�ne the principal curve of a random variable as a one-dimensional

parameterized curve fx2 IRp:x=�(s); s2 I � IR; � di�erentiableg having a

property of self-consistency in the following sense: for every point �(s) in

the curve, the conditional mean of X given that �(s) is the closest point to

X in the curve, is just the original point �(s). They give an appropriate

de�nition of the principal curve of a multivariate data set and they present

nonparametric algorithms to obtain it.

The main objective of this paper is to give an alternative de�nition of

principal curves. It is based on the generalization of a local property of prin-

cipal components for a multivariate normal distributionX: the total variance

of the conditional distribution of X given that X belongs to a hyperplane,

is minimum when the hyperplane is orthogonal to the �rst principal compo-

nent. The generalization of this result to nonlinear distribution leads us to

de�ne principal oriented points (the �xed points of a certain function from

IRp to itself, and principal curves of oriented points. Our approach to prin-

cipal curves suggests a generalization of the concept of total variance. This

extension provides a good measure of the dispersion of a random variable

distributed around a nonlinear principal curve, and it permits local second

(and higher order) principal curves to be recursively de�ned.

Before starting to introduce the new elements, a short review of related

work is helpful to set the present paper in a context. In the last forty years

many works have appeared in the statistical literature proposing extensions

of the simple and powerful concept of principal components to more general

setting than the multivariate linear world. Starting with an observed data

matrix Xn�p, some proposals look for a non-observable data matrix Yn�r,

r < p, such that the con�guration of the n points in IRr and that in IRp
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are as much similar as possible. The particular de�nition of similarity leads

to the works of Shepard and Carroll (1966) or Srivastava (1972) (that pays

special attention on the selection of r), to multidimensional scaling and to

techniques compiled in Gi� (1990), among others.

Other authors propose to increase the dimension of the data matrix in-

cluding known functions of the observed data, and then to apply the usual

principal components technique on the enlarged matrix for detecting and de-

scribing nonlinear relations among the data. Gnanadesikan and Wilk (1966)

use powers and crossed products of the original data.

A di�erent approach is developed in Etezadi-Amoli and McDonald (1983)

and Yohai, Ackermann, and Haigh (1985). A nonlinear factorial model is

proposed: Xn�p = �(Yn�r) + noise, where r and Y are unknown and �

is assumed to belongs to a parametric family of functions. Usually r is

�xed in 1 or 2, and an alternating optimization procedure is repeated until

convergence: for a �xed Y , the best parameters for � are obtained; then

for these parameters, the best con�guration Yn�r is taken. In Etezadi-Amoli

and McDonald (1983), the parametric family of functions is the second degree

polynomials in Y . Yohai, Ackermann, and Haigh (1985) choose r = 1 and

use the nondecreasing segments of quadratic parabolae as family of functions.

The residuals of these models are used to �nd a second principal component.

At this step, the class of functions may contain any monotonic segments of

parabolae.

Koyak (1987) looks the transformation 	: IRp
! IRr, r < p such that

the r-dimensional transformed data matrix 	(X) has a good linear repre-

sentation. No parametric form is assumed for 	. The proposed algorithm of

estimation is based on nonparametric smoothers.

The work of Hastie and Stuetzle (1989) opens a new way to look at the

problem. Among the above mentioned references, the most related with

Hastie and Stuetzle (1989) could be Etezadi-Amoli and McDonald (1983)

and Yohai, Ackermann, and Haigh (1985). The main di�erence with these

papers is that now no parametric assumptions about the link function � are

made. The values r = 1 (principal curves) and r = 2 (principal surfaces) are

used.

The principal curves de�ned by Hastie and Stuetzle (1989) (hereafter,

HSPC) pass through the \middle" of the distribution and they are self-

consistent (in the same sense as Tarpey and Flury (1996) de�ne self-consistent

set of points for a random variable). In Section 2 we o�er a rigorous de�ni-
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tion of HSPCs. It is not guaranteed that a HSPC does exist. The concept

of principal surface is analogous.

In 1992 two works directly related with Hastie and Stuetzle (1989) ap-

peared. Ban�eld and Raftery (1992) is mainly applied. It includes a mod-

i�cation of the Hastie and Stuetzle (1989) algorithm in order to reduce the

bias of the original procedure. They report empirical examples of estimation

of closed principal curves where the bias reduction they get is important.

Tibshirani (1992) is rather theoretical. The main point of that paper is to

provide a new de�nition of principal curve such that ifX is transformed from

a one-dimensional random variable S by � plus noise, then � is a principal

curve ofX (HSPC does not have this property). The existence of Tibshirani's

principal curve for a given random variable X is not guaranteed. The author

proposes a method for the estimation of � based on the EM algorithm, un-

der the assumption that noise distributions are normal. Thus, this approach

leaves the nonparametric spirit of Hastie and Stuetzle (1989) methodology.

LeBlanc and Tibshirani (1994) faces again the problem as in Etezadi-

Amoli and McDonald (1983) and Yohai, Ackermann, and Haigh (1985), but

now the family of link functions is 
exible enough to consider it as nonpara-

metric. Multivariate adaptive regression splines (Friedman 1991) are used to

develop procedures that allow the successful estimation of principal curves

and surfaces de�ned as in Hastie and Stuetzle (1989). Recently, the paper

Duchamp and Stuetzle (1996) states that the principal curves de�ned as in

Hastie and Stuetzle (1989) are critical points of the expected squared distance

from the data, but they are not extremal of this functional. An application

of HSPC in the clustering context is made by Stanford and Raftery (1997).

K�egl, Krzy_zak, Linder, and Zeger (1997) introduces the concept of prin-

cipal curve with a �xed length. They prove the existence and uniqueness

of that curve for theoretical distributions and propose an algorithm to im-

plement their proposals. So this paper means the �rst proof of existence of

principal curves, having however the limitation that the length of the curve

has to be previously �xed.

In the most recent years, many related work is being done in neural

networks literature: Mulier and Cherkassky (1995), Tan and Mavarovouniotis

(1995), Dong and McAvoy (1996), Bishop, Svens�en, and Williams (1996),

Bishop, Svens�en, and Williams (1997), among others.

The present paper is close to Hastie and Stuetzle (1989) in spirit: no

parametric assumptions are made, smoothing techniques are used in the pro-
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posed algorithms for estimation, and the conceptual idea of principal curve

we have in mind is very similar to that introduced by Hastie and Stuetzle

(1989). Nevertheless, there exist signi�cant di�erences in de�nitions and in

the implemented algorithms. On the other hand, our approach to second and

higher order principal curves does not recall directly any of the previously

cited works.

The structure of the rest of the paper is as follows. Section 2 deals with

our proposal of de�nition for principal oriented points and principal curves of

oriented points, as distributional concepts. The de�nition of sample counter-

parts is postponed to section 3, where algorithmic aspects and some examples

are examined. The generalization of the total variance and the de�nitions

of local higher order principal curves are the core of section 4. Section 5

contains some concluding remarks. The proofs of the results appearing in

the paper are postponed to a �nal Appendix.

2 Alternative de�nition of distributional prin-

cipal curves

The de�nition of principal curves given by Hastie and Stuetzle (1989) is

based on the generalization to a nonlinear context of a known property of

the �rst principal component: the conditional mean of an elliptical random

variable given that the variable is in the orthogonal hyperplane to the �rst

principal component, is the point of intersection of that hyperplane and the

�rst principal component.

The rigorous de�nition is as follows. Consider a p-dimensional random

variable X with density function fX . A parameterized curve � in IRp

�: I � IR! IRp

is said to be parameterized by the arc length when the length of the curve from

�(s1) to �(s2) is js2� s1j. This is equivalent to be unit-speed paprameterized

when � is di�erentiable (i.e., j�0(s)j = 1 for all s). Hastie and Stuetzle 1989

consider a di�erentiable curve � that does not intersect itself (if s1 6= s2 then

�(s1) 6= �(s2)), that is a unit-speed curve for all s 2 I) and that has �nite

length in �nite balls. They de�ne the projection index s�: IR
p
! IR as

s�(x) = sup
s
fs : kx� �(s)k = inf

t
kx� �(t)kg;
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and therefore �(s�(x)) is the closest point to x in the curve �. They de�ne

a principal curve (and we denote it as HSPC) as any curve � that is self-

consistent in the following sense.

De�nition 1 (HSPC, Hastie and Stuetzle (1989))

Given the random variable X in IRp, the curve � is called self-consistent for

X, or principal curve of X in the sense of Hastie and Stuetzle (HSPC) if

E(Xjs�(X) = s) = �(s):

Hastie and Stuetzle (1989) prove that when the HSPC is linear, then it is

the �rst principal component. So the HSPC is a generalization of the �rst

principal component.

In the present paper we generalize another well known property of the

�rst principal component when the underlying distribution is normal: the

projection of the normal random variable over the orthogonal hyperplane to

the �rst principal component has the lowest total variance among all the

projected variables over any hyperplane. Moreover, this is true not only for

the marginal distribution of the projected variable but also for its conditional

distribution given any value of the �rst principal component. The following

proposition establishes that property.

Proposition 1 Consider X � Np(�;�). Take x0 2 IRp and for each b 2 IRp

such that bt�b = 1, let H(x0; b) = fx 2 IRp : (x� x0)
tb = 0g the orthogonal

hyperplane to b passing by x0. Consider the problems

(P1) min
b:bt�b=1

fTV (XjX 2 H(x0; b))g;

where for any random variable Y, TV (Y ) = Trace(Var(Y )) is the total

variance of Y , and

(P2) max
h:hth=1

fVar(htX)g:

Then the solutions to both optimization problems are, respectively,

b� =
1

�
1=2
1

h� and h� = v1;

where �1 is the largest eigenvalue of � and v1 the corresponding unit length

eigenvector. Moreover, E(XjX 2 H(x0; b
�)) = �+s0v1, with s0 = (x0��)

tv1.

The straight line f�+ sv1 : s 2 IRg is the �rst principal component of X.

The corollary bellow characterizes the points of this line.
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Corollary 1 Consider X � Np(�;�). A point x0 2 IRp belongs to the �rst

principal component line f�+ sv1 : s 2 IRg if and only if x0 is a �xed point

of the function GX de�ned as

GX(x) = E(XjX 2 H(x; bX(x)));

where

bX(x) = arg min
b:btb=1

TV (XjX 2 H(x; b))

Corollary 1 characterizes points on the �rst principal component as the

�xed points of a function going from IRp to IRp. Observe that only local

information around a point x0 is needed to verify whether x0 is a such �xed

point or not. Proposition 1 provides a mechanism to �nd points in the �rst

principal component: the iteration of the function GX leads (in one step)

from an arbitrary point x0 to a point on the �rst principal component line.

In the next subsection we exploit this mechanism in order to generalize the

�rst principal component to non-normal distributions.

2.1 Main de�nitions

Let X be a p-dimensional random variable with density function fX and

�nite second moments. Consider b 2 Sp�1 = fw 2 IRp : jjwjj = 1g and

x 2 IRp. We call H(x; b) the hyperplane orthogonal to b passing by x:

H(x; b) = fy 2 IRp : (y � x)tb = 0g.

Given b 2 Sp�1, it is possible to �nd vectors b2(b); : : : ; bp(b) such that

T (b) = (b; b2(b); : : : ; bp(b)) is an orthonormal base of IRp. We de�ne b? as

the (p� (p� 1)) matrix (b2(b); : : : ; bp(b)).

With these de�nitions we have

E(XjX 2 H(x; b)) =

R
IRp�1(x + b?v)fX(x+ b?v)dvR

IRp�1 fX(x+ b?v)dv
; and

TV (XjX 2 H(x; b)) =

R
IRp�1 vtvfX(x+ b?v)dvR
IRp�1 fX(x + b?v)dv

�

E(XjX 2 H(x; b))tE(XjX 2 H(x; b));

for any x and b such that
R
IRp�1 fX(x+ b?v)dv > 0.

Observe that E(XjX 2 H(x; b)) and TV (XjX 2 H(x; b)) do not depend

on the choice of b?, but only on x and b. Therefore the following functions

are well de�ned:

�(x; b) = E(XjX 2 H(x; b))
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and

�(x; b) = TV (XjX 2 H(x; b)):

The following result determines the smoothness of � and � in accordance

with the smoothness of fX . It is a direct consequence of Fubini's Theorem

(see, for instance, Corwin and Szczarba 1979, p. 524).

Proposition 2 If fX is of class Cr at x and
R
IRp�1 fX(x+b?v)dv is not equal

to zero at (x; b), then � and � are of class Cr at (x; b).

Observe that �(x; b) = �(x;�b) and the same thing happens for �. So we

de�ne in Sp�1 the equivalence relation � by,

v � w () v = w or v = �w:

Let Sp�1
� be the quotient set. From now on, we write Sp�1 instead of Sp�1

�

even if we want to refer to the quotient set.

Now we extend the functions bX and GX we introduced for the normal

case. Remember that, when X is normal, for all x, the function bX(x) returns

the direction of the �rst principal component, and GX gives a point in that

line.

De�nition 2 We de�ne the correspondence b�: IRp
! Sp�1 by

b�(x) = arg min
b2Sp�1

�(x; b):

We say that each element of b�(x) is a principal direction of x. We also de�ne

the correspondence ��: IRp
! IRp as

��(x) = �(x; b�(x)):

The in�mum of �(x; b) over b is achieved because TV (X) is �nite and because

Sp�1 is compact. Let ��(x) = �(x; b); b 2 b�(x), be the minimum value.

The next result summarizes the smoothness properties of b�, �� and ��.

Proposition 3 If (x; b) veri�es the hypothesis of Proposition 2 for all b 2

b�(x), the function ��: IRp
! IR is of class Cr at x. Moreover, if r � 2 and

b� is a function in a neighborhood of x (i.e., #fb�(y)g = 1 for y near x),

then �� is also a function in a neighborhood of x, and �� and b� are of class

C
r�1 at x.
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A comment on the adequacy of conditioning on H(x; b) is in order. As

we are interested in de�ning valid concepts for non-elliptical distributions,

random variables with non convex support have to be considered. If the

support of X is not convex, the intersection of a �xed hyperplane with this

support can be a non connected set. So we de�ne Hc(x; b) as the connected

component ofH(x; b)\Support(X) where x lies in. It is more natural de�ning

conditional concepts based on Hc(x; b) than on H(x; b). Moreover, if Hc(x; b)

is convex then E(XjX 2 Hc(x; b)) always belongs to Hc(x; b) � Support(A),

and then �� is going from Supp(X) to itself. From now on, we assume that

we are conditioning always to Hc(x; b).

We are ready to extend the de�nition of the �rst principal component for

normal random variable as �xed points of �� (remember Corollary 1).

De�nition 3 We de�ne the set �(X) of principal oriented points (POP) of

X as the set of �xed points of ��:

�(X) = fx 2 IRp : x 2 ��(x)g:

When we refer to a POP x we also make implicit reference to its principal

directions: the elements of b�(x).

At this step we can precisely establish our concept of principal curves.

De�nition 4 Consider a curve � from I � IR to IRp, where I is an interval

and � is continuous and it is parameterized by the arc length. It is a principal

curve of oriented points (PCOP) of X if

f�(s) : s 2 Ig � �(X):

Observe that the �rst principal component line is a PCOP for a multivariate

normal distribution. The question of existence of POPs and PCOPs for an

arbitrary p-dimensional random variable is considered in the next subsection.

We �nish this subsection by de�ning the distribution on IR induced for a

random variable X who has a PCOP �. This concept will play an important

role in Section 4.

De�nition 5 Consider a random vector X with density function fX and let

� be a curve �: I � IR ! IRp parameterized by the arc length. Assume that

� is PCOP for X. The probability distribution on I induced by X and � is the

distribution of a random variable S having probability density function

fS(s) /
Z
IRp�1

fX(�(s) + b�?(�(s))v)dv;
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provided that
R
I fS(s)ds <1. Moreover, if E(S) <1, we reparameterize �

adding the constant (�E(S)) to the values of I, in order to have an induced

random variable S with zero mean.

2.2 Existence of POPs and PCOPs

We consider the following scenarios:

A1. Supp(X) is a compact set.

A2. There exists a compact set K � Supp(X) such that for all x 2 K and

all b 2 Sp�1, �(x; b) 2 K.

A3. There exists a compact set K � Supp(X) such that for all x 2 K,

��(x) � K.

A4(K). For all x 2 K and all b 2 Sp�1 the integral
R
Hc(x;b)

f(u)d(u) is positive.

Observe that either A1 and A2 imply A3. Assumption A4(K) guarantees

that conditional mean and variance (and then �� too) are of class Cr at x 2 K

(if fX 2 C
r+1 at x, r � 1).

The following theorem deals with the existence of POPs. Its proof is

direct because Brouwer's Fixed Point Theorem applies (see, for instance,

Takayama 1985, p. 260).

Theorem 1 Consider a random variable X with �nite second moments and

density function fX of class Cr; r � 2. Assume that A3 is veri�ed for a

compact set K, that A4(K) holds and that �� is a function. Then the set

�(X) is a non empty set.

Remark 1. If �� is a correspondence, the natural extension of the preceding

result would be done applying Kakutani's Theorem instead of Brouwer's one

(see, for instance, Takayama 1985, p. 259). Nevertheless, Kakutani's result

needs the set ��(x) to be convex, and in general this is not true in our case.

So, we must require �� to be a function in order to have a not empty set

�(X).

Remark 2. The existence of a compact set K verifying A2 implies that

there is a kind of attractive core in the support of X (the compact set K):

the mean of any hyperplane crossing K is inside K. For instance, if X
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is normal with zero mean and variance matrix �, then the compact sets

Kc = fx 2 IRp : xt��1x � cg verify condition A2. In general it looks

sensible to think that sets of the form fx : f(x) > �g, for small � > 0, should

hold this condition.

The existence of a PCOP in the neighborhood of any POP is guaranteed

by the following theorem.

Theorem 2 Consider a random variable X with �nite second moments and

density function fX of class Cr; r � 2. Assume that the correspondence b�

is in fact a function (#fb�(x)g = 1, for all x 2 Supp(X)). Let x0 be a POP

for X with principal direction b0 = b�(x0). Then there exists a PCOP � in a

neighborhood of x0 (i.e., there exists a positive " and a curve �: (�"; ")! IRp

such that �(0) = x0 and �(t) is a POP of X for all t 2 (�"; ")). Moreover

� is continuously di�erentiable and �0(t0) = �0K0, where

K0 =
@��

@x
(x0)b

�(x0) 2 IRp

and �0 = b�(x0)
t�0(t0) 2 IR.

Because of this result, it is possible to compute the value of the tangent

vector to a PCOP at a given point:

Corollary 2 Let us assume that there exists a C1 curve �: I � IR ! IRp

being a PCOP. Then �0(t) = �(t)K(t) for all t 2 I, where

K(t) =
@��

@x
(�(t))b�(�(t)) 2 IRp

and �(t) = b�(�(t))t�0(t) 2 IR.

Remark 3. At that point, the question about whether �0(t) coincides with

b�(�(t)) or not arises in a natural way. The answer to that question is in

general negative. Here we have a simple example. (Other examples can be

constructed where b�(�(t)) = �0(t); see the example in the next subsection

for a particular case).

Example 1.

Consider the set

A = f(x; y) 2 IR2 : x < 0; y > 1g [ f(x; y) 2 IR2 : 0 � y � 1g[
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[f(x; y) 2 IR2 : x > 0; y < 0g � IR2

and let X be a uniform random variable in K = A \ B((0; :5); r), for some

large enough r. Then, it is not di�cult to verify that near the point (0; :5)

the following set is a principal curve of oriented points:

� = f(x; y) : y = �x; x � �:5g [ f(x; y) : y = :5;�:5 � x � :5g[

[f(x; y) : y = 1� x; x � :5g:

We can parameterize this curve by t = x. Observe that for all (x; y) 2 �

with �:5 < x < 0 the tangent direction to the curve � is parallel to the

vector (1; 0). Moreover, for these points the principal direction of (x; y),

say b�(x; y), is such that its orthogonal hyperplane (line, in this example)

H((x; y); b�(x; y)) is the line determined by (x; y) and the point (0; 1). So

b�(x; y) is not parallel to (1; 0) and we conclude that in general �0(t) 6=

b�(�(t)). A similar reasoning can be done for (x; y) with 0 < x < :5. 2

Some comments about the uniqueness of the PCOP are in order. It is

easy to �nd examples of random vectors with a unique PCOP (e.g., the �rst

principal component is the unique PCOP for a non spherical multivariate

normal) or many (even in�nite) PCOP (e.g., any line passing by the mean

is a PCOP for a spherical multivariate normal). Theorem 2 establishes the

existence of principal curves in a neighborhood of any POP. So the uniqueness

question regards when these pieces of local curves can be joined to form a

unique PCOP (or a �nite number of them). The following result is based on

compactness arguments and gives an intuition about when a PCOP is unique

(its proof is direct).

Proposition 4 Consider a random vector X with �nite second moments and

density function fX in Cr, r � 2. Assume that hypotheses A3 and A4(K)

are veri�ed for some compact set K. Let �(X) be the set of POPs for X,

which is assumed to be a non empty set. Assume that for all x 2 �X there

exists a positive ", a continuous curve �x: (�"; ")! IRp with �x(0) = x, and

an open set Vx � IRp such that

Vx \ �(X) = f�x(s) : s 2 (�"; ")g:

Then there exists a �nite number J of continuous curves �j: Ij ! IRp, j =

1 : : : ; J, such that

�(X) = [
J
j=1�j(Ij):
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2.3 PCOP of a distribution de�ned from a given curve

In this subsection we deal with the following problem. Assume that a random

vector X in IRp has been de�ned as the sum of a randomly chosen point on

a given parametric curve � plus a noise term. The question is whether the

original curve � is a PCOP for X or not. Hastie and Stuetzle (1989) prove

that the answer is negative for the principal curves they de�ne (HSPC), and

Tibshirani (1992) de�nes an alternative concept of principal curve overcoming

this (using his words) unsettling di�culty.

We show here that the answer to the question mentioned above is also

negative for the PCOP, but we argue that it is natural to have a negative an-

swer. So we do not worry about trying to recover a generating curve, and we

purely use the models given by curve plus noise as appropriate mechanisms

to generate data with nonlinear structure.

According to our approach to principal curves, a theoretical model for a

multivariate distribution de�ned from a given curve is as follows. Consider

a curve in the p-dimensional space �: I ! IRp, where I � IR is a possibly

non-bounded interval in IR. We assume that � is of class Cr, r � p and that

� is parameterized by the arc length (i.e., jj�0(s)jj = 1). Physically, for p = 3

we can think of � as the result of subjecting the segment I to both a torsion

and a curvature.

At each point �(s) in the curve, an orthonormal coordinate system A(s) =

(a1(s); : : : ; ap(s)) is de�ned where a1(s) = �0(s) and the other vectors ai
are a base of the normal hyperspace to � at �(s). The frame matrix A(s)

can be chosen as a di�erentiable function of s. Moreover, among others

the following properties hold (see, for instance, Guggenheimer 1977 for the

details): the vector �00(s) is orthogonal to �0(s), the norm of the vector �00(s)

is the curvature of � at �(s), one over the curvature is the radius of curvature

(the radius of a circumference contained in the plane de�ned by the point

�(s) and the vectors �0(s) and �00(s), passing by �(s) and having the same

�rst and second derivatives as � at �(s)), the second vector of A(s), a2(s)

can be chosen proportional to �00(s) and pointing at the center of curvature

(de�ned as the center of the previously mentioned circumference), the third

vector of A(s) is related with the torsion of the curve.

We consider the function �� de�ned by Hastie and Stuetzle (1989) in

the proof of their Proposition 6: let Hs = H(�(s); �0(s)) be the normal

hyperplane to the curve � at �(s) and de�ne �� mapping I � IRp�1 into
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[s2IHs so that ��(s; y) = �(s) + A(s)(0; yt)t. Thus �� put (s; y) in Hs in

a di�erentiable way with respect to s and �� applies to I � Rp�1 the same

torsion and curvature that � applies to I so that orthogonality is preserved

in some sense. Let (S; Y ) be a random variable on I � Rp�1 with density

f0(s; y) = fS(s)fY jS=s(y) where S and s are in I, having zero conditional

expectations E(Y jS = s) for all s. Consider the random variables in IRp

obtained as X = ��(S; Y ).

As we mentioned bellow, it is not guaranteed that � is a PCOP for X.

The following proposition shows that under quite general conditions it is

natural that X has not � as a PCOP.

Proposition 5 Assume that I = Supp(S) is a compact interval, and that

the distributions Y jS = s have convex compact support contained in the ball

B(0; �(s)), where �(s) is the curvature radius of � at the point �(s). Then

the function ��: Supp(S; Y ) ! Supp(X) is a homeomor�sm. Moreover, the

density function of X at a given point x 2 Supp(X) is

fX(x) = fS(s)fY jS=s(y)
1

1� y1=�(s)
;

where (s; y) is the inverse of x by �� and y1 is the �rst component of y.

Besides the previous assumptions, consider now that the random variables

Y1 and (Y2; : : : ; Yp�1) are conditional independent, given that S = s. Then

E(XjX 2 Hc(�(s); �
0(s))) = �(s) + a2(s)E

" 
Y1

1� Y1=�(s)

!�����S = s

#
;

where a2(s) = �00(s)�(s).

The proof of this result is based on change of variable standard techniques,

and it is deferred to the Appendix.

Observe that the larger the values of y1 are, the closer to the center of

curvature the points x are. Then the density of the transformed variable is

higher for points near the center of curvature, as it is expected: near the

center of curvature the probability is compressed and it �lls less room, so the

density of probability raises. Consequently, the conditional expected value of

the transformed variable X given that X belongs to a hyperplane orthogonal

to � at �(s) is closer to the center of curvature than �(s). In addition

to that, in many examples it is easy to verify (by symmetry arguments)

that b�(�(s)) is just �0(s), and then it can be concluded that E(XjX 2
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Hc(�(s); b
�(�(s)))) 6= �(s) and then � is not a PCOP. The next example is

one of these cases.

Example 2.

Consider two independent random variables S � U([��R; �R]), R > 1, and

Y � U([�1; 1]). Let � be the parametric curve �(s) = (R cos(s=R); R sin(s=R)),

s 2 [��R; �R]. The transformation �� mentioned above transforms the rect-

angular region [��R; �R]� [0; 1] to the annulus centered at the origin of IR2

with radius R�1 and R+1. We transform (S; Y ) according to �� and obtain

the random vector X,

X = �(S) + �0?(S)Y;

where �0?(t) is the unit length vector orthogonal to �(t) oriented to the center

of the annulus (i.e., �0?(t) / �00(t)).

The bivariate density of X is not uniform over the transformed region.

The density is larger in points closer to the center. For instance, the condi-

tional distribution of X given that X 2 Hc(x = �(0) = (R; 0); b = �0(0) =

(0; 1)) has density function

f(u) = k
1

u
I[R�1;R+1](u);

where k = (log((R+1)=(R�1)))�1 and expected value E(XjX 2 Hc(x; b)) =

2k < R, for all R > 1. We conclude that � is not a HSPC because

�(�(0); �0(0)) 6= �(0) (i.e., � is not self consistent). Besides that fact, it

can be shown that b�(�(0) = (R; 0)) is precisely �0(0) (see the Appendix for

a justi�cation) di�cult) and concluded that � neither is a PCOP. 2

The previous example and the Proposition 5 indicate that the concepts

we are handling with (HSPC, PCOP) are not invariant against nonlinear

deformations of the spaces they live in. The reason of this fact is that princi-

pal curves are de�ned by statistical properties (conditional expectation and

variance, mainly) that are not invariant against this sort of transformations

(the transformed density function strongly depends on the involved nonlin-

ear deformation). We conclude that when we manage nonlinear curves with

statistical tools it must be admitted that invariant objects are not likely to

be reached.
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3 Principal curves for data sets

Now we consider a random sample X1; : : : ; Xn from a multivariate random

variable X. We assume that a non linear curve is a good summary of the

structure of the distribution of X and we try to recover such a curve from the

observed data Xi. In general, the hyperplanes passing by a given x0 contain

a very few (usually, only zero or one) observed Xi. So we need to include

some smoothing procedure to calculate both conditional expected values and

conditional total variances.

To de�ne smoothed expectation and variance corresponding to a hyper-

plane H = H(x; b), we project observations Xi orthogonally to the hyper-

plane and we denote the projections by XH
i . A weight is associated to each

projected observation,

wi = w
�
j(Xi � x)tbj

�
= w(kXi �XH

i k);

where w is any decreasing positive function.

The smoothed expectation of the sample corresponding to H is de�ned

as the weighted expectation of fXH
i g with weights fwig. Let e�(x; b) =

e�(H(x; b)) be such a value that, by de�nition, belongs to H(x; b). The way

we de�ne the smoothed variance corresponding to a hyperplane H(x; b) is

gVar(x; b) = gVar(H(x; b)) = V arw(X
H
i ; wi; i = 1; : : : ; n);

where V arw(X
H
i ; wi) denotes the weighted variance of the projected sample

with weights fwig. The smoothed total variance is e�(x; b) = Trace(gVar(x; b)).
Several de�nitions are available for w. For instance, we can use w(d) =

Kh(d) = K(d=h), where K is a univariate kernel function used in nonpara-

metric density or regression estimation and h is its bandwidth parameter.

If we use w = Kh, we can denote the smoothed total variance by e�h(x; b).
The smoothness of e�h as a function of (x; b) will depend on h, as well as it

happens in univariate nonparametric functional estimation.

In Section 2 the convenience on conditioning on Hc(x; b), instead of

H(x; b), was pointed out. Translated to the sample smoothed world, con-

ditioning to H(x; b) is equivalent to using all the projected observations XH
i

with positive weights wi. On the other hand, conditioning to Hc(x; b) implies

to look for clusters on the projected data con�guration fXH
i : wi > 0g, to

assign x to one of these clusters, and to use only the points in that cluster

18



to compute e� and e�. We have implemented this last procedure (see subsec-

tion 3.3 for details). So, when we write e� and e� we assume that care for the

eventual existence of more than one cluster in H(x; b) has been taken.

Once the main tools for dealing with data sets (e�; e�) have been de�ned,

we can look for sample POPs (subsection 3.1) and afterwards sample PCOPs

(subsection 3.2).

3.1 Finding POPs

The sample version of b� and �� are de�ned from e� and e� in a direct way.

We call them ~b� and e��, respectively. So the set of sample POPs is the set

of invariant points for e��:
~� = fx 2 IRp : x 2 e��(x)g:

In order to approximate the set ~� by a �nite set of points, we propose the

following algorithm.

Algorithm 1 (Finite set of POPs)

Step 1. Draw randomly a point of the sample X1; : : : ; Xn. Call it x0.

Make k = 0.

Step 2. Iterate the function e�� and de�ne xk = e��(xk�1) until con-
vergence (i.e., jjxk � xk�1jj � �, for some pre�xed �) or until a

pre�xed maximum number of iterations is reached.

Step 3. If Step 2 �nishes with convergence, include xk in the set of

sample POPs ~�.

Step 4. Repeat m times the steps 1, 2 and 3, for a pre�xed m.

There is no theoretical guarantee about the convergence of the sequence

fxk = e��(xk�1) : k � 1g, for a given x0, but in all the simulated and real

data sets we have examined, the step 2 of Algorithm 1 always reached quickly

the convergence.

Example 3.

We illustrate the performance of Algorithm 1 with a real data set. Data

came from the Spanish household budget survey (EPF, Encuesta de Pre-

supuestos Familiares) corresponding to year 1991. We select randomly 500
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Figure 1: Example 3. Principal oriented points for proportions of household expenditure

data.

households from the 21.155 observations of the EPF, and for each of them

we annotate proportions of the total expenditure dedicated to housing (vari-

able P1) and transport (variable P2). Our data are the 500 observations of

the two-dimensional variable P = (P1; P2). By de�nition, values of P fall

inside the triangle de�ned by the points (0; 0), (0; 1) and (1; 0). A graphic

representation indicates that data are non elliptical. We apply Algorithm 1

for m = 100 and obtain the set of sample POPs represented in Figure 1 as

big empty dots. The principal direction of each one of these points is also

represented as a short segment. Observe that the pattern of the POPs sug-

gests that there are three principal curves joining at a point around (:2; :1).

2
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3.2 Estimating a PCOP

In this subsection we deal with the extraction of a PCOP from a data set. In

the population world, Theorem 2 guarantees that for any POP there exists

a PCOP passing by this point. This result leads us to consider the following

approach to build a PCOP: starting with a sample POP, we look for other

POPs close to the �rst one, and placed in a way such that they recall a piece

of a curve.

We start following Algorithm 1 until the �rst point considered as a POP

appears. We call this point x1 and denote by b1 the principal direction of x1
(if there are more than one element in ~b�(x1), we choose one). We take s1 = 0

and de�ne �(s1) = x1. Now we move a little bit from x1 in the direction of

b1 and de�ne x02 = x1 + �b1, for some � > 0 previously �xed. The point x02
serves as the seed of the sequence fxk2 = e��(xk�12 ) : k � 1g, which eventually

approach to a new point x2. De�ne b2 as b�(x2), s2 as s1 + kx2 � x1k and

�(s2) = x2.

We iterate that procedure until no points Xi can be considered \near" the

hyperplane H(x0k; bk). Then we return to (x1; b1) and complete the principal

curve in the direction of �b1. The following algorithm formalizes the hole

procedure.

Algorithm 2 (First Principal Curve)

Step 1. Make k = 1, j = 0 and F = 1. Choose x01 2 IRp (for instance,

the observed data closest to the sample mean). Choose b01 2 Sp�1

(for instance, b01 = v1, where v1 is the director vector of the �rst

principal component of the sample). Choose h > 0, � > 0 and

pt 2 [0; 1]. Let n be the sample size.

Step 2. Iterate in j � 1 the expression x
j
k = e��(xj�1k ) until conver-

gence (see Algorithm 1 for details). Let xk the �nal point of the

iteration. Let bk = b�(xk). If (b
0
k)

tbk < 0, then assign �bk to bk.

Step 3. If k = 1 de�ne s1 = 0, and if k > 1 de�ne sk = Prec(sk) +

Fkxk � Prec(xk)k. De�ne a new point in the principal curve

�(sk) = xk.

Step 4. De�ne x0k+1 = xk + F�bk, b
0
k+1 = bk.
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Step 5. First stopping rule.

If #fi : (Xi � x0k+1)
tb0k > 0g < ptn (i.e., there are less than a

proportion pt of the remaining points in the present direction of

the principal curve) then go to Step 7.

Step 6. De�ne Prec(sk+1) = sk and Prec(xk+1) = xk. Let k = k + 1

and j = 0. Return to Step 2.

Step 7. Second stopping rule.

If F = 1 (i.e., only one tail of the principal curve has been

explored) then make Prec(sk+1) = s1 = 0, Prec(xk+1) = x1,

k = k+1, F = �1, x0k = x01+F�b1 and b
0
k+1 = b1. Go to Step 2.

Step 8. Final step. Let K = k. Order the values f(sk; xk); k =

1; : : : ; Kg according to the values fskg. The ordered sequence of

pairs is the estimated principal curve of oriented points (PCOP).

In principle, only open principal curves are allowed by this algorithm but

minor changes are needed to permit the estimation of a closed curve.

To obtain a curve �̂ from I � IR to IRp we de�ne I = [s1; sk] and iden-

tify the curve with the polygonal fx1; : : : ; xkg. Observe that this curve is

parameterized by the arc length. Spline techniques can also be used to �nd

a smooth curve in IRp visiting all the points xk.

During the algorithm completion it is possible to obtain estimation of

many important statistical objects. The density of the induced random vari-

able S in I can be estimated by

f̂S(sk) = C1

1

nh

nX
i=1

Kh

�
j(Xi � xk)

tbkj
�
;

where the constant C1 is chosen to have integral of f̂S equal to one. We also

can assign a mass to each sk:

p̂S(sk) = C2f̂S(sk)
�
sk+1 � sk�1

2

�
;

where C2 is such that the sum of p̂S(sk) is one. Then we could consider

s1; : : : ; sk as a weighted sample of S. The mean and variance of this sample

can be computed and subtracting the mean to the values sk we obtain that

S has estimated zero mean. Let us call dV ar(S) the estimated variance of S.
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Also, an estimation of the total variance in the normal hyperplane can be

recorded for each sk: e�(xk; bk).
At this stage in the exposition, two de�nitions appear as natural. The �rst

one is the central point of the data set along the curve. As S has estimated

zero mean, this central point is de�ned as

ÊPCOP = �̂(0):

The second is a measure of total variability consistent with the estimated

structure around a curve. Our proposal is to de�ne the total variability of

the data along the curve as

dTV PCOP = dV ar(S) + Z
I

e��(�(s))f̂S(s)ds ' dV ar(S) +X
k

e�(xk; bk)p̂S(sk):
From these numbers we de�ne the proportion of total variability explained

by the estimated curve as p1 = dV ar(S)=dTV PCOP . This quantity plays the

role of the proportion of variance explained by the �rst principal component

in the linear world.

Example 4.

To illustrate the algorithm 2, we apply it to a simulated data set. The data

are generated as

X =

 
X1

X2

!
=

 
�1(S)

�2(S)

!
+

1

k�0(S)k

 
��02(S)

�01(S)

!
Y

where �: [0; 1]! IR2, x = �1(s) = 2�s+1, y = �2(s) = 2 (1=x� cos(x� 1)),

S � U(0; 1) and Y � N(0; � = :2). The sample size in our example is

n = 200.

Figure 2 shows the data set (small dots) and the graph of � (dashed

curve). For that data set two principal curve methodologies have been ap-

plied: our own algorithm and that of Hastie and Stuetzle (1989). The S-plus

public domain routines written by Trevor Hastie and available on STATLIB

(http://www.stat.cmu.edu/S/principal.curve) are used to implement

the HSPC methodology. Default parameters of these routines have been

used. Some MATLAB routines have been written to implement the Algo-

rithm 2. The HSPC has been represented in Figure 2 by a solid line with

empty dot marks. The bold solid curve with big dot marks corresponds to the

resultant PCOP. We can observe that the graphs of both principal curves are
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Figure 2: Example 4. PCOP and HSPC for a simulated data set. Dotted line: generating

curve. Solid line with empty dots: HSPC. Solid line with big dot marks: PCOP.
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very similar in almost all their range of parameters. They di�er for values of

(X1; X2) near the extreme (1; 0) of the scatter plot. Both procedures present

a bias when the curvature of the original parametric curve � is important

(near the point (4; 2)). Techniques proposed in Ban�eld and Raftery (1992)

should be applied.

Now we report some details of the implementation of our algorithm in

that particular data set. The bandwidth parameter h is 1 and � is .33. The

estimated parameterization of the principal curve goes trough the data from

right to left. The estimated interval I is I = [�5:10; 4:37], so the length of

the PCOP is 9.47 (the length of the HSPC is 10.23 and the length of the

generating curve is 10.39). The total variability along the curve is 6.97. The

estimation of the variance of the random variable S de�ned on I is 6.82 and

the average value of the variance along the orthogonal lines to the principal

curve is 0.15 (remember that the generating noise variance used to generate

the data was 0.16). So the proportion of the total variability explained by

the �rst principal curve is p1 = :98.

Figure 3 shows the estimated density of S on I = [�5:10; 4:37]. Remem-

ber that the principal curve goes from right to left. Observe that the density

of S is not uniform, although the original random variable used as param-

eter to generate the data set was uniform. The reason is that the original

parameterization was not of unit-speed and the estimated principal curve is

unit-speed. In fact, the density function in Figure 3 looks like (k�0(s)k)�1,

as it should be. 2

Example 5.

We replicate now the example contained in section 5.3 of Hastie and Stuetzle

(1989). We generate a set of 100 data points from a circle in IR2 with

independent normal noise:

X =

 
X1

X2

!
=

 
5 sin(S)

5 cos(S)

!
+

 
�1
�2

!
;

with S � U [0; 2�] and �i � N(0; 1). Figure 4 summarizes the results of the

estimation of the �rst principal curve by our methodology and also by using

Hastie and Stuetzle (1989) routines. Panel (a) is similar to Figure 2. Panel

(b) shows the HSPC estimation. In panel (c) they can be seen the POPs

(and its principal directions) obtained during the application of algorithm 2.

They are the base for the PCOP represented in panel (d).
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Figure 3: Example 4. Density estimation of S.

The length of the original curve is 10�. When algorithm 2 is used,

the estimated curve has length 30.8342 and the length for the estimated

HSPC is 33.41086. The estimated total variability along the curve is 87:65,

the estimated Var(S) is 86.58 (the value for the generating distribution is

100�2=12 = 82:25) and the average residual variance in the orthogonal di-

rections is 1.06 (this value should not be compared directly with Var(�i)).

Density estimation of variable S and local orthogonal variance estimation

are approximately constant over the estimated support of S. These facts are

according to the data generating process, which original parameterization

was unit-speed in this example. 2

Example 3 (Continuation).

We compute now PCOPs for the households' expenditures data. The Figure 1

suggests that there are more than one curve for this data set. We look for

two of them by starting the Algorithm 2 with two di�erent points x01 =

(:1; :05) and x01 = (:15; :2), and respective values of the starting vectors b01 =

(1; 1) and b01 = (0;�1). The resulting curves are drawn in Figure 5. The

total variability along the curves are, respectively, .0201 and .0306, with

percentages of variability explained by the correspondent PCOP equal to

78.24% and 84.25%. For this data set, the total variance is .0302, and the

�rst principal component explains the 70.6% of it. So we conclude that any of

the two estimated PCOPs summarizes the data better than the �rst principal
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Figure 4: Example 5. Simulated data set around a circle. (a) Original circle (dashed

line), HSPC (solid line) and PCOP (solid bold line). (b) HSPC. (c) Some POPs. (d)

PCOP.
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Figure 5: Example 3. Two principal curves of oriented points for proportions of house-

holds' expenditures data.

component does. 2

Example 6. Data in IR3

A simulated data set in IR3 is considered. Data are around the piece of

circumference f(x; y; z) : x2 + y2 = 102; z = 0g. A uniform random variable

S over this set was generated, and then a noise Y was added to it so that

(Y jS = s) fall in the orthogonal plane to the circumference at the point s,

and has bidimensional normal distribution with variance matrix equal to the

2 � 2 identity matrix. We used the parameters h = 1 and � = :75. The

resulting PCOP is represented in Figure 6 from two points of view. The

estimated curve explains a 92.19% of the total variability along the curve.

2
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3.3 Assigning x to a cluster in H(x; b)

In Section 2 was argued that, when we deal with nonlinearities, conditioning

on Hc(x; b) (the convex component of H(x; b) [ Supp(X) containing x) has

more sense that conditioning onH(x; b). In the sample world, conditioning to

H(x; b) is equivalent to using all the projected observations XH
i over H(x; b)

with positive weights wi, and conditioning to Hc(x; b) is like using only some

of them: those laying in the same cluster as x lies. So we need an algorithm

that identi�es the points XH
i belonging to the same cluster as x does. Our

proposal is inspired on the agglomerative hierarchical clustering methods

based on single linkage.

Consider a set of points fy0; y1; : : : ; yng in IR
d. The objective is to identify

what points yi; i � 1 belong to the same cluster as y0. The algorithm is as

follows.

Algorithm 3 (Clustering around a given point)

Step 1. De�ne the sets C = fy0g and D = fy1; : : : ; yng. Set j = 1.

Choose a positive real number � (for instance, � = 3).

Step 2. While j � n, repeat:

2.1 De�ne dj = d(C;D) = minfd(x; y) : x 2 C; y 2 Dg and

let y�j the point y 2 D where this minimum is achieved.

2.2 Set C = C [ fy�jg and D = D � fy�jg. Set j = j + 1.

Step 3. Compute the median m and quartiles Q1 and Q3 of the data

set fd1; : : : ; dng. De�ne the distance barrier as �d = Q3 + �(Q3 �

Q1).

Step 4. Let j� = minffj : dj > �dg [ fn+ 1gg� 1. The �nal cluster is

C� = fy�1; : : : ; y
�
j�g.

Observe that the algorithm identi�es extreme outlying distances dj as we

would do it by using a box-plot, and it only accepts a point yi as in the

same cluster as y0 when there is a polygonal line from y0 to yi with vertex in

fy0; : : : ; yng and segments shorter than �d.
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Figure 6: Example 6. Two perspectives of the estimated PCOP (solid line) for the

three-dimensional data around a piece of circumference (dotted line).
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4 Generalized total variance and higher or-

der principal points and curves

In subsection 3.2 the total variability of a data set along an estimated curve

was de�ned as dTV PCOP = dV ar(S)+RI e��(�(s))f̂S(s)ds. If a random variable

X has the curve �: I ! IRp as a principal curve of oriented points, the sample

measure dTV PCOP corresponds to the population quantity

TV�(X) = Var(S) +
Z
I
TV [XjX 2 Hc(�(s); b

�(�(s)))]fS(s)ds;

where S is a random variable on I having probability distribution induced

by X and � (see De�nition 5).

Observe that when X has normal distribution and � is the �rst prin-

cipal component line, TV�(X) is precisely the total variance of X because

TV [XjX 2 Hc(�(s); b
�(�(s)))] is constant in s and equals the total vari-

ance of the joint distribution of the remaining (p � 1) principal compo-

nents of X. We conclude that TV�(X) is a good way to measure the

variability of a p-dimensional random vector X having a PCOP �, pro-

vided that TV [XjX 2 Hc(�(s); b
�(�(s)))] would appropriately measure the

dispersion of the (p � 1)-dimensional conditional random vector (XjX 2

Hc(�(s); b
�(�(s)))). When these (p�1)-dimensional distributions are ellipti-

cal the total variance is a well-suited measure, but when non-linearities also

appear in (XjX 2 Hc(�(s); b
�(�(s)))), the total variance is no longer advis-

able and it should be changed, in the de�nition of dTV PCOP , by a measure of

the variability along a nonlinear curve.

The former arguments lead us to de�ne the generalized total variance

(hereafter GTV) of a p-dimensional random variable by induction in the

dimension p. The de�nition is laborious because many concepts have to be

simultaneously and recursively introduced.

De�nition 6

For any one-dimensional random variable X with �nite variance we say that

X recursively admits a generalized principal curve of oriented points (GPCOP).

We say that x = E(X) is the only generalized principal oriented point (GPOP)

for X, that �: f0g ! IR, with �(0) = E(X) is the only GPOP for X. We

de�ne the generalized expectation of X (along �) as GE1(X) = �(0) = E(X),

and the generalized total variance of X (along �) as GTV1(X) = Var(X).

31



Now we consider p > 1. We assume that for k < p we know whether

a k-dimensional random variable recursively does admit or not GPCOPs,

and what GPOPs, GPCOPs, GEk and GTVk are for k-dimensional random

variables that recursively admit GPCOP.

Consider a p-dimensional random variable X with �nite second moments.

We say that X recursively admits GPCOPs if the following conditions (i), (ii)

and (iii) are veri�ed The �rst one is as follows:

(i) For all x 2 IRp and all b 2 Sp�1 the (p � 1)-dimensional distribution

(XjX 2 Hc(x; b)) recursively admits principal curves.

If this condition holds, we de�ne

�G(x; b) = GEp�1(XjX 2 Hc(x; b)); �G(x; b) = GTVp�1(XjX 2 Hc(x; b));

b�G(x) = arg min
b2Sp�1

�G(x; b); �
�
G(x) = �G(x; b

�
G(x)); �

�
G(x) = �G(x; b

�
G(x)):

The set of �xed points of ��G, �G(X), is called the set of generalized principal

oriented points of X. Given a curve �: I � IR ! IRp parameterized by the

arc length, we say that it is a generalized principal curve of oriented points for

X if �(I) � �G(X).

Now we can express the second condition for X recursively admitting GP-

COPs:

(ii) There exists a unique curve such that � is GPCOP for X.

When conditions (i) and (ii) apply, we de�ne for any s 2 I the value
�fGS (s) =

R
IRp�1 fX(�(s) + (b�G)?(�(s))v)dv. The third condition is:

(iii) The integral k =
R
I
�fGS (s)ds is �nite and the random variable S with

density function fGS (s) = (1=k) �fGS (s) has �nite variance and zero mean

(may be a translation of S is required to have E(S) = 0).

If condition (iii) holds, we say that the distribution of S has been induced by

X and �.

Now we de�ne GEp as

GEp(X) = �(0);

and the GTVp by

GTVp(X) = Var(S) +
Z
I
GTVp�1(XjX 2 Hc(�(s); b

�
G(�(s)))fS(s)ds =

= Var(S) +
Z
I
��G(�(s)))fS(s)ds:
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Observe that the concept of second (and higher order) principal curves is

involved in the former de�nition. Our approach implies that there is not a

common second principal curve for the hole distribution of X, but that there

is a di�erent second principal curve for each point in the �rst one. So the

concept of second principal curve (and higher order) is a local concept.

De�nition 7 If X recursively admits GPCOPs and � is GPCOP for X, we

say that � is the �rst GPCOP of X. We say that the �rst GPCOPs for the

(p � 1)-dimensional distributions (XjX 2 Hc(�(s); b
�
G(�(s))) are the family

of second GPCOPs for X, and so on.

Example 7.

Figure 7 illustrate these ideas. The �rst GPCOP is a curve in IR3: f(x; y; z) :

x2 + y2 = 102; z = 0g. For each point p0 = (x0; y0; z0) in this curve, there

exists a speci�c second GPCOP �p0: IR! Hp0, where Hp0 is the orthogonal

hyperplane to the �rst principal curve at p0. In this case, �p0 is

�p0(v) =

0
BB@
�x0=10 0

�y0=10 0

0 1

1
CCA
 
y0=10 x0=10

x0=10 �y0=10

! 
v

sin(v)

!
;

for v 2 [��; �]. The way the local second principal curve varies along the

�rst principal curve should be smooth enough to permit the estimation by

smoothing techniques. 2

Observe that the de�nition of GPCOPs coincides with that of PCOP for

p = 2. For any p, both de�nitions coincide if the conditional distributions to

X 2 H(x; b) are elliptical for all x and all b. In this case, the second principal

curves are the �rst principal component of these conditional distributions,

and so on.

When second principal curves are considered, we can say that the quantity

p1 =
Var(S)

GTVp(X)

is the proportion of generalized total variance explained by the �rst principal

curve. As for each s 2 I, the local second principal curve is the �rst principal

curve for a (p � 1)-dimensional random variable, we can compute the pro-

portion p1(s) of the generalized total variance that locally explain the second
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�rst one.
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Source of variability GTV %GTV Cum.GTV Cum. %GTV

First Principal Curve 22.18 88.45% 22.18 .88.45%

Local 2nd. Ppal. Cvs. 2.71 10.80% 24.89 99.25%

Local 3rd. Ppal. Cvs. .19 .75% 25.08 100.00%

Total 25.08 100%

Table 1: Example 7. Proportion of the generalized total variance due to the �rst principal

curve and to local second principal curves, for data set of Figure 8.

principal curve in the point �(s). We calculate the expected proportion of

explained GTV by the local second principal curves, de�ne

p2 = (1� p1)
Z
I
p1(s)fS(s)ds

and interpret it as the proportion of the GTV explained by the second prin-

cipal curves. We can iterate the process and obtain pj; j = 1; : : : ; p, adding

up to 1.

Example 7. (Continuation)

Random data have been generated according to the structure shown in Fig-

ure 7. Uniform data were generated over the piece of circumference that

constitutes the �rst principal curve. Then, each of these data (namely, p0)

was (uniformly) randomly moved along the sinusoidal second principal curve

laying on p0, to a new position p1. Finally, a univariate random noise per-

turbed the point p1 inside the line orthogonal to the second curve at p1, also

contained Hp0. The resulting point, p3, is one of the simulated points. The

normal noise has standard deviation � = :2.

Figure 8 shows the results of the estimation procedure for a sample of size

equal to 1000, o�ering three di�erent perspectives of the estimated object.

Table 1 indicates what percentages of the generalized total variance are due

to the �rst GPCOP and to the family of second GPCOPs. 2

5 Discussion

In the present work the concept of principal curve introduced by Hastie and

Stuetzle (1989) is approached from a di�erent perspective. A new de�nition
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Figure 8: Example 7. Estimation of the �rst principal curve and the family of local

second principal curves along the �rst one. (a) Data set; (b) �rst GPCOP and second

GPCOPs; (c) same as (b) viewed from a point with zero degrees of elevation over the XY

plane; (d) GPCOP system projected over the XY plane.
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of the �rst principal curve has been introduced, based on the concept of

principal oriented point.

All the arguments are based on conditional expectation and variance,

given that a p-dimensional random variable lies in the hyperplane de�ned by

a point x and the orthogonal direction b, but di�erent measures of conditional

location and dispersion could be used, as far as they are smooth function of

x and b. More robust procedures could be obtained in that way.

In the last part of the paper we introduce generalized de�nitions of ex-

pectation and total variance along a principal curve. For random variables

having principal curves for all its lower dimensional marginals, these new

de�nitions allow us to de�ne second a higher order local principal curves in

a recursive way.

Appendix: Proofs

Proof of Proposition 1. De�ning Y = btX, the joint distribution of

(X t; Y )t is (p + 1)-dimensional normal. So standard theory on conditional

normal distributions tells us that

(XjX 2 H(x0; b)) � (XjY = btx0) � Np

 
�+

bt(x0 � �)

bt�b
�b; ��

�bbt�

bt�b

!
:

(1)

So the conditional total variance is

TV (XjX 2 H(x0; b)) = Trace(�)�
1

bt�b
Trace(�bbt�);

and the problem (P1) is

min
b:bt�b=1

fTV (XjX 2 H(x0; b))g = Trace(�)� max
b:bt�b=1

(bt��b) =

= Trace(�)� max
h:hth=1

(ht�h) = Trace(�)� max
h:hth=1

Var(htX);

where h = �1=2b. So the solution of (P1) is given by the solution of (P2),

which is the classical problem of principal components, with optimal solution

h� = v1, the eigenvector associated with the largest eigenvalue �1 of �. The

corresponding solution of (P1) is

b� = ��1=2h� =
1

�1
��1=2�h� =

1

�1
�1=2h� =

1

�1
�1=2h� = ��1=2h�;
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and the main part of the proposition is proved. Two facts were used in

this chain of equalities: �rst, h� is eigenvector of �, and second, that if v

is eigenvector of � with associate eigenvalue �, then v is eigenvector of �1=2

with associate eigenvalue �1=2. To prove the last sentence of the result, it

su�ces to replace b = b� in (1). 2

Proof of Proposition 3. The property concerning �� is a direct applica-

tion of the Maximum Theorem (see, for instance, Takayama 1985, p. 254).

The Sensitivity Theorem (a corollary of the Implicit Function Theorem; see

Bertsekas 1995, p.277, for instance) permits smoothness properties of b� to

be established, and then the smootheness of � implies that of ��. 2

Before proving Theorem 2, we need somme lemmas.

Lemma 1 Let x 2 IRp and b 2 Sp�1. The partial derivatives of � and � are

as follows.

(i)
@�

@x
(x; b) = K�

x (x; b)b
t; K�

x (x; b) 2 IRp; and btK�
x (x; b) = 1:

(ii)
@�

@x
(x; b) = k�x(x; b)b

t; k�x(x; b) 2 IR:

(iii)
@�

@b
(x; b) = K�

b (x; b)
�
Ip � bbt

�
; K�

b (x; b) 2 IRp�p;

(iv)
@�

@b
(x; b) = K�

b (x; b)
t
�
Ip � bbt

�
; K�

b (x; b) 2 IRp;

Proof. (i): As �(x; b) (as a function of x) is constant on Hc(x; b), then

�(x + (I � bbt)v); b) is constant in v, so its derivative with respect to v is

equal to 0:

0 =
@

@v

�
�(x+ (I � bbt)v); b)

�
=
@�

@x

�
x+ (I � bbt)v; b

�
(I � bbt):

That can be written as

@�

@x

�
x+ (I � bbt)v; b

�
=

"
@�

@x

�
x + (I � bbt)v; b

�
b

#
bt;

and when v goes to 0, we obtain that

@�

@x
(x; b) = K�

x (x; b)b
t
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where

K�
x (x; b) =

@�

@x
(x; b)b:

In order to see that K�
x (x; b)

tb = 1 we derive the identity

(x� �(x; b))tb = 0

with respect to x:

bt
 
I �

@�

@x
(x; b)

!
= 0

and post-multiplying by b the result follows:

btb = 1 = btK�
x (x; b):

(ii) As a function of its �rst argument, �(x; b) is constant in Hc(x; b).

Then, proceeding as above we obtain the result for

k�x(x; b) =
@�

@x
(x; b)b 2 IR:

(iii) Observe that �(x; b + vb) is constant for v 2 IR, so

0 =
@

@v
�(x; b + vb) =

@�

@b
(x; b+ vb)b;

and then the rows of (@�=@b)(x; b + vb) are orthogonal to b. Therefore,

@�

@b
(x; b+ vb)

�
I � bbt

�
=
@�

@b
(x; b + vb):

When v goes to zero,

@�

@b
(x; b) = K�

b (x; b)
�
I � bbt

�
;

where K�
b (x; b) = (@�=@b)(x; b).

(iv) A similar reasoning leads to prove that point. 2

Lemma 2 For all x such that (x; b�(x)) is a POP, it is veri�ed that

@b�

@x
(x) =

�
Ip � b�(x)b�(x)t

�
~K(x)b�(x)t:

39



Proof. We divide the proof in two parts.

(1) As b�(x)tb�(x) = 1, deriving with respect to x we obtain that

b�(x)t
@b�

@x
(x) = 0;

therefore (@b�=@x)(x) is orthogonal to b�(x), and we can write that

(I � b�(x)b�(x)t)
@b�

@x
(x) =

@b�

@x
(x):

(2) As b�(x) is constant on y 2 Hc(x; b
�(x)), by similar arguments to those

used in the proof of Lemma 1, we can deduce that

@b�

@x
(x) = ~K(x)b�(x)t

for some ~K(x) 2 IRp. Now, putting together (1) and (2) we obtain the

desired result. 2

Lemma 3
@��

@x
(x) = K��

x (x)b�(x)t;

where K��

x (x) 2 IRp. Moreover,

b�(x)tK��

x (x) = 1;

Proof. We derive the identity

��(x) = �(x; b�(x))

with respect to x, and we obtain that

@��

@x
(x) =

@�

@x
(x; b�(x)) +

@�

@b
(x; b�(x))

@b�

@x
(x):

Now, from Lemmas 1 and 2, it follows that

@��

@x
(x) = K�

x (x; b
�(x))b�(x)t+

+K�
b (x; b

�(x))(I � b�(x)b�(x)t) ~K(x)b�(x)t = K��

x (x)b�(x)t
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for some K��

x (x) 2 IRp.

To prove the last sentence, we derive with respect to x the identity (x�

��(x))tb�(x) = 0, as we did in the proof of Lemma 1. 2

Proof of Theorem 2. The proof is based on the Implicit Function Theorem.

For the point x0, we have that x0 = �(x0; b
�(x0)). Without loss of generality,

we can assume that x0 = 0 2 IRp and that b0 = b�(x0) = e1 = (1; 0; : : : ; 0)t 2

IRp. For any x 2 IRP we call x1 its �rst component and denote by x2 its

remaining (p � 1) components. Analogous notation is used for de�ning �1
and �2 from function � (we do the same thing also for �� and �).

Consider the function

�: IR� IRp�1
! IRp�1

(x1; x
2) ! �2

��
x1
x2

�
; b�
�
x1
x2

��
� x2 = (��)2

�
x1
x2

�
� x2;

and observe that �(0; 0) = 0, where 0 is the zero of IRp�1. If the Implicit

Function Theorem could be applied here, we would obtain that there exists

a positive " and a function 	

	: (�"; ") � IR ! IRp�1

t ! 	(t)

such that 	(0) = 0, and

�(t;	(t)) = 0

or, equivalently,

	(t) = �2
  

t

	(t)

!
; b�
 

t

	(t)

!!

for all t 2 (�"; "). We now de�ne

�: (�"; ") � IR ! IRp

t ! �(t) =
�

t
	(t)

�

Observe that the properties of 	 guarantee that �2(t) = �2(�(t); b�(�(t))).

So if we prove that �1(�(t); b
�(�(t))) = t then we will have that � is the

PCOP we are looking for. But indeed that is true. Observe that always

�(x; b) belongs to H(x; b), so (x � �(x; b))tb = 0. In our case, this fact

implies that

(�(t)� �(�(t); b�(�(t))))t b�(�(t)) = 0:
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As �2(t) = �2(�(t); b�(�(t))), the last equation is equivalent to write

(t� �1(�(t); b
�(�(t)))) b�1(�(t)) = 0:

Remember that b�(x0) = e1, so b�1(x0) = 1. Continuity of b� implies that

b�1(x) > :5 if x is close enough to x0. So, � can be chosen in order to have

b�1(�(t)) 6= 0, and then we deduce that (t� �1(�(t); b
�(�(t)))) must be zero,

and we conclude that � is a PCOP.

Only checking the assumptions for the Implicit Function Theorem (see,

for instance, Corwin and Szczarba 1979, p.277) remains to complete the

proof of the Theorem. We need to show that the last (p� 1) columns of the

Jacobian of � at x0 = (0; 0) are independent. These columns are

@�

@x2
(x0) =

 
@

@x2

�
�2(x; b�(x))

�!
(x0)� Ip�1:

Observe that the �rst term in this sum is the matrix obtained by dropping

out the �rst row and the �rst column of the following Jacobian matrix (see

Lemma 3):

@��

@x
=

 
@

@x
(�(x; b�(x)))

!
(x) = K��

x (x)b�(x)t:

As b�(x0) = b0 = e1, the product K��

x (x0)b
�(x0)

t has its last (p � 1) rows

equal to zero. Therefore,

@�

@x2
(x0) = 0(p�1)�(p�1) � Ip�1 = �Ip�1

and it has complete rank. So Implicit Function Theorem applies and the �rst

part of the Theorem is proved.

Let us compute �0(0). Again, the Implicit Function Theorem determines

the derivative of 	 with respect to t:

@	

@t
=

 
@�

@	

!�1
@�

@t
:

In our case,
@�

@	
= Ip�1

and
@�

@t
=

@

@x1

�
�2(x; b�(x))

�
=

@

@x1

�
(��)2(x)

�
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and this is the �rst column of (@��=@x)(x0) = K��

x (x0)b
t
0 (i.e.,K

��

x (x0)), with-

out its �rst element (we have used Lemma 3). Then, @�=@t = (K��

x (x0))
2.

Therefore,
@�

@t
(t0) =

 
@

@t

 
t

	(t)

!!
(t0) =

 
1

(K��
x (x0))2

!
:

The result would be proved if we can show that (K��

x (x0))1 is equal to 1. But

this is true because (K��

x (x0))1 = K��

x (x0)
tb0 = 1, by Lemma 3. 2

Proof of Corollary 2. As �(t) = ��(�(t)), deriving with respect to t, we

have

�0(t) =

 
@��

@x
(�(t))

!
�0(t) = K��

x (�(t))b�(�(t))t�0(t):

Then �0(t) = �(t)K�
x(�(t)) for all t 2 I, and �(t) = b�(�(t))t�0(t) 2 IR. 2

Proof of Proposition 5. Because Supp(Y jS = s) � B(0; �(s)) and

Hc(�(s); �
0(s)) \ Hc(�(t); �

0(t)) = ; when s 6= t, then �� is a 1-1 func-

tion form Supp(S; Y ) to the image of this set. As �� is continuous and it is

de�ned on a compact set, it follows that ��(Supp(S; Y )) = Supp(��(S; Y )).

Then �� is a homeomor�sm because it is a 1-1 continuous function de�ned

from a compact set to a metric space.

Remember that ��(s; y) = �(s) + A(s)(0; yt)t, where the frame matrix

A(s) is an orthonormal matrix, it is di�erentiable as a function of s, and its

�rst column is �0(s). Moreover, A(s) can be chosen so that the corresponding

Cartan matrix C(A) = A�1A0 = AtA0 is skew-symmetric (Ct = �C) having

elements cij(s) = 0 for ji � jj 6= 1, where A0 is the matrix whose elements

are the derivatives of the elements of matrix A (for details see, for instance,

Guggenheimer 1977, pp. 158-160). As �� is 1-1, we call (s(x); y(x)) =

��1� (x), for a given x 2 Supp(X), where X = ��(X).

Applying change of variable standard techniques, the density function of

X at a given x can be computed as

fX(x) = f(S;Y )(s(x); y(x))(det(J��(s(x); y(x)))
�1;

where J��(s(x); y(x)) is the Jacobian of �� at x, that is to say the p � p

matrix

J��(s; y) =
@��

@s@y
(s; y) = (�0(s) + A0

2(s)y; A2(s));
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where A2(s) is the p� (p� 1) matrix containing the last (p� 1) columns of

A(s) (so A(s) = (�0(s); A2(s))). Then

det(J��(s; y)) = det(�0(s) + A0
2(s)y; A2(s)) =

= det(�0(s); A2(s))+det(A
0
2(s)y; A2(s)) = det(A(s))+

pX
j=2

yj�1 det(a
0
j(s); A2(s));

where aj(s) is the j-th column of A(s). Remember that (A(s))tA0(s) =

C(A(s)) (so A0(s) = A(s)C(A(s))) and that the Cartan Matrix C(A(s)) has

the following structure:0
BBBBBBBBBB@

0 �k1(s) 0 0 : : : 0 0 0

k1(s) 0 �k2(s) 0 : : : 0 0 0

0 k2(s) 0 �k3(s) : : : 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 : : : kp�2(s) 0 �kp�1(s)

0 0 0 0 : : : 0 kp�1(s) 0

1
CCCCCCCCCCA
:

kj(s) is the j-th curvature of �(s). In particular, k1(s) = jj�00(s)jj is the

curvature of � at �(s). From A0(s) = A(s)C(A(s)), it follows that

�00(s) = k1(t)a2(s)

a02(s) = �k1(t)�
0(s) + k2(s)a3(s)

a03(s) = �k2(t)a2(s) + k3(s)a4(s)
...

...
...

a0j(s) = �kj�1(t)aj�1(s) + kj(s)aj+1(s)

...
...

...

a0p(s) = �kp�1(t)ap�1(s)

Then, for 3 � j � p� 1 we have

det(a0j(s); A2(s)) = det(�kj�1(t)aj�1(s)+kj(s)aj+1(s); (a2(s); : : : ; ap(s))) = 0;

for j = p,

det(a0p(s); A2(s)) = det(�kp�1(t)ap�1(s); (a2(s); : : : ; ap(s))) = 0;

and for j = 2,

det(a02(s); A2(s)) = det(�k1(t)�
0(s) + k2(s)a3(s); (a2(s); : : : ; ap(s))) =
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= (�k1(s)) det(�
0(s); (a2(s); : : : ; ap(s))) = (�k1(s)) det(A(s)) = �k1(s):

Moreover, det(A(s)) = 1, because A(s) is an orthonormal matrix. So we

conclude that det(J��(s; y)) = 1 � k1(s), and the �rst part of the result is

proved.

For the second part, without loss of generality we can assume that s = 0,

�(0) = 0 and A(0) = Ip. De�ning e1 = (1; 0; : : : ; 0)t, we have that

E(XjX 2 Hc(�(0); �
0(0))) = E((X1; : : : ; Xp)

t
jX 2 Hc(0; e1)) =

= (0;
Z
IRp�1

(y1; : : : ; yp�1)
1

1� y1=�(0)
fY jS=0(y1; : : : ; yp�1)dy1 : : : dyp�1)

t;

and under conditional independence of Y1 and (Y2; : : : ; Yp�1) that equals

(0;
Z
I
R

y1

1� y1=�(0)
fY1jS=0(y1)dy1; 0; : : : ; 0)

t;

and the proof �nishes. 2

Justi�cation of the last point in Example 2.

The argument is based in the behavior of the example when R goes to in�nity.

For R large, the distribution on the annulus resembles that of the uniform

over the rectangle f(u; v) : ju � Rj < 1; jvj < rg for a very large r, so the

variance of ((U; V )jV = m(U �R)) is V (U)(1 +m2) and takes its minimum

value for m = 0. That corresponds to the orthogonal direction to (0; 1), as

we pointed out in the example. 2
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