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Abstract

The achievable region approach seeks solutions to stochastic optimisation problems by: (i)

characterising the space of all possible performances (the achievable region) of the system of

interest, and (ii) optimising the overall system-wide performance objective over this space.

This is radically di�erent from conventional formulations based on dynamic programming. The

approach is explained with reference to a simple two-class queueing system. Powerful new

methodologies due to the authors and co-workers are deployed to analyse a general multi-

class queueing system with parallel servers and then to develop an approach to optimal load

distribution across a network of interconnected stations. Finally, the approach is used for the

�rst time to analyse a class of intensity control problems.

Keywords: Achievable region, Gittins index, linear programming, load balancing, multi-class

queueing systems, performance space, stochastic optimisation, threshold policy.

JEL: C60, C61.
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1 Introduction

The last decade has seen a substantial research focus on the modelling, analysis and optimisation

of complex stochastic service systems, motivated in large measure by applications in areas such as

computer and telecommunication networks. Optimisation issues which broadly focus on making

the best use of limited resources are recognised as of increasing importance. However, stochastic

optimisation in the context of systems of any complexity is technically very di�cult.

For the most part, the optimal dynamic control of queueing and other stochastic systems has

been approached via dynamic programming (DP) formulations. Within such formulations, a variety

of special arguments (of which the simplest and most e�ective have been interchange arguments)

have been adduced to obtain structural results concerning optimal controls. A good summary of

how things stood in the mid-to-late 80's can be found in chapters 8 and 9 of Walrand (1988). It

would not be unfair to claim that a consensus view of this enterprise is that, with the exception of

one or two notable successes (including the discovery and development of the Gittins index - see, for

example, Gittins (1979,1989), Glazebrook (1982), Weber (1992), Weiss (1988) and Whittle (1980))

there was relatively little to show for a great deal of e�ort and that a pressing need existed for new

approaches.

Many of the most important recent developments in the control, for example, of multi-class

queueing networks have sought to optimise some associated/limiting process, whether a di�usion

process (Brownian system model) in heavy tra�c (see, for example, Harrison and Nguyen (1993)

and Harrison and Wein (1989)) or a 
uid model (see, for example, Atkins and Chen (1995) and

Maglaras (1997)). These are powerful methodologies and have rightly been very in
uential. However,

since the main focus of optimisation is an approximating/limiting process there can be formidable

challenges in the subsequent derivation of controls for the queueing system of original interest and

in the evaluation of such controls. See Harrison (1996) and Maglaras (1997).

The paper concerns a di�erent approach - namely, the so-called achievable region or mathematical

programming approach. It is possible that this could ultimately turn out to be more limited in its

range of applications than those cited above (although the current pace of development throughout

the �eld makes a �nal judgement impossible). However, it does have the considerable advantage

of staying in �rm contact with the original stochastic system of interest throughout. Hence when

analyses via this methodology are available, they typically make clear and strong statements about

the control policies identi�ed.

The achievable region approach seeks solutions to stochastic optimisation problems by: (i) char-

acterising the space of all possible performances (the achievable region) of the stochastic system, and

(ii) optimising the overall system-wide performance objective over this space. The performance space
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in (i) is often a polyhedron of special structure, yielding in (ii) a mathematical program (usually a

linear program (LP)) for which e�cient algorithms exist. The earliest contributions in this vein were

due to Gelenbe and Mitrani (1980), followed by Federgruen and Groenevelt (1988). Contributions

by Shanthikumar and Yao (1992) and Bertsimas and Ni~no-Mora (1996) took the approach decisively

further forward, the latter giving an account of Gittins indexation from this perspective.

Our goal is, �rstly, to bring the achievable region approach to the attention of a wider audience

than it has enjoyed hitherto. To this end, many of the ideas alluded to in the previous paragraph

are presented in Section 2 in a way which we trust will be widely accessible. In addition a range

of powerful new methodologies with which the authors and co-workers have been associated are

described and illustrated by the discussions in Sections 3-5 of a range of important stochastic op-

timisation problems. This material is new and should convey something of the power and scope of

the achievable region approach. Given a familiarity with the content of Section 2, the later sections

are self-contained with Section 3 the most demanding technically. Section 3 discusses the status of

index policies for a general multi-class queueing system with servers working in parallel. We consider

in Section 4 an approach to distributing the workload across a network of interconnected stations

when each station is assumed to schedule its own o�ered load optimally. The problem of controlling

input and output rates for a simple queueing system is discussed in Section 5. The paper concludes

in Section 6 with proposals for future work.

2 The achievable region approach

For de�niteness, we shall develop the core ideas underlying the achievable region approach in the

context of multi-class queueing systems. Let E = f1; 2; : : : ; Ng denote a set of customer classes.

Customers in the system require service which is provided by a collection of servers. A control u is

a rule for determining how servers should be assigned to waiting customers. The set of admissible

controls is denoted U . Although admissibility will be de�ned in context, it will invariably be required

that controls should be non-anticipative (decisions are made on the basis of the history of the process

only) and non-idling (servers should never be idle when there is work to be done). With each

control u is associated a system performance vector xu = (xu1 ; x
u
2 ; : : : ; x

u
N ) with xui denoting the

class i performance, i 2 E. Throughout the paper, xui will be the expectation of some quantity

related to class i. A standard choice for xui , denoted Eu(Ni), is the long-term average number of

class i customers in the system under control u. The performance space is the set of all possible

performances, denoted X = fxu; u 2 Ug. There is a cost c(xu) associated with operating the

system under control u which depends upon the control only through its associated performance.

The stochastic optimisation problem of interest is expressed as
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ZOPT = inf
u2U

c(xu) (1)

The prime goal is the identi�cation of a control uOPT attaining the in�mum in (1). If X is known,

an alternative computation of ZOPT is via the minimisation

ZOPT = inf
x2X

c(x) (2)

In all of the cases we shall consider we shall have c(x) = cTx for some cost vector c and X a convex

polyhedron, yielding in (2) a linear program (LP). Solution of (2) will yield xOPT , the optimising

performance. The question then arises of whether a control uOPT can be found which realises xOPT .

The achievable region approach seeks solutions to stochastic optimisation problems as in (1) by

(i) identi�cation of the performance space X , (ii) solution of a mathematical programming problem

as in (2) with feasible space X and (iii) identi�cation of controls yielding the optimum performance.

This agenda can be fully realised in the case of indexable systems. To give the reader some idea of

how the approach might proceed, we outline very brie
y the case of a two class M/M/1 queueing

system, �rst analysed in this manner by Co�man and Mitrani (1980).

Customers of class k arrive at a single server according to independent Poisson streams of rate

�k with service requirements (independent of each other and of the arrival streams) which are

exponentially distributed with mean ��1k , k = 1; 2. The rate at which work arrives in the system is

�1=�1+ �2=�2 which is assumed to be less than 1 (the available service rate) to guarantee stability,

i.e. that the time-average number of customers in the system is �nite. Controls for the system

must be non-anticipative and non-idling and priorities between customer classes may be imposed

preemptively (i.e. a customer whose requirements have not yet been fully met may be removed from

service to make way for another customer of higher priority). The goal is to choose a control u to

minimise a long-term holding cost rate, i.e.

inf
u2U

fc1Eu(N1) + c2Eu(N2)g (3)

In (3) ck is a cost rate, Nk is the number of class k customers in the system and Eu denotes an

expectation taken under the steady state distribution when control u is applied. The achievable

region approach solves the stochastic optimisation problem in (3) by proceeding through the above

steps (i)-(iii) as follows:

(i) Identi�cation of the performance space X

By a fairly simple standard argument it follows that in the steady state, the expected work (i.e.

uncompleted processing) in the system is control invariant. In this particular case the constant

concerned is easily identi�ed and we have
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Eu(N1)

�1
+
Eu(N2)

�2
=

(�1�
�1
1 + �2�

�1
2 )

(1� �1 � �2)
; u 2 U ; (4)

where the key quantity �k = �k=�k, k = 1; 2, has an interpretation as the rate at which class k work

enters the system. In addition to (4), we note that the amount of class k work in the system can be

minimised by giving class k customers (preemptive) priority over non-k customers. This yields

Eu(N1)

�1
�

�1�
�1
1

(1� �1)
; u 2 U ; (5)

Eu(N2)

�2
�

�2�
�1
2

(1� �2)
; u 2 U ; (6)

with the right hand sides of (5) and (6) attained when the system is controlled by the priority

policies 1 ! 2 and 2 ! 1 respectively. Motivated by (4)-(6), we take xuk = Eu(Nk)=�k as the

class k performance associated with control u, k = 1; 2. From (4)-(6), it immediately follows that

performance space X = f(xu1 ; x
u
2 ); u 2 Ug is contained within the line segment P given by

P =

�
(x1; x2); x1 �

�1�
�1
1

(1� �1)
; x2 �

�2�
�1
2

(1� �2)
; x1 + x2 =

(�1�
�1
1 + �2�

�1
2 )

(1� �1 � �2)

�
(7)

A (1! 2)

B (2! 1)

x1

x2

P

Figure 1: The line segment P

See Figure 1. To show that P � X , observe that the end-points of P , labelled A and B, may be

identi�ed as the performances associated with the priority policies 1 ! 2 and 2 ! 1 respectively.

This follows from the remarks after (6). Any point of P is a convex combination of A and B and

hence is easily seen to be the performance of a suitable randomisation of the policies 1 ! 2 and

2! 1. Hence all points of P are performances, as required. We conclude that X = P .
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(ii) Solution of an LP with feasible space X

For reasons that will soon become clear, consider the LP

ZOPT = inf
x2P

fc1�1x1 + c2�2x2g : (8)

It is trivial to show that the minimum is attained at end-point A when c1�1 � c2�2 and at end-point

B otherwise.

(iii) Solution of the stochastic optimisation problem of interest

Our objective is to identify a control uOPT to solve (3), rewritten as

ZOPT = inf
u2U

fc1�1x
u
1 + c2�2x

u
2g : (9)

Since X = P , the quantities in (8) and (9) are equal. However from (ii) above, the xOPT which

solves the LP in (8) is known and we can readily identify a uOPT giving rise to this performance.

When c1�1 � c2�2, x
OPT = A and a control achieving this is 1! 2. When c2�2 � c1�1, x

OPT = B

and this is achieved by 2! 1. We thus conclude that the control solving (9) is the so-called c�-rule

which gives priority to the customer class with the larger ck�k-value. Hence the optimal control

favours options which drive down the holding cost rate most rapidly.

The analysis for so-called indexable systems generalises that above as follows: equation (4) is

replaced by a generalised work conservation law for the entire set E of customer classes, given by

X
j2E

V E
j xuj = b(E); u 2 U ; (10)

with V E
j , j 2 E a suitably chosen set of positive constants. To generalise (5) and (6) suitably, we

have to consider an arbitrary subset S of customer classes. We then have

X
j2E

V S
j x

u
j � b(S); u 2 U (11)

for suitably chosen positive constants V S
j , j 2 S, with the right hand side of (11) attained by any

control which gives customers in S priority over those not in S. This latter requirement is expressed

by X
j2E

V S
j x

�
j = b(S) for � : S ! Sc (12)

Note that (11) and (12) need to hold for all proper subsets of E. Bertsimas and Ni~no-Mora (1996)

referred to (10)-(12) as generalised conservation laws (GCL). They were able to show that when
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performances are positive-valued and X is convex, a GCL system has performance space given by

the convex polyhedron

P =

8<
:x 2 (<+)N ;

X
j2E

V S
j xj � b(S); S � E; and

X
j2E

V E
j xj = b(E)

9=
; : (13)

We suppose that the stochastic optimisation problem of interest can be expressed as

ZOPT = inf
u2U

8<
:
X
j2E

cjx
u
j

9=
; = min

x2P

8<
:
X
j2E

cjxj

9=
; : (14)

Now, the LP on the r.h.s. of (14) can be shown to be solved by the performance x = x�G of a Gittins

index priority policy and hence by an argument similar to that used in our simple example, such

a control must solve the stochastic optimisation problem. The policy �G operates by giving each

customer class k an index Gk and then implementing priorities among E according to these indices,

with the maximal index class being accorded highest priority. The indices are obtained from the so-

called adaptive greedy algorithmAG(V; c) whose inputs are the matrix V = fV S
j ; j 2 S; S � Eg and

the cost vector c. In this way, Gittins index policies can be shown to be optimal for discounted and

undiscounted branching bandits. These single server models include many classical ones, including

the discounted multi-armed bandit of Gittins (1979, 1989), the multi-class queue with Bernoulli

feedback of Tcha and Pliska (1977) and Klimov networks (1974).

Recent contributions by the authors and co-workers have sought to develop these ideas in a

number of directions, of which we shall mention just two, both of which are relevant to the later

sections of this paper. Firstly, it has been demonstrated by Glazebrook and Garbe (1998) and

Glazebrook and Ni~no-Mora (1997) that many systems of interest may come close to satisfying the

key requirements in (10) - (12) above, but fail to do so exactly. In this event, Gittins index policies

may reasonably be expected to perform well, if not optimally. In fact, the primal-dual structure of

LP may be exploited to yield performance guarantees for such policies. In Section 3 this methodology

is exploited to develop an analysis of a general multi-class queueing system serviced by M servers in

parallel. In the single server case M = 1, (10) - (12) are satis�ed exactly and Gittins index policies

are optimal for a linear objective. When M > 1, we can develop measures of how close we come

to achieving this (in Theorem 1) which in turn leads (in Corollary 2) to performance guarantees for

such policies.

A second avenue of recent development has concerned work aimed at developing our understand-

ing of how the optimal return ZOPT depends upon the mix of customer classes requiring service.

Garbe and Glazebrook (1998) elucidate system properties which yield laws of diminishing returns

(increasing marginal costs) as more demands are placed upon the system. Such a notion may be

expressed mathematically by the requirement that the optimal return is a supermodular function of
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the set of customer classes which is allowed access to the service. This work is exploited in Section

4 to develop an approach to distributing the load across a network of interconnected stations, when

the work o�ered at each station is itself to be scheduled optimally.

We �nally pause to note that the achievable region approach has recently found application

outside the scope of indexable systems. Bertsimas (1995) discusses polling systems, multi-class

queueing networks and loss systems. Ni~no-Mora (1998) has begun a study of intensity control

problems from this perspective. Some early conclusions are presented in Section 5.

3 A general multi-class queue on parallel servers

We consider here the optimal control of an M-server queueing system. In the single server case

M = 1, we demonstrate that the system satis�es GCL (10) - (12) and in consequence Gittins index

policies are optimal for a linear objective. The analysis of this case will serve to show the reader

how GCL may be established in practice. Note that this index result is not new. See Bertsimas et

al. (1995) for an account. What is new here is our analysis of the notoriously di�cult parallel server

problem with M > 1. Here we do not have exact GCL but we come close. As a consequence, Gittins

index policies come close to optimality. Following the work of Glazebrook and Garbe (1998), the

achievable region approach furnishes us with performance guarantees for index policies, from which

their asymptotic optimality in a heavy tra�c limit may be inferred.

M servers are available to process the requirements of customers from classes inE = f1; 2; : : : ; Ng.

An assignment of available customers to servers is made at each integer time point. Should a class i

customer be assigned to serverm at time t (which occurrence is registered by assigning the indicator

function Imi (t) the value 1; it is 0 otherwise) then at time t + 1 the class i customer disappears to

be replaced by ntmi � fntm11 ; n
tm
12 ; : : : ; n

tm
iNg customers of classes 1; 2; : : : ; N respectively. For a given

i 2 E, the vectors ntmi are i.i.d. as (t;m) varies and for simplicity t (and sometimes also m) will

be dropped from the notation when no confusion arises. As we shall see, this modelling approach

enables us to incorporate state transitions for existing customers as well as new arrivals into the

system. To complete the system description, note that an idle server is deemed to be serving a class

0 customer and we suppose that there are always M such customers present in the system, one for

each server. This additional class is needed to ensure that the model allows new arrivals to enter an

empty system. We extend the notation ntmi to include the case i = 0, but note that n00 = 1 and

ni0 = 0 for all i 6= 0.

If Ni(t) denotes the number of class i customers present in the system at decision epoch t, then
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the evolution of the system between t and t+ 1 is described by

Ni(t+ 1) = Ni(t) +

MX
m=1

NX
j=0

Imj (t)
�
nmji � �ij

�
; i 2 E (15)

N0(t+ 1) = N0(t) =M:

In (15), �ij is the Kronecker delta. The set of admissible controls U available are (i) non-anticipative,

(ii) non-idling (which here means that E has priority over 0) and (iii) server-symmetric (scheduling

systems do not use server label information). Please note that this third requirement is not strictly

needed. It has been included as a vehicle for simplifying the discussion at certain key points. We

can guarantee the stability of this system under all u 2 U (the time-average number of customers

in the system is �nite) by requiring that the N � N matrix I � n be positive de�nite. Here I is

the identity and n has (i; j)-th entry equal to E(nij). See Bertsimas and Ni~no-Mora (1996). We

shall assume that admissible controls result in a discrete time stochastic process fN(t)g1t=�1 with

unique stationary distribution, all of whose second moments are �nite. Write

�ui = Eu fI
m
i (t)g ; i 2 E [ f0g (16)

for the probability that control u assigns server m to a class i customer at decision epoch t, where

the expectation in (16) is with respect to the stationary distribution. That this expectation does

not depend upon t (by stationarity) and m (by server symmetry) is clear. However it turns out that

it is also independent of the control u. To see this, apply Eu to both sides of (15) and use

Eu fNi(t+ 1)g = Eu fNi(t)g ; i 2 E

to infer that �u satis�es the system of equations

MX
i=0

�ui E(nij) = �uj ; j 2 E;

MX
i=0

�ui = 1: (17)

This has a unique solution when I �n is non-singular. We shall write � without the superscript in

what follows. One particular focus of the analysis will concern the quality of the control policies in

heavy tra�c. In discussing a sequence of systems, we are said to approach the heavy tra�c limit if

the value �0 (the steady state probability that a server is idle) approaches 0.

Example

Consider a discrete time version of a multi-class M/G/parallel queueing system with M servers

and customer feedback as follows: customers belonging to one of L classes arrive for service according

to independent Poisson streams with �l the rate for class l, 1 � l � L. Service times Tl for class l

customers are i.i.d. discrete random variables whose distribution has �nite support f1; 2; : : : ; Rlg.
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Fl denotes the distribution function of Tl. Once a class l customer has completed service, (s)he is fed

back to the system as a class k customer with probability plk, or leaves the system, with probability

pl0 = 1 �
PL

k=1 plk. The scheduling regime gives to each customer chosen for service a single unit

of processing before the position is reviewed again.

It is straightforward to cast this example into the general framework above. We require classes

labelled f(l; r); 0 � r � Rl � 1; 1 � l � Lg with (l; r) representing those class l customers present

in the system who have already received r units of processing. A newly arrived class l customer

(either from outside or via feedback) belongs to (l; 0). When a unit of processing is allocated to a

class (l; r) customer, there are two possibilities: either there is a failure to complete service and the

customer is now in class (l; r+1) or service is completed and the customer leaves the system or feeds

back as a (k; 0) customer for some k. This, together with consideration of external arrivals yields

the following choices of the components of the matrix n:

Efn(l;r);(l;r+1)g =
1� Fl(r + 1)

1� Fl(r)
; 0 � r � Rl � 1; 1 � l � L;

Efn(l;r);(k;0)g =
�k

M
+
fFl(r + 1)� Fl(r)gplk

1� Fl(r)
; (18)

0 � r � Rl � 1; 1 � l � L; 1 � k � L:

Efn0;(k;0)g =
�k

M
; 1 � k � L:

Now introduce the system parameters �l, 1 � l � L, obtained as the solution to the linear system

�l = �l +

LX
k=1

�kpkl; 1 � l � L: (19)

The quantity �l is easily seen to be the total arrival rate for class l customers, aggregating the

external arrival rate (�l) with an internal rate (second term on r.h.s. of (19)) obtained via feedback.

Substituting from (18) and (19) into the equations (17) we obtain solutions in the form

�(l;r) = �l
f1� Fl(r)g

M
; 0 � r � Rl � 1; 1 � l � L:

Hence we deduce that

�0 = 1�

LX
l=1

Rl�1X
r=0

�(l;r) = 1�

LX
l=1

�lE(Tl)=M ! 0 (20)

in the heavy tra�c limit. Note that
P

l �lE(Tl) measures the rate at which work is created. Hence

(20) asserts that the heavy tra�c limit is attained as this approaches M , the total service rate

available.
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Returning to our general system, our stochastic optimisation problem is expressed as

ZOPT = inf
u2U

(X
i2E

cix
u
i

)
(21)

where ci > 0, i 2 E, and

xui = EufNi(t)g; i 2 E; (22)

the expectation being taken under the stationary distribution. We would like to generate linear

(in)equalities of the form (10) and (11). To this end, we deploy the potential function approach of

Bertsimas et al. (1995) who consider, for each subset S of E, a quantity fRS(t)g2, where

RS(t) =
X
i2S

V S
i Ni(t); (23)

for suitably chosen V S
i , i 2 S. Note from (22), that EufR

S(t)g is precisely the quantity on the l.h.s.

of (11). We choose the positive constants V S
i , i 2 S, as solutions of the linear system

V S
i = 1 +

X
j2S

E(nij)V
S
j ; i 2 S: (24)

Observe that V S
i may be thought of as the mean amount of S-work required by a class i customer

- i.e., beginning from a situation in which only a single class i customer is present, this is the mean

amount of processing required until there are no S-customers present. Hence RS(t) is the total

amount of S-work in the system at t. Using (15) and (23) we infer that

RS(t+ 1) = RS(t) +
X
i2S

MX
m=1

NX
j=0

V S
i I

m
j (t)(nmji � �ij) (25)

If we square both sides of (25), take Eu and enforce the stationarity condition

Eu
�
fRS(t+ 1)g2

�
= Eu

�
fRS(t)g2

�
we infer the condition

2Eu

8<
:RS(t)

MX
m=1

NX
j=0

Imj (t)
X
i2S

V S
i (n

m
ji � �ij)

9=
;

+Eu

2
64
8<
:

MX
m=1

NX
j=0

Imj (t)
X
i2S

V S
i (n

m
ji � �ij)

9=
;

2
3
75 = 0 (26)

Considerable simpli�cation of (26) is possible which exploits the server-symmetry of u and the fact

that Imj (t)Imk (t) = 0 whenever j 6= k. Straightforward algebra yields the following:

X
i2S

V S
i x

u
i = EufR

S(t)g
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= Eu

8<
:RS(t)

X
i62S

V S
i I

1
i (t)

9=
;+ b(S)

+
1

2
(M � 1)Eu

2
4
8<
:
X
i62S

V S
i I

1
i (t)

9=
;
8<
:
X
j 62S

V S
j I

2
j (t)

9=
;
3
5 ; (27)

where b(S) is a control-invariant constant given by

b(S) =
1

2

NX
j=0

�jE

2
4
(X
i2S

V S
i (nji � �ij)

)2
3
5+

1

2
(M � 1)

8<
:1� 2

0
@X
i62S

�iV
S
i

1
A
9=
; : (28)

Note that in both (27) and (28) the constants V S
i , i 62 S are obtained from a suitable extension of

(24). It is from equation (27) that we are able to develop suitable forms of the (in)equalities (10) and

(11) for this system. The requirement in (12) which we need for a full GCL/Gittins index analysis

as described in Section 2 is satis�ed in the single server case M = 1. When M > 1 we come close to

having (12) in a sense which is made precise in the following result. Before stating it, please note

that (10) may be regarded as a particular case of (12), namely for S = E. We shall also require the

notation b+ = max(b; 0) for set functions b.

Theorem 1 (Exact and approximate GCL for the system)

(i) For all values of M and all controls u 2 U

X
i2S

V S
i x

u
i � b+(S); S � E; (29)

(ii) M=1: In the single server case M = 1 the system satis�es GCL, i.e. in addition to (i) we have

X
i2S

V S
i x

�
i = b+(S) = b(S) for � : S ! Sc; S � E;

(iii) M � 2: When there is more than one server, controls � which give S priority over Sc come

within a �nite constant of achieving the bound on the right hand side of (29). In particular

X
i2S

V S
i x

�
i � b+(S) +

1

2
(M � 1)(3 + n̂)V S ; S � E (30)

where

n̂ = max
i2E

X
j2E

E(nij) and V S = max
i2S

V S
i :

Outline Proof

(i) The l.h.s. of (29) must be non-negative as must the �rst and third terms on the r.h.s. of (27).

Part (i) is then an immediate consequence of (27).

(ii) If M = 1 and � gives S priority over Sc then, under �

RS(t) > 0 =) Ni(t) > 0 for some i 2 S =) I1i (t) = 0 i 62 S:

13



Hence the �rst term on the r.h.s. of (27) is zero. Since the third term is zero trivially, the result

follows.

(iii) In the case M � 2 we are required to bound the �rst and third terms in (27) from above for

policies � which give S priority over Sc. Taking the �rst term, we can assert that, since under �

X
i2S

Ni(t) �M =) I1i (t) = 0; i 62 S

it follows that

E�

8<
:RS(t)

X
j 62S

V S
j I

1
j (t)

9=
; � (M � 1)V S

X
j 62S

V S
j EfI

1
j (t)g

= (M � 1)V S
X
j 62S

�jV
S
j = (M � 1)V S (31)

In (31), note that
P

j 62S �jV
S
j = 1 may be established either algebraically (from (17) and (24))

or by use of probabilistic arguments. We now consider the third term in (27). A Cauchy-Schwarz

inequality yields

E�

2
4
(X
i2S

V S
i I

1
i (t)

)8<
:
X
i62S

V S
j I

2
j (t)

9=
;
3
5 � E�

2
64
8<
:
X
i62S

V S
i I

1
i (t)

9=
;

2
3
75

=
X
j 62S

�j(V
S
j )

2 � (1 + n̂)V S (32)

The last inequality in (32) follows simply from (24). The result is now a straightforward consequence

of (27), (31) and (32). 2

We see from Theorem 1 (i),(ii) and the material in Section 2 that in the single server case

M = 1, the requirements described in (10)-(12) are met (i.e. GCL are satis�ed) and the stochastic

optimisation problem (21) is solved by a Gittins index policy. The indices concerned are derived

from the adaptive greedy algorithm AG(V; c).

In the parallel server case with M � 2 we proceed as follows: from Theorem 1 (iii), the set

function � given by

�(S) =
1

2
(M � 1)(3 + n̂)V S ; S � E; (33)

is a natural measure of how close we come to satisfying the GCL requirement in (12). Glazebrook

and Garbe (1998) utilise the primal-dual structure of LP to develop a performance guarantee for

the Gittins index policy derived from AG(V; c) in terms of the measure �. Numerical and analytical

evidence to date suggests that the tightest such guarantees available perform very well in bounding

the level of suboptimality of the index policy �G. We shall give a somewhat simpli�ed account here

which will be su�cient for our purposes. Note that the bounds we shall describe are by no means

the tightest available from the methodology.

14



Application of AG(V; c) yields the indices Gi, i 2 E. The customer classes are then renumbered

such that GN � GN�1 � : : : � G1. Hence, the index policy �G implements priorities among the

customer classes in decreasing numerical order. We identify S(j) = fj; j + 1; : : : ; Ng as the set of

cardinality N � j + 1 of classes with highest index. Note that �G prefers S(j) to fS(j)gc for all j.

Our goal here is to develop a bound for Z�G � ZOPT where Z�G is the expected cost associated

with the Gittins index policy. From the theory cited above we deduce that

Z�G � ZOPT �

NX
j=1

�fS(j)g(Gj �Gj�1) (34)

where � is the above measure and G0 is taken to be zero.

It is not di�cult now to establish Corollary 2 by substituting from (33) into (34) and utilising

the form of the algorithm AG(V; c) which produces the indices.

Corollary 2 (Performance guarantee for Gittins index policy when M � 2)

Z�G � ZOPT � 1
2
N(M � 1)(3 + n̂)

�
max
i2E

ci

�

One remarkable thing about the claim in Corollary 2 that the index policy comes within a

constant of optimality is that the optimum cost ZOPT becomes in�nite (under reasonable conditions)

as the heavy tra�c limit is approached. Hence �G is asymptotically optimal in a sense made precise

below. Such a result is not unexpected. Index policies are optimal in the single server case since

they always make choices which drive down the rate at which costs are incurred as rapidly as

possible. The parallel server case is complicated by the issue of how e�ectively controls utilise the

full service capacity. (Attempts to tackle these issues directly have met with little success. See Weiss

(1992,1995) for an authoritative discussion in the context of much simpler models than those cited

here.) However, and to hugely oversimplify the issues concerned, in the heavy tra�c limit server

utilisation disappears as an issue and the system looks increasingly like one serviced by a single

server working at M times the speed.

In order to establish the asymptotic optimality of �G we can infer from inequality (29) with

S = E that

ZOPT =
X
i2E

cix
OPT
i � min

j2E

�
cj=V

E
j

�X
i2E

V E
i xOPTi � b(E)min

j2E

�
cj=V

E
j

�
(35)

with the set function b given by (28). It will be enough to elucidate conditions which guarantee

that the r.h.s. of (35) diverges to in�nity in the heavy tra�c limit �0 ! 0. One way of achieving

this is as follows: suppose that the vectors ni record two types of changes to the composition of the

system, namely

(1) external arrivals into customer classes within some designated subset A � E; and

15



(2) internal transfers via feedback or some other transition mechanism.

Plainly, our example above of an M/G/parallel system with feedback may be thought of in these

terms. Hence when i 2 E [ f0g we write

nij =

�
Aj + ~nij ; j 2 A;

~nij ; otherwise.
(36)

In (36), Aj denotes external arrivals to j (assumed independent of all other Ai and all of the ~nkl)

and ~nij internal transfers from i to j. We assume that E(Aj) = �j=M , where �j is an overall

class j arrival rate for the system. We shall approach the heavy tra�c limit by increasing the �j

appropriately while (a) keeping the E(~nij) �xed and (b) keeping the var(Aj) bounded away from

zero. Note that (b) is required to avoid certain pathologies which occur in deterministic cases. Note

also that all this is quite natural in the M/G/parallel case.

Utilising (36) within an expanded version of (24) which includes the \idleness" class 0, we can

solve for V E = [V E
j ; j 2 E [ f0g], obtaining

V E = V̂ (I � ~n)�1e; (37)

where in (37)

V̂ = 1 +

0
@X
j2A

�jV
E
j =M

1
A ;

e is a vector with all entries equal to one and ~n is a matrix whose (i; j)-th entry is E(~nij). Note

that I � ~n is guaranteed non-singular by earlier assumptions.

Recall from the proof of Theorem 1 the identity
P

j 62S �jV
S
j = 1. In the case S = E this yields

�0V
E
0 = 1. Hence in the heavy tra�c limit �0 ! 0 and V E

0 ! 1. However in (37), since we have

assumed that I � ~n remains �xed as we take the limit, it must follow that V̂ !1 and hence that

V E
j !1, j 2 E. We can now assert the asymptotic optimality of the Gittins index policy �G.

Theorem 3 (Heavy tra�c optimality of Gittins index policy when M � 2)

In the above heavy tra�c limit

Z�G � ZOPT

ZOPT
! 0

Proof

We utilise (28) to obtain b(E). By standard results and the fact that �0V
E
0 = 1, we deduce that

2b(E) �

NX
j=0

�jvar

 X
i2E

V E
i nji

!
� (M � 1)

�

NX
j=0

�jvar

 X
i2A

V E
i Ai

!
� (M � 1) (38)

=
X
i2A

(V E
i )2var(Ai)� (M � 1): (39)
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To obtain (38), we use (36) and the independence assumptions following. From (35), (37) and (39)

we conclude that

ZOPT � O(V̂ )!1

in the heavy tra�c limit. The result now follows from Corollary 2. 2

4 Load balancing in distributed systems

A common architecture for multiprocessor systems is a distributed one consisting of a network of

(relatively) autonomous servers. The issue of the e�cient allocation of resources in such contexts is

both important and complex. See Gelenbe and Pekergin (1993). One fundamental question concerns

the distribution of work across the network or, as we shall call it, load balancing. The theoretical

literature has, in the main, concentrated on very simple models. For these, simple round robin

policies and Bernoulli routing with equal probabilities have frequently been proposed as optimal

load balancing regimes when little information is available to the controller. See, for example, Liu

and Towsley (1994). When full information on queue lengths is available, join the shortest queue

has been shown to be optimal for a variety of models. See Weber (1978).

In a contribution which represented a signi�cant advance, Ross and Yao (1991) were able to show

that considerable savings could be made if optimal scheduling of the work o�ered at each station

of the network could be incorporated into the load balancing problem. Their work made use of the

achievable region approach, but predated many of the most signi�cant advances outlined in Section

2. The authors of the current paper and co-workers plan a much more extensive study and we report

here some of the early �ndings.

We shall consider a communication network interconnecting multiple stations, with two types

of jobs generated at each station: those which are dedicated (D) to that station and must be

processed there, and those which are generic (G) and could be processed anywhere in the network.

There may be several classes of D and G jobs, arriving in independent Poisson streams. We seek

to split the G tra�c among the individual stations in an optimal fashion given that each station

schedules its o�ered work (both D and G) optimally. On the basis of a realistic appraisal of the

communication/processing overhead generated thereby our policies for scheduling at each station

will be dynamic (i.e. decisions will be made on the basis of the evolving state of each station) while

the load balancing component of the problem will be static (i.e. the vector of generic arrival rates

will be split once for all between the stations). At this point we introduce two simple examples to

assist the reader.

Examples
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It may seem plausible to conjecture that when the stations in the network are identical (in all

relevant respects) then an optimal load balancing regime will split the G jobs equally among them.

The following simple examples will caution the reader against drawing such conclusions too easily.

In both examples the network comprises two identical single-server stations. In each case there

are two G job classes and no D jobs. The objective in both examples is the minimisation of

c1E(N1) + c2E(N2) where E(Ni) is the expected number of class i jobs in the system and the

expectation is taken under the steady-state distribution of the corresponding stochastic process

with ci a holding cost rate, i = 1; 2.

Example 1

Here we shall suppose that generic job class 1 has zero holding costs (c1 = 0) but a high arrival

rate to the network (�1 = 0:9), while for job class 2 we have positive holding costs (c2 = 1) and a low

arrival rate (�2 = 0:1). The processing time of all jobs is exactly 1 and at each station scheduling

is non-preemptive. Plainly at both stations the optimal scheduling regime prefers class 2 to class 1

and must impose that priority in a non-preemptive fashion.

Since c1 = 0, our objective is to split the load in order to minimise E(N2). An even split of

arriving jobs between the stations will result (frequently) in situations where an arriving class 2 job

�nds the machine busy with a class 1 job and is thus delayed while its processing is completed. An

alternative regime in which all class 1 jobs go to one machine and all class 2 jobs to the other will

result in less frequent delays to the latter because �2 is small. Simple calculations show that the

\one job class per machine" regime yields a 16.43% saving in expected cost over an even distribution

of work.

Example 2

Plainly the non-preemptive nature of the scheduling regime plays a signi�cant role in Example 1.

Consider now a situation in which scheduling priorities are imposed preemptively. We shall suppose

that all processing times are exponentially distributed with mean 1 for class 1 and mean 0.1 for

class 2. The usual full range of independence assumptions are made. We also take c1 = 1; �1 = 0:5

and c2 = 0:1; �2 = 10. Direct calculations serve to show that a (near-optimal) splitting of the load

in which all class 1 tra�c is directed to station 1, while 85% of class 2 tra�c goes to station 2

o�ers a 17.25% saving in expected cost over an even distribution of work. Please note that Example

2 elaborates Example 1 in that processing times for generic jobs are not identically distributed.

Subsequent theory serves to show that this is a required feature for an even split solution to be

suboptimal with exponential processing times and priorities imposed preemptively.
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We shall suppose that our load balancing problem may be expressed as

min
�

X
m

ZOPT
m (�m) subject to �e = � (40)

In (40), �gm is the o�ered load (i.e. arrival rate) of class g jobs at station m, where g 2 G, �m

is the vector of generic loads at station m and � = f�gmg is the generic load matrix. Vector �

summarises the total generic load for the network and e is an M-vector of 1's, where M is the number

of stations. ZOPT
m (�m) is the minimised cost at station m when �m is the generic load o�ered there.

This minimised cost is achieved when the o�ered work is scheduled optimally.

Plainly, an ability to compute and/or characterise the returns ZOPT
m as functions of the generic

load vectors �m will contribute to achieving optimal or near optimal solutions to (40). As we shall

now see, we can make considerable progress when each station satis�es GCL. We drop the station

su�x m as we carry the discussion forward regarding the individual stations in the network.

Happily it is one of the features of the GCL/indexable systems described in Section 2 that

computations of expected cost for a given (priority) policy can be performed with ease, as can the

computation of minimised cost ZOPT . See Bertsimas and Ni~no-Mora (1996). In addition, ZOPT

can often be characterised in a way which will ultimately assist with (40) as follows: consider a GCL

system with linear costs and an associated universal set E of potential customer classes. For speci�ed

S � E, let ZOPT (S) be the minimised cost for the reduced system in which only customer classes

within S are allowed access to service. Garbe and Glazebrook (1998) showed that the achievable

region approach yields the conclusion that, subject to some additional structural requirements, ZOPT

is an increasing, supermodular function, namely

ZOPT (S) � ZOPT (T ); S � T; (increasing)

ZOPT (S [ fjg)� ZOPT (S) � ZOPT (T [ fjg)� ZOPT (T ); (41)

S � T and j 62 T (supermodular):

Supermodularity states, in this context, that allowing an additional class of customers access to a

more congested system increases the optimum cost by more than allowing the same additional class

access to a less congested system. This seems a natural property for ZOPT .

We shall want to draw on this result in our discussion of load balancing. However, rather than

develop the theory through general model structures which have the properties required to establish

(41), for clarity we shall conduct the discussion in terms of a speci�c GCL model for each station

which meets the requirements. Directions in which the material can be generalised are sketched at

the end of the section.

Model for local scheduling at each station
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We shall suppose that each station is a Klimov network (see Klimov (1974)) as follows (note that

we continue to drop the station su�x m): customers who are members of classes within D [ G

are assumed to arrive at the station in a set of independent Poisson streams. Use �g to denote

an arrival rate for generic class g 2 G and � the corresponding vector of generic arrival rates. All

customers have exponential service times with mean denoted ��1g for class g 2 G. Upon completion

of service, a class i customer may be routed to receive further service as a class j customer with

probability pij , or it may leave the station with probability pi0 = 1�
P

j2D[G pij . All the customer

arrival processes, service times and routing events are mutually independent. The routing probability

matrix P = (pij ; i; j 2 D [ G) is such that I � P is invertible, thus guaranteeing that a customer

entering the system will leave it with probability one. We also require that

pij = 0 for i 2 D; j 2 G and i 2 G; j 2 D [G

Hence D-customers can feed back as D-customers in a quite general way but G-customers are \sim-

ple" in that they have no feedback mechanism. In this way the dedicated tra�c at a station can

be quite general in its structure. For example, the framework proposed allows dedicated customers

to have a state which evolves in continuous time as a (�nite state) Markov process, through to

completion. In contrast, the generic tra�c is simple in structure, as would seem natural. Admissible

scheduling controls at the station are non-anticipative, non-idling and preemptive.

Each customer class i 2 D [G has an associated holding cost rate ci and so the minimised cost

ZOPT for the station is given by

ZOPT (�) = inf
u2U

( X
i2D[G

cix
u
i

)

with xui = Eu(Ni), the long-term average number of class i customers at the station.

For the e�cient solution of (40), we would ideally like each ZOPT to be an increasing, convex

function of the o�ered generic load �. However in higher dimensions, full convexity is a very strong

property and in general we must settle for the weaker form described in De�nition 1 in which

convexity is available in certain directions (NE-SW) only in load space.

De�nition 1

A function f : (<+)n ! < is North-East (NE) convex if, for all � 2 [0; 1] and all �0, �00 such that

�0 � �00 2 (<+)n [ (<�)n,

�f(�0) + (1� �)f(�00) � ff��0 + (1� �)�00g

There is a simple proof of Theorem 4 which begins with the supermodularity property in (41) and

infers from that properties of ZOPT (�). The argument essentially secures increased generic arrival
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rates through the introduction of new generic job classes with appropriate service characteristics.

We omit the details.

Theorem 4

For our Klimov network model, the minimised cost ZOPT : (<+)jGj ! <+ is increasing and NE

convex.

Please note that NE convexity certainly includes convexity in each co-ordinate direction (for �xed

values elsewhere). Further, in the one-dimensional case it coincides with full convexity. Corollary 5

follows.

Corollary 5

If jGj = 1, the minimised cost ZOPT : <+ ! <+ is increasing, convex.

Hence we have full convexity for the case of a single generic class. This can be readily extended

in two directions: the �rst concerns situations in which the controller of the distributed system

cannot distinguish between generic jobs. In this case, the solution to (40) will be of the form

f�m; 1 � m � Mg where �m is the proportion of all generic tra�c passed to station m. Let �

now stand, as in (40), for the generic load for the network. The optimisation goal becomes the

minimisation of

X
m

ZOPT
m (�m�) subject to �m � 0; 1 � m �M;

X
m

�m = 1: (42)

To solve (42), our interest is in ZOPT (��) as a function of � for �xed �, where � 2 [0; 1]. The

following is an immediate consequence of Theorem 4.

Corollary 6

For �xed �, the minimised cost ZOPT (��) : �! ZOPT (��) is increasing, convex.

Another direction in which Theorem 4 can be extended is to cover those situations for which

jGj > 1, but where all generic processing requirements are i.i.d. with �g = �, g 2 G.

Theorem 7

If �g = �, g 2 G, the minimised cost ZOPT : (<+)jGj ! <+ is increasing, convex.

Outline Proof

Write N = jD [ Gj. As in Section 3, the customer classes at our single station are renumbered

such that GN � GN�1 � : : : � G1 and again we write S(j) = fj; j + 1; : : : ; Ng. In the notation

established in (10)-(14) in Section 2, it will assist to express the dependence of the base function b

on the generic arrival rate �. Hence we write b(S;�), S � E. Recall that ZOPT is the value of the
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LP in (14) and hence also of its dual. The latter was shown by Bertsimas and Ni~no-Mora (1996) to

be expressible as

ZOPT (�) =

NX
j=1

bfS(j);�g(Gj �Gj�1) (43)

where in (43), G0 = 0. Note also that it is straightforward to show for our Klimov network model

that the indices Gj do not depend on �.

From the generalised conservation laws in (11) and (12) we may write

inf
u2U

8<
:
X
i2S(j)

V
S(j)

i xui

9=
; = bfS(j);�g (44)

It can be shown that, since the generic classes in G \ S(j) have i.i.d. processing requirements then

they must all have the same associated value of V
S(j)
g . Hence, they may be regarded corporately

as a single customer class with arrival rate
P

g2G\S(j) �g so far as the stochastic optimisation

problem on the l.h.s. of (44) is concerned. It then follows from Corollary 5 that we may write

bfS(j);�g � bj

�P
g2G\S(j) �g

�
where bj : <

+ ! <+ is increasing, convex. Theorem 7 now follows

from (43), the �-independence of the indices and from basic properties of convex functions. 2

We have established a range of scenarios in which the minimised cost at each station is increasing,

convex (Corollaries 5, 6 and Theorem 7, with more to come) and a greater range for which convexity is

available for certain directions in load space (including co-ordinatewise). We now proceed to consider

brie
y the implications for the load balancing problem (40). We begin by consideration of the special

case in which all stations are identical, i.e. the minimised cost for station m, ZOPT
m (�) � ZOPT (�),

1 � m �M .

Theorem 8

When stations are identical, it is optimal to split the generic load evenly among stations for all loads

� if and only if ZOPT (�) is convex.

Proof

If ZOPT (�) is convex and �m is the generic load for station m as in (40), then

MX
m=1

ZOPT (�m) �MZOPT

 
MX
m=1

1

M
�m

!
=MZOPT

�
1

M
�

�
; (45)

by convexity. However, the �nal term in (45) is plainly the cost corresponding to an even load

distribution. For the converse, see Dacre and Glazebrook (1998). 2

It is possible to supplement Theorem 8 via the development of performance guarantees for an

even split of the generic load when full convexity for ZOPT (�) is not available. For example, if we
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take one of the simplest cases of interest, namely of two identical stations each having jDj = 0 and

jGj = 2, it can be shown that an even load distribution yields a cost which is within a fraction

1

2

j�1 � �2j

(�1 + �2)
(46)

of the optimal cost for the network. See Dacre and Glazebrook (1998). Note that the expression in

(46) is 0 when �1 = �2, indicating that an even distribution is optimal in the i.i.d. case. This is in

agreement with Theorems 7 and 8.

Please note that, following Theorem 4 and extensive numerical investigation, there are many

systems for which the optimum cost, while not fully convex, comes close to being so. When the

ZOPT
m (�) are indeed all convex, an e�cient iterative procedure is available for the load balancing

problem in (40) which solves a sequence of LP's determined via sub-gradients of the objective. Our

numerical study has shown that, in practice, this approach yields acceptable solutions even in the

absence of full convexity. In Figures 2 and 3 below we illustrate the performance of (a) an even

load distribution and (b) this LP-based heuristic for (40) for the simple case above, namely of two

identical stations with jDj = 0 and jGj = 2. The �gures are based on a grid of (60)2 points with both

loge(c2=c1) and loge(�2=�1) taken to be in the range �3(0:1)3. The values of �1 and c1 are both set

equal to 1, although the results presented are the same for any assigned values of these constants.

At each grid point is presented a summary of the performance for the chosen load balancing regimes

over 120 problems - each one corresponding to a choice of generic arrival rate �. In Figure 2, the

chosen performance measure is the maximum percentage level of suboptimality of the load balancing

regime over the 120 problems while in Figure 3 we report the percentage of solutions which were

within 0:01% of optimality. In interpreting the results, note the following:

(i) By Theorem 8, we should expect the performance of the even load distribution to give an

indication of the extent of non-convexity of ZOPT .

(ii) Following (43), it is possible to express ZOPT in the form

fjc1�1 � c2�2j � convex(�)g+ f(min ci�i)� non-convex(�)g

Hence we should expect the degree of non-convexity of ZOPT to be related to the absolute size of

c1�1 � c2�2 and to be at its most pronounced when loge(c2=c1)
�= � loge(�2=�1);

(iii) By Theorem 7, loge(�2=�1) = 0 is a convex case for which the even load distribution will be

optimal.

The results presented in Figures 2-3 are wholly consistent with (i)-(iii). The even load dis-

tribution heuristic is optimal when loge(�2=�1) = 0 and has its weakest performance around the
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line loge(c2=c1) = � loge(�2=�1). The LP-based heuristic o�ers a signi�cant improvement when

non-convexity is a serious issue and achieves a high level of performance almost uniformly.

In addition to the special role of even load distributions for identical stations, simple algorithms

for load balancing are available when jGj = 1 and the ZOPT
m (�) are fully convex, but where stations

are not identical. The latter raises many important modelling possibilities, including those in which

the dedicated tra�c has a di�erent stochastic character at di�erent stations and also where the

processing time distributions of generic jobs are station-dependent. The algorithms concerned are

all based on procedures which match gradients and are variants of those proposed by Tantawi and

Towsley (1984,1985). We omit the details.
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We conclude by supposing that we have such an algorithm for a network in which Corollary 5

applies at each station - namely, there is a single generic class and the minimised cost is increasing

convex. We shall show how to develop from that a load balancing algorithm for the more general

situation in Theorem 7 in which generic job classes are distinguished only by their holding cost rates.

Suppose, then, that we have such an algorithm for the situation in which jGj = 1 and, further, that

at each station D-jobs always have preemptive priority over G-jobs. Processing requirements for

G-jobs may vary from station to station but holding costs do not. With this set-up, balancing the

generic load can have no impact upon the total costs incurred by dedicated jobs across the network.

We write �m(�) for the optimal generic load at station m when � is the total generic load for the

network. See Dacre and Glazebrook (1998) for a proof of the following:

Lemma 9

There is a solution to the above simple load balancing problem for which �m : R+ ! R+ is increasing

for each m.

We now move on to consider a more general model, as above, but where the jGj job classes have

processing requirements which are i.i.d. at each station and have holding cost rates ci; i 2 G, which

apply across the network. It is straightforward to establish that the optimal scheduling of generic

jobs at each station is according to priorities determined by the cg, g 2 G, with the largest cg having

the highest priority. Renumber the generic classes such that

cjGj � cjGj�1 � : : : � c1

Recall that the total generic loads for the network are �g , g 2 G.

Theorem 10

There is a solution to the above load balancing problem for which the optimal class g load at station

m is �m

�PjGj

j=g �j

�
� �m

�PjGj

j=g+1 �j

�
for all g, m where �m is as in Lemma 9.

Proof

Let �mg(�) be the class g load allocated to station m by a general solution � to our load balancing

problem. If we write Z(�;�) for the total network cost for the generic jobs under this solution then

it is not di�cult to see that we have the decomposition

Z(�;�) =

jGjX
g=1

Zg(�;�): (47)

In (47), Zg(�;�) is the generic cost associated with an equivalent jGj = 1 network in which the

station m load is
PjGj

j=g �mj(�) and the common holding cost rate is cg � cg�1. We take c0 = 0. But

MX
m=1

jGjX
j=g

�mj(�) =

jGjX
j=g

�j
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is the total load for this network, and so by Lemma 9 it is optimised by allocating generic load

�m(
PjGj

j=g �j) to each station m. However,

�m

0
@ jGjX
j=g

�j

1
A =

jGjX
j=g

�mj(�) for all g;m

where � � f�mjg is the load balancing solution proposed in the theorem. Note that Lemma 9

guarantees the admissibility of �. From the above we conclude that

Zg(�;�) � Zg(�;�) for all g

and so, from (47),

Z(�;�) � Z(�;�);

as required. 2

Extensions

(1) The general conditions which guarantee that an indexable system has an increasing supermodular

value function ZOPT is that it be reducible and decomposable. See Garbe and Glazebrook (1998)

for more details and examples of systems which meet these requirements.

(2) The above discussion via the Klimov network model supposes that the D-customers and the

G-customers at a station are dealt with on the same basis through a linear objective involving all

job classes. Hence, prioritising between these two customer types (and the natural proposal is to

give dedicated customers a higher priority) is via appropriate choice of the ci, i 2 D [ G. Another

obvious approach is to impose the requirement that D-customers must always be given priority over

G-customers as is done in the concluding discussion leading to Theorem 10. The latter then have

the status of \background" jobs which are allowed access to service capacity which is surplus to the

primary goal of serving the D-customers. This latter proposal can easily be accommodated through

Garbe and Glazebrook's (1998a) achievable region account of stochastic scheduling with imposed

priorities.

(3) Another way of asserting the primacy of the D-customers at each station is to impose delay

constraints of the form xud � td, d 2 D. Among the controls which meet the delay constraints

the goal would be to choose one to minimise
P

g2G cgx
u
g . This is the approach of Ross and Yao

(1991) who take as their station model a multi-class M/G/1 queue with priorities imposed non-

preemptively. In this case we have convexity of the optimal returns for the case of a single generic

class.
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5 Threshold policies for intensity control

A fundamental question which can be asked of any queueing system concerns how much work we

need to hold in the system in order to achieve a given level of throughput (i.e., the rate of job 
ow

through the system). The intuition is that letting the work in process (WIP) grow beyond a certain

level will do little to increase throughput. However, achieving a given throughput can only be done

at the expense of a large enough WIP. A class of policies used frequently in practice is the class of

threshold policies which control the system by setting a WIP cap: when the work in process reaches

this cap the arrivals process is shut o�. The following basic questions arise: what is the minimum

WIP level required to attain a target throughput level? When are threshold policies optimal for

maximising a linear throughput-WIP objective?

Such questions have conventionally been explored by dynamic programming methods. Ni~no-

Mora (1998) is developing a unifying achievable region approach to such issues and this section

contains an introduction to the key ideas based on an application to a queueing intensity control

model due to Chen and Yao (1990). We give an indication of how the ideas generalise at the end of

the section.

The model is a queueing system which consists of a facility servicing a single customer class. N(t)

denotes the number of customers in the system at time t � 0. We control the process fN(t); t � 0g

by means of a policy which sets the current stochastic intensities (or rates) �(t) and �(t) of the

arrival and departure process, respectively. The sequences f��k; k = 0; 1; : : :g and f��k; k = 0; 1; : : :g

of input and output capacity limits impose bounds on the arrival/departure intensities when k

customers are in the system. A policy will be admissible if it is non-anticipative (i.e., it is adapted

to the system's history), stable (i.e., the process fN(t); t � 0g is ergodic) and satis�es the input

and output capacity constraints, expressed as

N(t) = k =) �(t) � ��k; �(t) � ��k; t � 0; k = 0; 1; 2; : : :

We denote by U the class of admissible policies. Of special interest is the class of threshold policies :

for each integer b � 0, the b-threshold policy sets the input intensity at full capacity if N(t) < b, and

to 0 otherwise. Output intensity is always set at full capacity.

The achievable region approach requires us to develop a notion of performance, which here must

measure both throughput (�u for policy u) and WIP (Nu). We consider a time-average criterion

and de�ne

�u = lim
T!1

1

T

Z T

0

Euf�(t)g dt (48)
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and

Nu = lim
T!1

1

T

Z T

0

EufN(t)g dt (49)

We focus primarily on the following economic structure: a unit reward is received at each service

completion time. In addition, each customer in the system (whether waiting or in service) incurs

holding costs at a rate c > 0 per unit time. Our goal is to choose an admissible control to maximise

the long-term net rate of return, i.e.

ZOPT (c) = sup
u2U

Zu(c) = sup
u2U

f�u � cNug (50)

In order to make progress we need to make the following plausible assumptions about the input

and output capacity limits. In Assumption 1, the terms increasing and decreasing are used in the

non-strict sense.

Assumption 1

(a) The sequence f��k; k � 0g of input capacity limits is decreasing;

(b) The sequence f��k; k � 0g of output capacity limits is increasing concave, with ��k+1 � ��k ! 0,

k !1.

Consider now this system evolving under a b-threshold policy, de�ned above. We denote the

associated performance measures �b and N b, and the corresponding objective Zb(c) = �b � cN b,

b � 0. We also write cb for the critical cost parameter, given by

cb = (�b � �b�1)=(N b �N b�1); b � 1; (51)

with c0 = 0. Under a b-threshold policy the system evolves as a birth-death process on states 0; : : : ; b

with state-dependent birth intensities ��i, 0 � i � b� 1, (and 0 otherwise) and death intensities ��i,

1 � i � b. The stationary distribution of this process is well known to be given by

�bi = Kb

i�1Y
j=0

(��j=��j+1); 0 � i � b; (52)

where an empty product is unity and Kb is the required normalising constant. We have

�b =

bX
i=1

��i�
b
i and N b =

bX
i=1

i�bi ; b � 1: (53)

An expression for the critical cost parameter cb is easily recovered from (52) and (53).

It is straightforward to demonstrate that the following properties of the quantities introduced

above 
ow from Assumption 1. See Ni~no-Mora (1998) for details.

Lemma 11

(i) The sequences f�b; b � 0g and fN b; b � 0g are both (strictly) increasing;
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(ii) The sequence fcb; b � 1g is positive and (strictly) decreasing with limit zero;

(iii) �u � cbNu � Zb(cb); u 2 U ; b � 1:

Note that Lemma 11(iii) is an assertion of the optimality of the b-threshold policy for the critical

cost parameter cb, b � 1. The achievable region analysis of the stochastic optimisation problem in

(50) for any c > 0 now 
ows naturally. Many of the issues raised in the introductory paragraph to

this section are resolved as a by-product of the analysis.

We introduce the performance space

X = f(�u; Nu); u 2 Ug

Following Lemma 11, a natural candidate for X is the threshold polygon P given by

P = fx 2 (<+)2; x1 � cbx2 � Zb(cb); for b � 1g (54)

which is depicted in Figure 4. It is easy to show that the extreme points on the lower boundary of

P are (�b; N b), b � 1, namely, the performances of the b-threshold policies. The corresponding LP

of interest is given by

ZLP (c) = max
x2P

fx1 � cx2g (55)

In our main result we shall require the critical threshold function b�(�) given by

b�(c) = minfb � 0; cb+1 � cg

�

Nmin(�)

(�1; N1)

(�2; N2)

(�3; N3)

x1

x2

P

Figure 4: The threshold polygon P

Theorem 12 (Threshold optimality via the achievable region)

(i) ZLP (c) = �b
�(c) � cN b�(c); c > 0;

29



(ii) X � P ;

(iii) ZLP (c) = ZOPT (c); c > 0;

(iv) The stochastic optimisation problem in (50) is solved by the b�(c)-threshold policy, c > 0;

(v) X = �P , the closure of P.

Outline Proof

(i) follows by considering the dual LP of (55) through a standard complementary slackness argument

which makes use of the properties described in Lemma 11(i),(ii);

(ii) is an immediate consequence of Lemma 11(iii);

(iii) It follows from (ii) that ZOPT (c) � ZLP (c). However, from (i), ZLP (c) is achieved by the

performance (�b
�(c); N b�(c)) of the b�(c)-threshold policy. This yields ZLP (c) � ZOPT (c) and (iii)

follows;

(iv) is an immediate consequence of (i) and (iii);

(v) Plainly, from (ii) we have that X � �P . To secure the reverse inclusion, the reader is referred to

Figure 4 for assistance. Observe that any point on the lower boundary of P is the performance of a

policy which randomises between (at most) two threshold policies. Hence the lower boundary of P

is contained in X . Note also that all points (0; N) are in X where N is a non-negative integer. To

see this, consider a policy which guarantees that the system enters the state in which N customers

are present in �nite time and which then freezes the system by closing down both the input and the

output. Plainly there is such a policy and its performance is (0; N).

By appealing further to randomisations, we infer that the convex hull of the lower boundary of P

together with f(0; N); N � 0g is contained in X . We deduce that �P � X and (v) follows. 2

We �nally broach the issue raised above of the minimum WIP level, Nmin(�) required to achieve

a target throughput level �. From Theorem 12 we can write

Nmin(�) = minfNu; �u = �; u 2 Ug (56)

= minfN ; (�;N) 2 Xg

= minfN ; (�;N) 2 �Pg:

The minimisation in (56) is achieved on the lower boundary of P . See Figure 4. Corollary 13 follows

easily. We write �1 = limb!1 �b:

Corollary 13

Nmin(�) is a piecewise linear function of � over the range [0; �1) given by

Nmin(�) = N b +
1

cb+1
(�� �b); �b � � � �b+1; b � 0:
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Consider now a general stochastic system with performance summarised by a throughput-WIP

pair (�u; Nu). The stochastic optimisation problem of interest is still (50) and the general sys-

tem continues to be furnished with a class of threshold policies whose associated performances

are (�b; Lb), b � 0. Ni~no-Mora (1998) describes what needs to be true in general of the set

f(�b; N b); b � 0g for the achievable region to be a threshold polygon (as in the above example)

whose vertices are the performances of threshold policies. When these conditions are met, threshold

policies will be optimal for linear objectives and the minimum WIP level, Nmin(�) will be piecewise

linear, as in Corollary 13.

6 Plans for future work

Current plans for further development of the achievable region approach by the authors and co-

workers include work in the following three major areas.

(i) Primal-dual approach

As mentioned at the end of Section 2, the methodology underlying the performance guarantee in

Corollary 2 is derived from the primal-dual structure of LP. The method works by constructing both

a heuristic solution to an appropriately de�ned (primal) LP related to the stochastic optimisation

problem of interest and a feasible solution to the dual of a relaxation of it. Our goal is to establish this

approach as a central methodology in the analysis of heuristic policies for the control of stochastic

systems within achievable region methodology both by extending its application to approximately

GCL systems (like those discussed in Section 3) and by introducing it as an analytical tool in new

contexts.

(ii) Load balancing

There is huge scope for further development of the work in Section 4. We shall mention just two

directions for such work: �rstly, the delay constrained problem of Ross and Yao (1991) mentioned

at the conclusion of Section 4 is both compelling from the perspective of applications, but also a

formidable technical challenge when placed in the context of GCL systems. Secondly, in more com-

plex systems than those discussed above for which the model for each station only approximately

satis�es GCL then functions ~Zm approximating the optimal costs ZOPT
m will have the kind of convex-

ity properties discussed in Section 4. A natural load balancing heuristic can be obtained by replacing

ZOPT
m by ~Zm in (40). Further work will include the development of performance guarantees for such

heuristic approaches.

(iii) Extension of the approach to new areas
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Strict priority policies for the service of customers in a queueing network may be unattractive

because of the heavy penalties they impose on low priority jobs/customers. The latter su�er not only

large queues and response times but, perhaps more signi�cantly, large variances in these quantities.

Natural formulations to ameliorate this would seek policies to minimise the usual time average linear

holding cost rate subject to constraints on variance or to incorporate quadratic terms in the objective.

We have begun work in this challenging area and believe that the achievable region approach has

an important role to play. Achievable region methodology will also be introduced as an analytical

tool for developments of the models discussed in Section 5 to accommodate scheduling of the work

in progress (WIP) in addition to control of the arrivals process.
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