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Abstract

Structural equation models are widely used in economic, social and behav-
ioral studies to analyze linear interrelationships among variables, some of which
may be unobservable or subject to measurement error. Alternative estimation
methods that exploit different distributional assumptions are now available.
The present paper deals with issues of asymptotic statistical inferences, such
as the evaluation of standard errors of estimates and chi-square goodness-of-
fit statistics, in the general context of mean and covariance structures. The
emphasis 1s on drawing correct statistical inferences regardless of the distribu-
tion of the data and the method of estimation employed. A (distribution-free)
consistent estimate of T', the matrix of asymptotic variances of the vector of
sample second-order moments, will be used to compute robust standard errors
and a robust chi-square goodness-of-fit statistic. Simple modifications of the
usual estimate of T" will also permit correct inferences in the case of multi-stage
complex samples. We will also discuss the conditions under which, regardless of
the distribution of the data, one can rely on the usual (non-robust) inferential
statistics. Finally, a multivariate regression model with errors-in-variables will
be used to illustrate, by means of simulated data, various theoretical aspects of
the paper.

Key words: structural equation models, minimum distance, standard er-
rors, chi-square goodness-of-fit, asymptotic distribution-free, stochastic inde-
pendence, non-normality, complex samples.
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1 Introduction

Structural equation models are widely used in economic, social and behavioral stud-
ies when studying the interrelationships among variables, some of which may be
unobservable (latent) or subject to measurement error (see, e.g., Joreskog 1981;
Joreskog and Sorbom, 1989; Bentler, 1983 and 1989; Muthén, 1987; Bollen,1989,
and references contained therein). Computer programs which implement various
estimation methods in a general class of structural equation models are now avail-
able (e.g., LISREL of Joreskog and Sérbom 1983; EQS of Bentler, 1989; LISCOMP
of Muthén, 1987; LINCS of Schoenberg, 1989; SAS (PROC CALIS), 1990, among
others)

A general approach to inference in structural equation models consists of fitting
structured population moments to sample moments, usually variances and covari-
ances, using minimum distance (MD) methods (e.g., Chamberlain, 1982; Browne,
1974, 1984; Fuller, 1987, Section 4.2). The so called (pseudo) maximum likelihood
(PML) approach, which uses normality as a working assumption, can also be seen to
be asymptotically equivalent to the MD estimator associated with o normal theoty
(NT) weight matrix Wyt (Browne, 1974). For the precise definitiou of PML and
NT-MD see Section 5 below.

Even though PML and NT-MD fitting functions are deduced from the assumption
that the vector of observable variables is normally distributed, parameter estimates
are consistent regardless of whether or not the normality assumption holds (i.e.,
consistency is a robust quality of PML and NT-MD parameter estimates). This
robustness property, however, does not carry over to inferential statistics obtained
under the normality assumption. That is, the usual standard errors of estimates and
the so called "p-values” of test statistics associated with PML and NT-MD may bhe
incorrect with non-normal data. Since in practice the distribution of the observable
variables is often skewed with non-normal kurtosis, the lack of robustness of the,
say, normal theory (NT) inferential statistics is of practical concern.

Given any type of distribution of the data, an asymptotically optimal MD (AO-MD)
analysis is attained when W is the inverse (or generalized inverse) of the matrix of
fourth-order sample moments of the data. In the context of covariance structure
analysis, this is the so called "asymptotic distribution free” ("ADF”) approach of
Browne (1982, 1984), Bentler (1983) and Muthén (1989). For moderate size of
models, however, fourth-order sample moments may be large in number and highly
unstable in small samples, hence AO-MD methods may suffer from computational
burden as well as lack of robustness against small samples (see Muthén and Kaplan,
1985 and 1990, for Monte Carlo evidence on the small sample size performance of
"ADF” methods). In fact, such problems of AO-MD methods have contributed to
the fact that PML or NT-MD are still very popular, even though for general types
of distribution of the data they do not yield asymptotic optimality. On the other
hand, the sensitivity of NT inferential statistics to non-normality suggests providing
PML or NT-MD analysis with (asymptotic) robust standard errors of estimates and




a robust chi-square goodness-of-fit statistic.

The general theory for asymptotically correct standard errors of estimates in the
context of MD estimation has been available for many years (Ferguson, 1958; Chi-
ang, 1956); robust standard errors for mean and covariance structures have also
been deduced in the context of PML estimation (White, 1982; Arminger and So-
bel, 1990; Arminger and Schoenberg, 1989 ). Recently, the EQS computer program
(Bentler, 1989) has made robust standard errors for NT-MD available in practice,
though they are confined to covariance structures with unrestricted means; LISREL
7 ( Joreskog & Soérbom, 1989) also provide such standard errors but with an ad-
ditional assumption of independence between sample means and sample variances
and covariances. In fact, for PML estimation, robust standard errors for mean and
covariance structures are available in the program LINCS (Schoenberg, 1989; see
also, Arminger and Schoenberg, 1989).

Traditional structural equation modeling has focused on models in which means are
unrestricted, and hence only covariance structures needed to be considered. A no-
table exception to that, however, is Bentler ( 1983) and the recent work of Arminger
and Schoenberg (1989) and Arminger and Sobel (1990). In fact, most theoretical
developments of "asymptotic distribution free” methods have been undertaken only
in the context of covariance structures (Browne, 1984). There are two distinct ap-
proaches to deal with models that restrict means and covariances. One approach
considers the analysis of a moment vector that contains the means and covariances of
the observable variables ( e.g., Joreskog and S6rbom, 1989; Bentler, 1989; Muthén,
1987, 1989 ). Another approach considers the analysis of the uncentered second-
order moment matrix of the vector of observable variables augmented with a variable
constant to one; that is, the analysis of an augmented moment matrix. The first
approach requires modification of the usual fitting function used and hence of the
conventional software for covariance structure analysis. Here we adopt the second
approach which, as we will argue below, is conceptually simpler and has the major
advantage that can be implemented without modifying the conventional software
for covariance structure. Augmented moment matrices have been analyzed in the
context of normality and maximum likelihood estimation, e.g., Jéreskog & Sérbom
(1984) and the recent work of Meredith and Tisak (1990). Here the augmented mo-
ment matrix structure will be analyzed under general type of estimation methods
and arbitrary distribution of the data.

The present paper addresses issues of correct asymptotic inferences in the analysis of
mean and covariance structures. A simple expression for a distribution-free consis-
tent estimate of I', the variance matrix of the vector of sample moments, will enable
us to redefine AO methods for mean and covariance structures and to develop robust
standard errors and a robust chi-square goodness-of-fit statistic associated to PML
and NT-MD analyses. We propose a simple modification of the estimate of I' to
encompass the interesting case in practice of multi-stage complex samples. Further,
conditions will be given under which, despite non normality, robust standard errors
and a robust chi-square goodness-of-fit statistics are not required. The latter point




generalizes recent results on asymptotic robustness (Anderson, 1989; Browne and
Shapiro, 1988; Satorra & Bentler, 1990, and Amemiya and Anderson 1990) which
have so far been confined to the analysis of covariance structures with unrestricted
means.

The structure of the paper is as follows. Section 2 presents the family of models
to be dealt with. Section 3 develops asymptotic theory for (uncentered) second-
order moment structures, summarizing the basic theory for MD estimation and
developing a general type of chi-square goodness-of-fit statistic. Section 4 deals with
the estimation of I' and the AO-MD analysis. Section 5 presents robust standard
errors and a robust chi-square goodness-of-fit statistic associated with PML and
NT-MD. Section 6 deals with asymptotic robustness of normal-theory inferential
statistics. Section 7 illustrates the theoretical developments of the paper using
simulated data, and Section 8 concludes.

2 Linear relation models

We will deal with the following general latent-variable model:

z = An+te
1
{77 By +¢, (1)

where 2 is a p x 1 vector of observable variables, 77is an m x 1 vector of (possibly)
latent variables, ¢ is a p x 1 vector of measurement errors, and £ is a random
vector composed of disturbance-terms of simultaneous equations and ( possibly)
unobservable exogenous variables. The parameter matrices A (p x m) and B (m x
m), and the uncentered second-order moment matrices of ¢ and £, ¥ (p x p) and @
(m X m) respectively, will be structured as continuously differentiable functions of
a q-dimensional parameter vector, say §. Without loss of generality, the matrix (I -

Il

B) will be assumed to be invertible and the last component of the vectors £, n and
z in equation (1) to be a variable constant to 1, say cl. This model encompasses
factor analysis, multivariate regression with (or without) measurement error, and
structural equation models with measurement error ( i.e. the family of so called
"LISREL” models). The gradient vector and Hessian matrix associated with model
(1), for different fitting functions, is given in Neudecker and Satorra (1990).

The presence of the variable ¢l will allow us to impose structure on the means as
well as on the covariances of z. For such an approach of encompassing mean and
covariance structures see, e.g., Joreskog and Sérbom (1984) and Bentler (1989). In
the computer program EQS (Bentler, 1989), c1 is called the "independent variable
V999~

For the developments of our paper it is important to note that (1) can be rewritten




as

2= A= B) '€+ = (A - B T][€ ] = A8, (2)

say, where A := [A(] — B)™!,I],I is an identity matrix of appropriate dimensions
and &' := [¢/,€’]. That is, model (1) is a specific case of a linear structure

L
Z = Z A{(S,’, (3)
=1

where the §,;’s are uncorrelated random variables, and the matrices A;, ®;; := Fé;6!,
¢ = 1,...,L, are restricted possibly to being functions of §. Here the é;’s will be
assumed to be of zero mean except for é;, which is taken to be the variable cl;
hence, (3) can be written as

z = A;b; + pel, (4)

where p := Ez, the mean of z, is also allowed to be a function of §. The (pseudo)
variance of the (pseudo) variable ¢1 will be denoted as ¢..

The linear structure (3), without the possibility of constraining the mean of z has
been considered recently in different papers (e.g., Anderson, 1989; Browne and
Shapiro, 1988; and Satorra and Bentler,1990; for such general type of linear struc-
tures, see also Bentler, 1983).

As an illustration of the above model, consider the following multivariate regression
model with measurement error

YI = a+8z+G
Y, = a+8z+( (5)
X = z+u,

where « and 3 are parameters, and the (1’s , the ¥;’s , X, z and u are scalar random
variables. The variables (j, {5, * and u are assumed to be mutually uncorrelated.
Since in model (5) the intercepts (and the slopes) of first and second equations
are restricted to being equal, the model impose restrictions on the means of the
observable variables.

Note that (5) is a special case of (1), where z := (1,Y2, X, el), n:= (Y1,Y2,2,cl),

£ =(0,0,u,0) and € := ((1,(2,x,c1), A =1,
0 0 8 «
_ 0 0 8 a
B o= 0 0 0 pu {°
0 0 0 0
én 0 0 O
P - 0 ¢ 0 O
- 0 0 ¢33 0
0 0 0 ¢
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and ¥ := diag (0,0,,0).

Note that in this example the variable ¢l plays a crucial role since its inclusion
enables us to structure the intercepts. In the econometric literature, the model (5)
is known as seemingly unrelated regression (SUR) model with error in the variables.

3 Moment structure analysis: asymptotic inferences

The structural equation model (1) implies a moment-structure ¥ = ¥£(6), where # is
the (q-dimensional) vector of parameters, for the population matrix of second-order
moments of z

Y:= Ez2. (6)

Since the last component of z is ¢l, ¥ contains means and uncentered second-order
moments. In fact, writing 2’ = (y’,cl)’, £ is the so called augmented moment matrix
of y.

Given a sample z), 29, ..., 2, of nindependent observations of z, consider the following
matrix of sample second-order moments:

S = Z:(z,-z,'-)/n. (7)

The MD estimator 6 of 8 is defined as the minimizer of !
F=(s—0(8))W(s—0a(8)), (8)

where s = vechS and o = vech¥ are the (reduced) vectors of sample and population
moments, respectively, and W is a matrix converging in probability to W, a positive
definite matrix. Here vechS is the column vector formed stacking the p* := p(p+1)/2
different elements of S. It holds that vec(S) = Dvech(S), where vec(.) denotes the
usual column vectorization of a matrix, and D is the 0-1 duplication matrix; we can
also write, vech(S) = Dtvec(S), where DY := (D'D)™'D is a g-inverse of D (see,
e.g., Magnus and Neudecker, 1988). Generally, a fitting function F = F(S,¥(8))
where F' = F(.,.) is non-negative, continuous in both arguments and zero when S

= ¥ could be used (e.g., Browne, 1984).

To include restrictions on the means, some computer programs (e.g., LISREL, EQS
and LISCOMP) recently incorporated a fitting function that is the sum of two parts:
one corresponding to the fit of means and the other to the fit of variances and
covariances. This approach implies to introduce basic modifications on conventional
software for covariance structure analysis. In contrast to that approach, we adopt

Ytypical regularity assumptions, as e.g. 6 identifiable, will be assumed in order that 6 is well
defined, consistent and asymptotically normal. For a set of general regularity conditions see
Satorra (1989).




the simpler framework of fitting the matrix of sample moments S defined above (see
(7)) to the corresponding matrix ¥ of population moments defined in (6) and which
is structured as a function of  through the model representation (1 ). The structure
on the means will be imposed through ¢1. By adopting this approach we can analyze
mean and covariance structures using, without modification, conventional software
for covariance structures with S taking the role of the ”covariance matrix” to be
analyzed.

The asymptotic variance matrix of estimates and test statistics will now be obtained.
Under fairly general conditions, it holds that

Vn(s— o) - N(0,T), (9)

where —, denotes convergence in distribution, and N(0,I') denotes a normal dis-
tribution of zero mean and variance matrix I', a finite p* x p* matrix (recall that
p" = p(p + 1)/2). From (9), and typical regularity conditions, it follows that the
expression for the matrix of asymptotic variances of 4 will be (e.g., Satorra, 1989):

avar(§) = n 1 A'WA)TTATWTWA(A' WA, (10)

where A := (0/06")0(6), a p* x ¢ matrix.
When W and I' are such that A'WI'WA = A'WA then, obviously, (10) reduces to
avar(§) = n 1 (A'WA), (11)

and, in that case, the corresponding fitting function is said to be asymptotically
optimal for the given model and distribution of the data (Satorra, 1989).

A chi-square goodness-of-fit statistic based on the residuals of the fit of S to ¥ = ()
can also be developed. Let § = vechE(é) and A; be an orthogonal complement of
A (i.e. Ay isap* x (p* — ¢q) matrix of full column rank such that A’ A = 0). It
can easily be shown that that the "residual” vector \/n(s — &) has an asymptotic
normal distribution with asymptotic variance matrix

avar(v/n(s — 6)) = (I — (A'WA)TA'WHI(1 — (A'WAY'A'WY;  (12)
hence, the following goodness-of-fit statistic
T =n(s - &YA(s - ), (13)
where A is a consistent estimate of
A(ALTAL)™ AL, (14)

and ”7” denotes g-inverse, is asymptotically chi-square distributed with degrees of
freedom equal to r := rank(A (A, TA;)"A’}). This is the generalitzation to the
analysis of moment structures, with I' non-singular, of the goodness-of-fit statistic
developed by Browne (1984) in the context of covariance structure analysis.




A more typical version of the goodness-of-fit statistic is n times the fitting function
at its minimum, i.e. nF () . It can be shown (Satorra, 1989) that when the fitting
function is asymptotically optimal, then nF(é) is asymptotically equal to T of (13);
however, when asymptotic optimality does not hold, then nF(é) will in general not
be asymptotically chi-square. Likelihood ratio, score and Wald type test statistics for
testing a specific set of restrictions can also be developed in line with the arguments
of Satorra (1989).

A scaled (adjusted for mean) goodness-of-fit statistic
ST = nF(8)/x, (15)

where
K= tr[(W — WAQA'WA)Y PA'W)T)/r = (tr[(ALWPAL)TTALTA))/7) (16)

has also been proposed in covariance structure analysis (cf. Satorra and Bentler,
1988) on the basis that it would improve the chi-square approximation under a
general type of distribution of z. This is the so-called ”Satorra-Bentler chi-square
statistic” implemented in EQS (Bentler, 1990). An adjusted (adjusted for mean and

variance) chi-square goodness of fit statistic could also be considered (see Satorra
and Bentler, 1988).

4 Consistent estimation of I' and AO-MD analysis

The asymptotic variance matrix I' of the vector of sample moments plays a fun-
damental Tole In assessing the samphing vanabiity of statistics of interest {i.e. 1in
drawing correect statistical inferences) and also in defining the optimal MD analysis.
For general type of distributions of the data, I' involves the fourth-order moments
of the observable variables. When the vector of observable variables is normally
distributed then I’ expresses as a function of only second-order moments.

In order to estimate the asymptotic variance matrix of estimates as well as to com-
pute the goodness-of-fit statistic, an estimate of the matrix T is required. As show
below, for general type of distributions of the observable variables, and also in the

case of complex samples, such a consistent estimator of I' is readily available by
standard theory.

Define d; := vech(z2}),t = 1,2,...,n; hence, s = >, d;/n. Since the d;’s are
uncorrelated with each other, an unbiased estimate of the variance matrix of /ns =

%, di/+/n will be the following (p* x p*) matrix of fourth-order sample moments
(see Result 1 of Appendix A):

I'=Y (di—s)(di —s)/(n—1). (17)
=1




In the case of complex samples, a similar type of estimate of [ can also be developed.
Consider a population divided into H strata ( h = 1,2,..., H) within each of which
I, primary sample units (PSU) are randomly chosen (with replacement). Within
each PSU further stages of sampling may be undertaken (consider, e.g., two further
levels of sampling). Define

dp; = Z vech(zhictZhict ) (18)

tc

where zp;. is the vector value associated with the t-th third-stage unit of c-th second-
stage unit of i-th PSU of stratum h, with the summation going over all the units
within the i-th PSU ( of course, further levels of sampling could be considered by
adding more subscripts, besides t and ¢).

Since within stratum h the d;;’s (¢ = 1,...,{;) are uncorrelated, by standard results
(see Result 1 of Appendix A) a consistent estimate of matrix I’ will be (cf., Skinner,
Holt and Smith, 1989, p.48)

Iy,

H
D=3 "D (/I — D)(dni = s1)(dni — s1)']/7, (19)
h=1

i=1

where s, = Zi"zl dpi/I, and n is the total sample size (total number of last-stage
sample units over all strata). Note that when H = 1 and {;, = n, that is when there
is only one strata and each PSU is a final sample unit, then (19) reduces to (17).

Note that since the last column of z is variable ¢1, [' will be a singular matrix and
will partition as

™~ 0

0 0/’

where I™* is a matrix of dimensions (p* — 1) x (p* — 1) and 0 denotes a zero matrix
of appropriate dimensions.

An AO-MD analysis will be attained by the use of the following weight matrix

: 1 0
v — 2
Wao ( 00 ) ) (20)

since then the probability limit of W40, say Wao, will obviously satisfy the asymp-
totic optimality condition of W4oI'W4o = Wap. Furthermore, the use of (20)
will yield a goodness-of-fit statistic T of (13) numerically equal to nF(#); under
the null hypothesis that the model holds, T (or nF(H)) will be both asymptotically
chi-square with degrees of freedom given by? (Satorra, 1989, Theorem 4.2)

rank (W) —¢=p(p+1)/2-q¢-1 (21)

2To ensure a unique minimizer of (8) the ”pseudo” variance ¢. should be "fixed” to 1, i.e. ¢.
should not be a free parameter of the model.




Note that the above analysis is asymptotically efficient within the class of MD fit-
ting functions (8), but it involves the inversion of a matrix of fourth-order sample
moments. Such inversion may turn out to be computationally expensive, or inaccu-
rate, or it may even not exist due to a small sample size (or a small number of PSU
per strata). Specifically, [ will not be invertible when =, or the number of PSU’s,
is lower than (p* — 1)p*/2). One analysis that may not be asymptotically efficient,
but which is computationally much more feasible than the AO method described
above, consists of using PML or NT-MD together with robust standard errors and
a robust goodness-of-fit test statistic.

5 PML and NT-MD analysis

Let z’ = (y’,c1)’, then under the assumption that v is normally distributed it can be
shown that the log likelihood function is an affine transformation of (see Appendix
B)

Fyp =In| S| +rSS7 —in| § | —p, (22)

such that the minimization of Fasr, = F(S,%(0)) gives maximum likelihood estima-
tion. The use of Fjs;, when the normality assumption does not necessarely holds
will be called pseudo maximum likelihood (PML) analysis.

It can be seen that the Hessian matrix 0? Fjsp, /0000’ evaluated at (3, %) is equal
to (sece, e.g., Neudecker and Satorra, 1991 )

W =Wyt :=(1/2)D' (27 @ 8™ HD. (23)

Since the the asymptotic properties of statistics of interest are characterized by this
Hessian matrix (Shapiro, 1985; Satorra, 1989; Newey, 1988), PML will be asymp-
totically equivalent to MD analysis with weight matrix W as given by (23). By
NT-MD analysis it will be understood the use of a MD fitting function (8) with
the asymptotic limit of W equal to W of (23). Obviously a specific choice for W
is the matrix of (23) with S substituting for ¥.. In the case of covariance structure
analysis, this equivalence between PML and NT-MD was first proven by Browne
(1974).

It should be noted that PML and NT-MD analyses as defined above are available
in conventional software for covariance structure analysis. For example, in the com-
puter program LISREL ( Joreskog and Sérbom, 1984, 1989) tlie minimization of
Fap, of (22) will be invoked when one specifies "ML” as the estimation method and
S as the "covariance matrix” to be analyzed.

The asymptotic efficiency of maximum likelihood analysis (e.g., Cox and Hinkley,
1974) and the fact that when y is normally distributed then PML is maximum
likelihood, guaranties the asymptotic optimality of PML in case of normality. The
above mentioned equivalence between PML and NT-MD imply that such asymptotic
efficiency extends also to NT-MD analysis. In fact when y is normally distributed,




this asymptotic optimality of NT-MD follows also directly from result iv) of Lemma
2 of Appendix B.

When y is normally distributed, it follows from Lemma 1 of Appendix B that the
asymptotic variance matrix of s is given by

I =Tnr:=Q-2D%(up' @ up')DY', (24)

where

Q:=2DHN(T @ T)D (= WxT). (25)

Obviously a consistent estimate of Q will be obtained replacing 5 for ¥ in (25). In
this case, since it holds that (see Lemma 1 of Appendix B)

A'WNTTNTWNTA = A'WNTA, (26)

the general expression (10) of avar(d) will simplify to (11). Further, when y is
normally distributed and A belongs to the space generated by I'y7, then it can
easily be seen that

avar \/n(s — 6) = (Tny — A(A'WrTA)TTA), (27)

hence we can write the chi-square goodness-of-fit statistic of (13) as ( this follows
from i) and iii) of Lemma 1 of Appendix B)

T =n(s — &)Y [Wnr — WNr A(AWNTAY ' A'Wir)(s — 6) = (28)
n(s — 6YAL(A QAL TTA (s — 6),

where, in a specific analysis, obvious consistent estimates would replace population
values. Since T above is asymptotically equivalent to nF(O) (e.g., Satorra, 1989),
the latter will also be asymptotically chi-square when the model holds. That is, the
conventional standard errors and goodness-of-fit statistics obtained by a computer
program for the analysis of covariance structures when S is analyzed as a ”covariance
matrix” will be correct when y is normally distributed.

For general type of distributions of z, i.e. when y is not normally distributed, it
follows from the general theory of Sections 3 and 4 above that asymptotic robust
(i.e., correct for any distribution of y) standard errors and an asymptotic robust chi-
square statistic are obtained substituting I' of (17) or (19) for T in (10) and (13)
3. This approach produces what we will call (asymptotic) robust standard
errors of estimates and robust chi-square goodness-of-fit statistic.

above

With regard to computational aspects of such robust standard errors and the chi-
square goodness-of-fit statistic, substituting I of (17) for ' in (10) , the following

31t can be noted that by specifying the pseudo variance ¢. as "free” parameter of the model, the
use of a generalized inverse can be avoided in (14)

10




variance matrix of estimates is obtained:

avar(§) = n_l(A'WA)‘l[i(ta)(t(,)'/(n - HjA'WwA)Y, (29)
where
ty 1= AW(dy — $), (30)

and the derivative matrix A is evaluated at 6. Note that this step of computing
standard errors will require a second pass through the data in order to compute the
g-dimensional t,’s vectors. Note further that the jth element of t,, 7 = 1,2,...,q,
can be expressed as

(ta); = (A'W(d, — 8)); = 27 1r(E7 (202, — $)ST1(OT(6)/09;)). (31)

That is, the consistent asymptotic variance matrix estimate given by the expression
(29) above parallels Arminger and Schoenberg’s (1989) computation of robust stan-
dard errors in line with what they say of ”[...] the asymptotic covariance matrix can
be estimated consistently without computing the empirical fourth order moment
matrix of the data” (p. 410) ( See also formulae (24) on p.414 of the mentioned
paper). It is not clear to us, however, that such an approach is computationally
faster than just using the expression (9) of Section 3 with consistent estimates re-
URONE TR R, THE T, At e e Hrees QR e ORIk ey s
consistent estimates ol 1.

Also an alternative way to compute the test statistic 7' of (13} is as follows. Let A’L
denote the orthogonal complement of A evaluated at 6, then in (10a one could use

A= AL[S (ba)b0) /(n — U] AL, (32)

where b,: = ALI(da — s). Note that the b,’s are also of reduced dimension (r-
Simensiona vectors), nence only Tne 1nversion ol a manx oi reduced dinension
(r X ) is required.

Finally, a consistent estimate of the scaling correction & of (15) can be easily seen
to be .
k=30 (A WA )T )/ (33)

a=1

In fact, ug = b, (A, W™1A )7 !b, could be interpreted as the "influence” of case «
on the departure of nF(#) from its chi-square distribution (the influence being nil
when u, = 7).

The next section will show that there are situations where despite the fact that
y is non-normally distributed, usual inferences based on the assumption that y is
normally distributed can still be trusted.

11



6 Asymptotic robustness of inferences based on second-
order moments

The results of this section are summarized by the following theorem.

Theorem. 1 Assume z decomposes as in (3) and additionally i) the é;’s are mutu-
ally independent (not only uncorrelated), ii) the unconstrained parameter vector 6
partitions as § = [7',w']’, where w is the vector formed with the distinct elements
of the moment matrices ®;;’s associated with non-normally distributed é;’s, and iii)
the matrices A;,7 = 1,2,..., L, and ®,;;’s associated with normally distributed é;’s,
are continuously differentiable functions of 7. Then, for any choice of weight matrix
W, it holds that

(a) The goodness-of-fit statistic T of (13) with € of (25) substituting for I' is asymp-
totically chi-square when the model holds.

(b) The expression of avar(f) of (10) with Q substituting for I' yields correct vari-
ances and covariances of estimates of the subvector of parameters 7.

Proof. See Appendix C.

In Section 5 it was shown that when z = (¥’,¢1) and y is normally distributed, the
use of S as the "covariance matrix” in conventional software for covariance structure
analysis produced correct asymptotic inferences. The theorem above shows that such
correctness of normal theory inferences extends also to the case of y non-normally
distributed, provided certain model conditions hold and attention restricts to the
estimate of the subvector of parameters 7. The theorem shows also the validity of
the usual normal theory chi-square goodness-of-fit when the normality assumption
is violated. A fundamental assumption turns out to be the independence, and not
only uncorrelation, between the basic random constituents of the model. Restricted
to covariance structure analysis and PML (or NT-MD) estimation, results (a) and
(b) were derived by Anderson (1987, 1989) and Anderson and Amemiya (1988),
Browne and Shapiro (1988) and Mooijart and Bentler (1990). For general type of
discrepancy functions (as PML and MD with any choice of W), but confined also
to the context of covariance structure analysis, (a) and (b) were derived by Satorra
and Bentler (1990).

Note that Theorem above applies to MD analysis with any choice of weight matrix
W. For example, W could in fact be the identity matrix, as in the so called "un-
weighted least squares” (ULS) analysis. In this example of ULS, theorem above says
that the variance matrix of the estimate of T, as well as the chi-square goodness-of-
fit statistic, obtained under the "normality” assumption, i.e. using an estimate of
instead of the (distribution free) consistent estimate of I', will be valid for general
type of distributions of y when the conditions of the theorem hold?. In fact the
current version of LISREL provides such normal theory standard errors for ULS

*Note that here for the conditions of the theorem to hold, the pseudo parameter ¢. should be a
free parameter of the model
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estimates, which will then be correct even for non-normal data when the conditions
of the theorem hold.

The next section will illustrate some of the theoretical aspects of the paper using a
specific model context and simulated data.

7 llustration

To illustrate the performance in finite samples of the above asymptotic results a
specific model with simulated data was considered. Let model (5) with the parame-
ter values shown in the first column of Table 1. Recall that model (5) assumes that
variables {1,(2,z and u are uncorrelated. Note that since intercepts are restricted to
be equal, model (5) will imply restrictions on the means of the observable variables.

Two situations dealing with non-normal data will be considered. First, Case 1 where
the data are non-normal and the assumption of independence between (y, (s, and u
cannot be assumed. In this case the AO methods of Section 4 above will be required
for an efficient statistical inference, or when using the generally non-optimal PML
or NT-MD analyses, robust standard errors and a robust goodness-of-fit statistic
will be required for correct asymptotic inferences. Second, Case II, where the data
are non-normal but the conditions for asymptotic robustness, as the independence
between (y,(2,z and u, hold and consequently usual PML (or NT-MD ) analysis
gives a correct chi-square goodness-of-fit statistic and correct standard errors for
some of the parameters of interest. Finally, we consider Case III of a complex
sample situation where the observations are clustered in groups with high intraclass
correlation (i.e. the cases are not independent).

The Monte Carlo study consisted on replicating a number of times the generation
of a sample of size n from model (5), with population values of the parameters as
shown in the first column of Table 1. Summary statistics of the Monte Carlo results
are presented in the corresponding tables. The NT-MD analysis used W as in (23),
with S substituting for ¥. The robust standard errors and the robust chi-square
statistic were computed as explained above in Section 3.

Table 1 shows a summary of the Monte Carlo results corresponding to Case I,
where non-normal data was generated with uncorrelation, but lack of independence,
between (1, {2,z and u. In fact, we have generated (;, (2 and u to be heteroskedastic
with variance changing with z. The results show clearly that with this type of data
robust standard errors and a robust chi-square goodness-of-fit statistic are required
for NT-MD analysis. The performance of the scaled goodness-of-fit statistic (sbchi2,
in the table) is also acceptable.

Table 1 about here
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Table 2 shows the results corresponding to Case 11, where variables z, the ; ’s and u
were chosen to be mutually independent centered chi-square distributions with one
degree of freedom (rescaled to have variance 1). Since in this case the basic random
constituents of the model are independent, Theorem 1 above guarantees that the
usual normal theory chi-square can be trusted and that the usual standard errors of
estimates of #,a and p will be asymptotically correct. However, the usual normal
theory standard errors of estimates of ¢’s and ¢’s are non necessarily correct. This
is reflected by the numbers shown in the table.

Table 2 and 3 about here

A situation where the cases are not independent is considered in Case III. The
data were generated such that cases were clustered in 20 groups of size 30 with
high intraclass correlation (.8). This is a case of complex sample where the specific
estimate (19) of I', which takes into account the clustered structure of the cases,
is required. Note that here the number of groups is small, hence the AO analysis
of Section 4 above would have to face a singular matrix I'*. The results of the
simulation are described in Table 3. Clearly, robust standard errors as well as the
robust chi-square statistics are required in this case.

8 Conclusions

We have discussed general approaches to inference for structural equation models
that impose restrictions on the means and covariances of the vector 2 of observable
variables. The emphasis has been on drawing correct statistical inferences regardless
of the distribution of z and the estimation method used. Asymptotic robust standard
errors and a (asymptotic) robust chi-square goodness-of-fit statistic has been derived
for PML and MD analyses, encompassing the case of multi-stage complex samples.
The asymptotically optimal MD analysis has been reviewed, and we argued that,
even for moderate size models, such AQO analysis may be computationally costly and
lack robustness against small sample size.

Recent results on asymptotic robustness of normal theory methods (e.g. Satorra and
Bentler, 1990) have been extended to the context of mean and covariance structure
analysis. Here the correct expression for I' is replaced by a matrix Q that is a
function of second-order moments and does not equal I' even under normality. When
the usual assumption of uncorrelation among random constituents of the model
is replaced by the stronger assumption of independence (and no restrictions are
imposed on the variances and covariances of non-normally distributed constituents
of the model), then robust inferential statistics are not required.

In practice, the deviation between the usual (non-robust) and robust standard errors,
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and between the robust and non-robust chi-square goodness-of-fit statistic, should
be taken as an indication that the assumption of independence does not hold and,
in such a case, the robust inferential statistics will be the ones to be trusted. Such a
discrepancy between robust and non-robust inferential statistics is to be expected,
for example, when the variance of the error terms varies across cases (i.e., under
heteroskedasticity), a situation in which robust inferential statistics are certainly
required. In fact, a general recomendation would be to use PML or NT-MD together
with robust inferential statistics. To follow this recommendation would require
minimal modifications of the sofware at present in use.

Finally, a SUR model with error-in-variables has served to illustrate the type of
models being considered and the performance in finite samples of asymptotic results
of the paper.

15




References

AMEMIYA, Y. & ANDERSON (1990). Asymptotic chi-square tests for a large class
of factor analysis models. The Annals of Statistics, 3, 1453-1463.

ANDERsON, T. W. (1987). Multivariate linear relations. In T. Pukkila &
S.Puntanen (Eds.), Proceedings of the Second International Conference in
Statistics. p. 9-36. Tampere, Finland.

ANDERSON, T.W. (1989). Linear Latent Variable Models and Covariance Struc-
tures. Journal of Econometrics 41, 91-119.

ANDERSON, T.W. & AMEMIYA, Y. (1988). The asymptotic normal distribution of
estimators in factor analysis under general conditions. The Annals of Statistics,
16, 759-771.

ARMINGER, G. , & SoBEL, E.M. (1990). Pseudo-maximum likelihood estimation
of Mean and covariance structures with missing data, Journal of the American
Statistical Association, 85, 195-203.

ARMINGER, G., & SHOENBERG, R.J. (1989). Pseudo maximum likelihood estima-
tion and a test for misspecification in mean and covariance structure models.
Psychometrika, 54, 409-425.

BENTLER, P.M. (1983). Simultaneous equation systems as moment structure mod-
els, Journal of Econometrics, 22, 13-42.

BENTLER, P.M. (1989). EQS Structural Equations Program Manual. BMDP Sta-
tistical Software, Inc. : Los Angeles.

BenTLER, P.M., & DuksTrA, T. (1985). Efficient estimation via linearization
in structural models, In P.R. Kirshnaiali (ed.). Multivariate Analysis VI, pp.
9-42). Amsterdam: North-Holland.

BorrLen, K.A. (1989). Structural equations with latent variables. Wiley & Sons:
New York.

BrowNE, M.W. (1984). Asymptotically distribution-free methods for the anal-
ysis of covariance structures. British Journal of Mathematical and Statistical
Psychology, 37, 62-83.

BrowNE, M. W. | & Suapriro, A. (1988). Robustness of normal theory methods
in the analysis of linear latent variable models. British Journal of Mathematical
and Statistical Psychology, 41, 193-208.

CHAMBERLAIN, G. (1982). Multivariate regression models for panel data. Journal
of Econometrics 18, 5-46

CuianGg, C.L. (1956). On regular best asymptotically normal estimates. J Annals
of Mathematical Statistics, 27, 336-351.

Cox, D. aNp HINKLEY, D. V. (1974). Theoretical statistics. London: Chapman
& Hall.

FErGUsSON, T. (1959). A method of generating best asymptotically normal es-

16




timates with application to the estimation of bacterial densities, Annals of
Mathematical Statistics 29: 1046-1062.

JOrEskoG, K., & SorBoM, D. (1984). LISREL IV: A Guide to the Program and
Applications ITS . : Chicago.

JORrESkOG, K., & SOrBOM, D. (1989). LISREL 7 A Guide to the Program and
Applications (2nd ed.). SPSS Inc. : Chicago.

MAGNUS , J., & NEUDECKER, H. (1988). Matrix differential calculus . New York:
Wiley.

MEREDITH, W. & Tisak, J. (1990). Latent Curve Analysis Psychometrika, 53,
107-122.

MUuUTHEN, B. (1987). LISCOMP: Analysis of linear structural equations with a
comprehensive measurement model (User’s Guide). Mooresville, IN: Scientific
Software.

MoonAARrT, A., & BENTLER, P. M. (1987). Robustness of normal theory statis-
tics in structural equation models. Technical Report 87-11, Leiden University.

NEwey, W.K. (1988). Asymptotic Equivalence of Closest Moments and GMM
Estimators. Econometric Theory, 4, 336-340.

NEUDECKER, H., SATORRA, A. (1990). Linear structural relations: gradient and
hessian of the fitting function. Statistics & Probability Letters , 11, 57-61.

SAS (1990). Technical Report P-200. SAS/STAT Software: CALIS and LOGISTIC
Procedures. SAS Institute Inc: Cary, NC.

SATORRA, A. (1989) Alternative test criteria in covariance structure analysis: a
unified approach. Psychometrika, 54, 131-151.

SATORRA, A. (1990). Robustness issues in structural equation modeling: a review
of recent developments. Quality & Quantity 24, 367-386.

SATORRA, A (1991). On the asymptotic variance matrix of sample second order
moments in multivariate linear relations. (submitted).

SATORRA, A., & BENTLER, P. M. (1986A). Some robustness issues of goodness
of fit statistics in covariance structure analysis. ASA 1986 Proceeedings of the
Business and Economic Statistics Section, 549-554.

SATORRA, A., & BENTLER, P.M. (1988). Scaling corrections for chi-square statis-
tics in covariance structure analysis. ASA 1988 Proceeedmgs of the Business
and Economic Statistics Section, 308-313.

SATORRA, A. & BENTLER, P.M. (1990). Model conditions for asymptotic ro-
hustness in the analysis of linear relations. Computational Statistics & Data
Analysis, 10, 235-249.

SHAPIRO, A. (1985). Asymptotic equivalence of minimum discrepancy function
estimators to G.L.S. estimators. South African Statistical Journal, 19, 73-81.

SHAPIRO, A. (1986). Asymptotic theory of overparameterized models. Journal of

17




the American Statistical Association, 81, 142-149.

SHAPIRO, A. (1987). Robustness properties of the MDF analysis of moment struc-
tures. Sourht African Statistical Journal, 21, 39-62.

SCHOENBERG, R.J. (1989). LINCS: Linear covariance structure analysis. User’ s
Guide. Kent, WA: RJS Software.

SKINNER, C.J., HoLbpT, D., & SMiTH, T.M.F. (1989). Analysis of Complex
Surveys. New York: Wiley.

WoLTER, K.M. (1985). Introduction to variance estimation. New York: Springer
Verlag.

WHITE, H. (1982). Maximum likelihood estimation of misspecified models. Econo-
metrica, 50, 1-25.

18




APPENDIX

Consistent estimation of I'.

Result 1
Let uy,uq, ..., u, be uncorrelated random vectors with common mean g and finite
covariance matrices Q;,7 = 1,2,...,n. Define w. := 5. ; u;/n. Then

E(n/(n- 1))Z(u, —u.)(ui —u.) = var (Z: ui),

where "var” denotes variance matrix.

Note. In fact, the variance matrix (n/(n — 1)) 1o (ui — w.)(u; — u.)’ is the usual
“random group” estimator of variance of, e.g., Wolter (1985, p. 21) and Skinner et.
al. (1989).

Proof. It follows from

E Z:(u, —w)(u; —w.) =

n

Y [E(w — p)(ui — p) = 2 E(w; — p)(w. = p) + E (u. — p)(u. — p)] =

=2 [ =2/n Qi+ (1/n) Y} Q] = ((n-1)/n))_ Q=
=1 7=1 =1

((n = 1)/n) var (> w).
i=1
Note that only the assumption of uncorrelation among the u;’s has been used.

B. Log-likelihood function and related results for PML and NT-MD

Let v1,%2,...,%i,..-,¥n be n ii.d. observations of a (p — 1)-dimensional normally
distributed vector ¥ of mean u* and covariance matrix ¥*, and let S and ¥ be the
sample and population moments as defined in (6) and (7) of Section 3 above, with
2" = (y,cl). The log-likelihood function {(f) is easily seen to be

0) = =27 'n(p — Din2r — 27 ' 0S| =27 tr B0 ) (g ~ 0" )y — ™) =
1=1

—27n(p-1)In 272" 'n In |x7|-27"1 tr &1 Z yiyiAn pt' Sy =27 e

=1
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where

n
y. = Z yi/n.
=1

Hence, noting that |¥| = |£*| and that

n
tre 1S = o7 ltr (E*_l Z vy ) —2 tr(E*_l,u*y.’) + 14 pmE e

i=1

we can write

1(0) = =27 'n[(p— 1) In 27 + [n|Z| + tr =71 S;

consequently, 1(8) = —2"'nFy, + b, say, where b does not depend on 8. That is,
the estimators that minimize Farp, of (22) are ML estimators.
The following results will also be used.
Lemma 1.
Given Wnt and 'yt as defined in (23) and (24) respectively, it holds that
i
ntWhtInt = I,

When A is in the column space of 'y, then

(ii)
A'WntTnTWhTA = A'WNTA

and
(ii)
(FNT—A(A’WNTA)_IA,)Q(FNT-—A(A/U'NTA)—IA’) = (FNT—A(A/IVNTA)—IA’),

where Q = (WNT - I’VNTA(A’VVNTA)_IA’”’NT).

(iv) When A and (s —o(8)) are in the column space of 'y, then the MD estimator
associated with W = Wyt is the same as the one associated with W = 'y, for
any choice of g-inverse.

Proof Since, given the definitions of y and T' of Section 2 above, it holds that
WXy =1, we get that

2D* (up' @uu')D¥'(1/2) D' (27 @™ D2D* (i @ ' YDF' = 2D (' @ ') DY,

consequently,

TNtWhTDNT = (Wi — TWNT(Wre ~ 1) = Wip — 2T + TWar T =
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(Wyr — T) = T'nr,
where T := 2D7% (up’ @ pup')DV’ ) which proves i) of the Lemma.
Results ii) and iii) follow trivially from i) and the stated condition of A to be in the

column space of I'yr.

To prove iv), note first that the MD estimator is the root of A'W (s — a(8)) = 0.
Since by the assumption stated in iv), A = I'n7R and (s — 0(0)) = I'nT R™, say,
where R and R* are conformable matrix and vector, respectively, it holds that

A'W(s —a(0)) = RUNTWINTR* = RTNT R,
hence the root of A'Wnt(s — 0(6)) = 0 does not depend on the choice of g-inverse.

From i) note that a choice of g-inverse is in fact Wyr.

Since the condition on A is obviously verified by the type of models defined in
Section 2 (when the pseudo variance ¢, is a fixed parameter), equality ii) of Lemma
1is the Condition 6* of Satorra (1989, p.137), which guaranty the correctness of the
simple formulae (11) of the variance matrix of estimates (see also Shapiro, 1987).

C. Proof of Theorem 1.

Consider first the simple case where each moment matrix ®;; := E§;é!, 1 = 1,2,..., L,
is a (symmetric) free matrix, thus the parameter vector 6 partitions as

6 = [r', vech’(®11),...., vech'(®;),....,vech’(®r1)].

Since (3) imply

L
o:= E vech (z2') = Z DY (A; ® A;)Dv(®y;),
i=1
the derivative matrix A := (9/08")o(8) will partition as:
(C3)

A =[A,DY (A ® A)D,....,DT(A; ® A;))D,.... DY (AL @ AL)D] = [A1, Aq],

say, where Ay := (9/91")o(6) is a p* x t matrix.
The following result will be needed.

Lemma 2 (cf. , Satorra, 1991). Let z = L | A;6;, as in (3), with the & being
mutually independent and of zero mean, with the exception of ér, a scalar-variate
constant to 1. Then

(C4)

21




L-1
> [2DT(A; © AL)[E bi(vech §:6))1D' (A; ® A;) DY+
=1
2DY(A; ® A;)D[E(vech §;6)6. J(A; @ ALY DY+
DY (A; ® A;)D[ var( vech§;8}) —2 DY E(6;6!) ® E(6:6)DY'|D'(A; @ A;Y D]
2D* (1 ® p)(n @ p) DY,
where
Q=20 @)Dt
Note. We could of course write DY (p @ p)(pe @ )Y DY = DY (' @ pp YDV
Proof. See Satorra (1991).
Since A’ A = 0, we have that
(C5)
AL DY (A;© A)D =0

for: =1,2,...,L; Consequently given the form of T' in (C4) it is verified that
(C6)
A (A TA)" A = A (A TyTAL )AL

Since the right hand side of (C6) above is equal to A; (A’ QA )~ A’/ | result a) of
the theorem is proved.
Clearly, when
(C7)

Ii= (2 + A2CAL + AyB + B'AY),
say , which is the form of T" given by (C4), for any matrix W it holds that
(C8)

(A'WA) TAWTWA(A WA) Yins,

where t is the dimension of the subvector 7 of 8, is free of the matrices B and C.
Consequently, setting B and C equal to zero, it holds that

(C9)
(A'WA) 'A'WTWAA'WA) Voxt =

[(A'WAYTA'WOWA(A'WA) i

which, taking into account the expression of the asymptotic variance matrix of
estimates of (10) proves b) of the theorem.
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It has to be noted that the form (C7) of I corresponds to the case where the pseudo
parameter @, is set a free parameter of the model. When ¢, is a parameter fixed to
1, then (C7) changes to

()
I'i=(TnNr + AQCAIQ + AB + B'A'z);

in which case we get

(C9)
(A'WA)TA'WTAAWA) iy =

(A'WA)Y TA'WT N WA(A'WA) ke

Consequently, when ¢, is a fix parameter the correctness of the NT standard errors
of estimates of 7, i.e., the ones provided by the matrix

[(A'WA) A WQWA(ATWA) s

will not be guarantied for W arbitrary. It will of course be guarantied when W =
W, since in that case it is verified that A'WTnyTWA = A'WQnTWA. Tor
general type of weight matrix W the validity of NT standard errors requires ¢,
to be "declared” a free parameter (which will be estimated at the value 1). For
exampte in ULS analysis, where W is the identity matrix, the usual NT estimates of
standard errors of 7 will be correct when the analysis is performed specifying ¢. to
be free (this motivates a note on Section 6). It should be noted that setting ¢. free
or fixed parameter has implications only for the computation of standard errors of
estimates ( parameter estimates and the chi-square goodness-of-fit statistic will of
course not vary).

Suppose now the case where some matrices ®,;’s of normally distributed é;’s are
also restricted to be functions of 7. Since when §; is normally distributed then
[E 6;(vech$;8!)'] and [(var veché;é!) — 2D% E(6i6)) ® E(6;6!)D1'] are null matrices,
there will be a correspondence between the elements of the partition (C3) of A that
now drop out (due to the restriction of some ®;;’s to be function of 7) and the terms
of (C4) that vanish due to the normality assumption of the corresponding é;’s .
Consequently, the same results a) and b) of the theorem apply when the covariance
matrices of normally distributed é;’s are restricted to be functions of r.
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Table 1

Empirical distribution of parameter estimates, estimates of standard errors and test
statistics. Method of estimation NT-MD. Non-normality produced by heteroskedas-
ticity on (’s and €. Sample size n =500. (number of replications 600)

(1) (2) (3) (4) (5)
o1 1.00 0.96 0.77 0.23* 0.69
P22 1.00 0.99 0.78 0.23* 0.70
P33 12.00 11.73 1.01 0.80* 0.94
P 0.80 0.79 0.21 0.05* 0.18
Jé; 4.00 4.01 0.10 0.05* 0.10
o 8.00 7.98 0.19 0.17* 0.19
I 1.00 1.00 0.16 0.16* 0.16
chi-square statistics
mean variance reject. freq.
5(1) %
(out of 600.)
Expected 2.00 4.00 30 (6)
(X%, df = 2)
chi2 6.03* 51.25% 200 (121)*
rchi2 2.08 4.44 28 (6)
sbchi2 2.00 5.37 36 (11)
(alpha) (3.02)

(1) true values

(2) sample mean of parameter estimates

(3) standard deviation of parameter estimates
(4) sample mean of NT standard errors

(5) sample mean of robust-standard errors

* not necessarily asymptotically correct
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Table 2

Empirical distribution of parameter estimates, estimates of standard errors and test
statistics. Method of estimation NT-MD. Data non-normal with non-normality
produced by independent chi-square distributions of one df. Sample size n=500.
(number of replications 600)

(1) (2) () (4) (5)
o1 1.00 1.01 0.28 0.23* 0.27
b22 1.00 0.98 0.28 0.23* 0.27
a3 8.00 7.95 1.35 0.55* 1.28
(2 0.80 0.79 0.13 0.05* 0.12
B 4.00 4.00 0.06 0.06 0.06
o 8.00 8.01 0.18 0.17 0.17
© 1.00 0.99 0.13 0.13 0.13
chi-square statistics
mean variance reject. freq.
5 %
(out of 600.)
Expected 2.00 4.00 30
(x*df =2)
chi2 1.98 4.18 32
rchi2 2.02 4.11 24
(1) true values
(2) sample mean of parameter estimates

3) standard deviation of parameter estimates
p

(4) sample mean of NT standard errors

(5) sample mean of robust-standard errors

* not necessarily asymptotically correct
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Table 3

Empirical distribution of parameter estimates, estimates of standard errors and test
statistics. Method of estimation NT-MD. Data normal (cases clustered in 20 groups
of size 30, r=0.8). Sample size n=600. (number of replications 500)

(1) (2) ®3) (4) (5)
én 1.00 0.88 0.40 0.21* 0.38
D22 1.00 0.86 0.40 0.21* 0.38
¢33 8.00 7.32 1.40 0.48* 1.32
Y 0.80 0.80 0.03 0.05* 0.03
B 4.00 4.02 0.08 0.06* 0.07
a 8.00 7.98 0.24 0.18* 0.23
7 1.00 1.01 0.57 0.12* 0.59
L.
;
chi-square statistics
mean variance reject. freq.
5 5(1) %
.i (out of 500)
| Expected 2.00 4.00 25 (5)
(X%, df = 2)
chi2 36.90* 931.24* 438 (418)*
rchi2 2.37 5.99 35 (11)
sbchi2 2.00 3.56 21 (4)
(alpha) (19.87)
(1) true values
(2) sample mean of parameter estimates
(3) standard deviation of parameter estimates

(4) sample mean of NT standard errors
(5) sample mean of robust-standard errors

* not necessarily asymptotically correct

26




RECENT WORKING PAPERS

[ ALBERT MARCET and RAMON MARIMON, Communication,

Commitment and Growth (June 1991).

2. ANTONI BOSCH, Economies of Scale, Location, Age, and Scx
Discrimination in Houschold NDemand (June 1991).

3. ALBERT SATORRA, Asymprotic Robust Infevences in the Analysis of Mean
and Covariance Structures (June 1991).

4. JAVIER ANDRES and JAUME GARCIA, Wage Determination in the
Spanish Industry (June 1991).

UNIVERSITAT POMPEU FABRA
Balmes, 132
Telephone (93) 484 97 00
Fax (93) 484 97 02
Barcelona 08008




