
Parameterized Expectations Approach;

Some practical issues�y

Albert Marcetz

and

Guido Lorenzonix

May, 1998

�This research was partially supported by DGICYT (Spanish Ministry of Education),

CIRIT (Catalan Conselleria of Education) and HCM (European Comission). All errors

are our own. This chapter ows much to conversations with previous coauthors, mainly,

Wouter den Haan, Ramon Marimon, David Marshall, Tom Sargent and Ken Singleton.

We are in debt with the editors for their encouragement, their patience, and many helpful

comments.
yThis working paper is forthcoming as a chapter in Computational Methods for the

Study of Dynamic Economies, Ramon Marimon and Andrew Scott, Editors), Oxford Uni-

versity Press, 1998.
zUniversitat Pompeu Fabra, CREI and London Business School.
xMassachussetts Institute of Technology and Universitat Pompeu Fabra.

1

Mailing address:

Albert Marcet

Departament d'Economia i Empresa

Universitat Pompeu Fabra

Ramon Trias Fargas, 25-27

08005 Barcelona

tel. 34-93-542-2740, fax -1746

e-mail: (marcet) albert.marcet@econ.upf.es, (lorenzoni) glorenzo@mit.edu

Abstract

We discuss some practical issues related to the use of the Parameter-

ized Expectations Approach (PEA) for solving non-linear stochastic dynamic

models with rational expectations. This approach has been applied in models

of macroeconomics, �nancial economics, economic growth, contract theory,

etc. It turns out to be a convenient algorithm, especially when there is a

large number of state variables and stochastic shocks in the conditional ex-

pectations. We discuss some some practical issues having to do with the

application of the algorithm, and we discuss a Fortran program for imple-

menting the algorithm that is available through the internet. We discuss

these issues in a battery of six examples.

Keywords: numerical algorithm, rational expectations, stochastic di�er-

ence equations, simulation.

JEL classi�cation: E10, C60, C63.

2

1 Introduction

We discuss some practical issues related to the use of the Parameterized Ex-

pectations Approach (PEA) for solving non-linear stochastic dynamic models

with rational expectations. This approach is discussed formally in Marcet

and Marshall (1994); it has been applied quite widely1 as it turns out to

be a convenient algorithm, especially when there is a large number of state

variables and stochastic shocks in the conditional expectations. The contri-

bution of this chapter is the detailed description of some practical issues; we

discuss in detail the application of the algorithm, some tricks to speed up

computation, some common pitfalls and possible solutions. We also discuss

a Fortran program for implementing the algorithm. We discuss these issues

in a battery of examples. Each example is described in three steps: �rst we

show how each example �ts in the general framework we consider (subsection

2.1); then we show how the algorithm is adapted to each example; third we

show how the program is adapted to each example (section 4). The series

of examples is as follows: Example I is the Lucas asset pricing model, and

it is o�ered for comparison with the other chapters of this book; Example

II is the simple stochastic growth model, which is the simplest model where

many of the computational issues related to solving non-linear models arise.

Examples III to VI are variations of the simple stochastic growth model, each

of them selected to demonstrate a di�erent issue.

We hope that this chapter will help applied economists to solve non-linear

stochastic dynamic models, even if their knowledge of numerical analysis is

almost non-existent; for this reason, we avoid discussing tools from numerical

analysis as much as possible. The Fortran program is publicly available

through the internet2 and it contains some standardized subroutines that

simplify enormously the task of applying PEA. However, the user will still

have to do some programming in order to modify certain subroutines that are

model-dependent. To guide the user in this task, we provide versions of the

model-dependent subroutines that solve each one of the examples discussed

in the text.

1An early description of the algorithm could be found in Marcet (1988). An early

description of practical issues can be found in den Haan and Marcet (1990). Marcet and

Marshall (1994) provide a long list of applications.
2http://www.econ.upf.es/~marcet and http://www.iue.it/Personal/Marimon/

Welcome.html.

3

We discuss in detail how to solve models with Euler equations. Because

Euler equations are easy to obtain in models with suboptimal equilibria,

we can use the algorithm even in models where the equilibrium cannot be

characterized as the solution to a maximization dynamic program. This is

the case, for example, in models with distortionary taxes (see Example III

below) or incomplete markets.

Having said what we do in the chapter, we now mention things we do

not do. The basic version of the algorithm that we present only works to

approximate the solution at the stationary distribution. The algorithm can

be modi�ed to compute the transition towards the stationary distribution

from an arbitrary initial condition. Also, we only study models characterized

by Euler equations. This means we only scratch the surface of the possible

applications of PEA. Variations of the algorithm have been used to solve

models with incentive constraints, value functions, conditional expectations

of discounted sums, models with a large number of heterogeneous agents,

present value budget constraints, incomplete information, etc.3 Many of

these extensions are easy to implement, but we simply do not have enough

space. Finally, we only address in passing (section 5) issues related to the

selection of the degree of approximation of the conditional expectation.

Technical issues are left out of the chapter. It is known that PEA can

provide arbitrary accuracy if the approximation function is re�ned (e.g., if

the degree of the polynomial approximation increases). Convergence to the

correct solution is proved in Marcet and Marshall (1994). Also, we do not

provide a detailed comparison with other approaches, but we only o�er some

informal comments on such comparisons.

The layout of the chapter is as follows. In the next section we discuss the

algorithm and how it can be applied to six examples; section 3 discusses the

Fortran program; section 4 the application of the program to each example;

section 5 discusses some tricks, and section 6 concludes.

3For a more complete list of citations and to di�erent applications see Marcet and

Marshall (1994).

4

2 Parameterized Expectations Approach

We discuss the algorithm for models with a unique stationary and ergodic

distribution4, and we will discuss approximating the solution at the support

of this distribution. In case that the model of interest is non-stationary, the

current algorithm can be applied by transforming the model to a station-

ary one; for example, if the model has balanced growth, all variables need

to be divided by the appropriate growth rate until all normalized variables

have a stationary distribution. Parts of this section are taken from Marcet

and Marshall (1994), including the notation, but they are o�ered here for

completeness.

The reason that many dynamic models are di�cult to solve is because

conditional expectations often appear in the equilibrium conditions, as we

shall show in this chapter using a series of examples. Often, we know these

expectations are a time-invariant function E of some state variables. We can

almost never derive formulas for this function analytically, but we can almost

always derive formulas for the Euler equations. We know a key property of E:
under rational expectations, if agents use E to form their decisions, the series

generated is such that E is precisely the best predictor of the future variables

inside the conditional expectation. So, if we knew E, we could easily simulate
the model and check that this is actually the conditional expectation but, of

course, we do not know E until we solve the model.

The basic idea in PEA to break this circle is to substitute the conditional

expectations by parameterized functions of the state variables with arbitrary

coe�cients. Simulations of the model can then be easily obtained conditional

on these coe�cients and these simulations can be used to check if the pa-

4Often, the su�cient conditions for an equilibrium include a set of transversality con-

ditions. For most models, stationarity of the solution is a su�cient condition for satisfying

the transversality condition; therefore, since we are imposing stationarity, we can ignore

the transversality condition. Since we just deal with models that have a unique solution

of the �rst order conditions we do not address the issue that, due to non-convexities,

the Euler equation might not be su�cient for the optimum (this could be a concern for

example V below, which has a non-concave utility function). Similarly, we just assume

existence of an equilibrium of a certain recursive form (this could be an issue in Example

III below). These sins are committed by any Euler equation approach and they can be

ammended in several ways that we do not discuss here. So we provide an algorithm to

�nd the equilibrium (or the optimum) in case that it exists and that it can be described

uniquely by a certain system of �rst order conditions.

5

rameterized expectation is close to the best predictor. If it is not, then we

iterate on the coe�cients until they deliver, approximately, the best possible

prediction.

2.1 A general framework

We now discuss formally the general model to which we apply PEA. Con-

sider an economy described by a vector of n variables zt, and a vector of s

exogenously given shocks ut. The process fzt; utg is known to satisfy several

Euler equations, feasibility constraints, equilibrium conditions, etc. which

are summarized in a system

g(Et[�(zt+1; zt)]; zt; zt�1; ut) = 0 (1)

for all t, where g : Rm �Rn �Rn �Rs ! R
q and � : R2n ! R

m. The vector

zt includes all endogenous variables, as well as those exogenous variables

that appear inside the expectation. The process ut is assumed to be Markov

of order one. As usual, Et denotes the conditional expectation given all

information up to period t: It is assumed that, for given functional forms

and parameter values for utilities, production functions, etc., the researcher

knows the functions g and �.

We consider solutions such that, in equilibrium, past information that is

relevant for predicting �(zt+1; zt) can be summarized in a �nite-dimensional

vector of state variables xt 2 R
l satisfying

Et[�(zt+1; zt)] = E[�(zt+1; zt)jxt]:

where xt is a subset of (zt�1; ut). Furthermore, we compute solutions that

satisfy a recursive framework in the sense that the conditional expectation is

given by a time-invariant function E such that

E(xt) = Et[�(zt+1; zt)]: (2)

for a time-invariant function E.

It turns out that, in many economic models of interest we can write down

the functions g and � that satisfy (1), and we know that (2) is satis�ed for

some function E, but we do not know the form of this function.

Let us consider di�erent examples that map into the framework (1) and

(2). Since we are considering these models for simulation, we parameterize

6

the functional form of all the fundamentals such as utility functions, produc-

tion functions, etc.

� Example I (Lucas Asset Pricing Model)

A representative agent maximizes the utility function E0

P
1

t=0 �
t c

+1

t

+1
.

There are J assets in the economy (J stocks) each in net supply equal

to 1. Each stock is traded in a competitive market at price pj;t and

pays an exogenous dividend ow fdj;tg forever. The exogenous process

fdtg is Markov of order one, where dt is the vector containing the

dividends for all assets, and similarly for pt. The Euler equation for

the maximization problem of the consumer is

pj;t = � Et

c

t+1

c

t

(pj;t+1 + dj;t+1)

!
: (3)

Market clearing implies ct =
P

j dj;t. Still, we need to solve for the

stock prices using (3). To map this model into the above framework

let zt = (pt; dt), and ut = dt; the system of equations corresponding to

(1) is given by (3) and �j(z
0

; z) � c
 (pj + dj). Lucas' original paper

shows that a time-invariant solution for the asset price can be found for

which (2) is satis�ed if we take xt � dt. Imposing these state variables

ensures that we calculate a bubble free solution.

This is a very simple model to solve. Notice that no endogenous vari-

ables appear in the state vector, which greatly simpli�es �nding the

solution. The only endogenous variable is the stock price. The model

is o�ered here for comparability with all the other chapters in the book.

We also use the model to demonstrate how to use di�erent classes of ap-

proximating functions and di�erent driving processes ut in the Fortran

program.

� Example II (Simple Stochastic Growth Model)

Consider the simple growth model where an agent maximizes the same

utility as in the previous example, subject to

ct + kt � (1� d)kt�1 = k
�

t�1�t (4)

k
�1 given, where ct denotes consumption, kt is the capital stock and

�t is an exogenous stochastic productivity shock, Markov of order one.

7

The �rst order condition for optimality is

c

t = � Et[c

t+1 (k
��1
t ��t+1 + 1� d)] (5)

To map this model into the above framework, set zt = (ct; kt; �t),

ut = �t, and xt = (kt�1; �t). The function g is given by the resource

constraint (4) and the Euler equation (5). The function �(z0; z) is given

by c(k��1�� + 1 � d): Standard results from dynamic programming

guarantee that the conditional expectation is a time invariant function

of the state variables (kt�1; �t).

� Example III (Stochastic Growth Model with Flexible Labor Supply

and Proportional Taxes)

Assume now that a representative consumer utility is given by

E0

1X
t=0

�
t

c
+1
t

 + 1
+ b

(1� lt)
l+1

l + 1

!

where lt represents hours worked.

A representative �rm has a production function k
�
t�1l

�l

t �t. The �rm

maximizes pro�ts. Both the �rm and the consumers are price takers.

The consumer owns the capital stock, receives income from renting the

capital stock to the �rm at the rental price rt and from selling his labor

to the �rm at the wage wt. The consumer pays a tax proportional to

its labor income at the �xed tax rate � l and at a rate � k for its capital

income.

If we assume constant returns to scale and set �l = 1 � �, the �rst

order conditions for the consumer are

c

t = � Et[c

t+1(k
��1
t

�l
1��
t+1 �t+1(1� �

k) + 1� d)] (6)

c

t =
b(1� lt)

l

�t(1 � �)k�t�1 l
��
t (1 � � l)

(7)

and the feasibility conditions are given by

ct + kt � (1� d)kt�1 = k
�

t�1l
1��
t �t (8)

In the Euler equations we have introduced the fact that w and r are

given by the marginal product of labor and capital.

8

Relative to Example II, we have introduced taxes and endogenous labor

supply; obviously, Example II is a special case of the current example

if we set b = 0; �l = 0 and � l = �
k = 0.5 The interest of this example

is two-fold: �rst, it shows how to solve models with more decision

variables than endogenous state variables (decision variables are ct; lt
and endogenous state variable is kt).

Second, the solution to this model is suboptimal (due to the distor-

tionary tax) and it cannot be easily found with standard dynamic pro-

gramming tools.

To map this model into the above framework, set zt = (ct; lt; kt; �t)and

ut = �t. The function g is given by the resource constraint (8) and the

�rst order conditions (6), (7). The function �(z0; z) � c
 (k��1�l1��(1�

�
k)� + 1 � d): Results from Coleman (1991) guarantee that a time-

invariant solution exists with xt = (kt�1; �t).

� Example IV (Simple Growth Model with non-negative Gross Invest-

ment)

This example shows how inequality constraints can be easily handled

by PEA, and it demonstrates the use of variables corresponding to

Lagrange multipliers. Suppose we add to Example II a non-negativity

constraint on gross investment:

kt � (1� d)kt�1 � 0 (9)

With this restriction, the �rst order condition (5) is replaced by the

Kuhn-Tucker conditions

c

t � �t � � Et

h
c

t+1 (k
��1
t ��t+1 + (1� d)(1 � �t+1))

i
= 0 (10)

(kt � (1 � d)kt�1)�t = 0 (11)

�t � 0; it � 0; (12)

where �t denotes the Lagrange multiplier associated with constraint

(9).

5For now, we ignore the budget constraint of the government; this is consistent with as-

suming a su�ciently low level of initial debt or with assuming that any surplus is returned

as a lump sum transfer to the agents.

9

To map this model into framework (1) we set zt = (ct; kt; �t; �t), ut = �t:

The system g is given by (4), and the Kuhn-Tucker conditions (9)-(12).

Note that, in this case, �(z0; z) � c
(k��1�� + (1� d)(1� �)). Again,

using standard dynamic programming, the model can be shown to be

recursive with the same x as in Example II.

This example illustrates how to treat stochastically binding inequality

constraints. Notice that the Lagrange multiplier is treated just like an

additional variable by including it in z; we therefore have to solve for

this multiplier jointly with all the other variables.

� Example V (Habits in Consumption)

Modify Example II in order to introduce a per-period utility that de-

pends on present and past consumption. More speci�cally, assume

that utility at time t is given by u(ct; ct�1) =
(ct+�ct�1)

1+

1+
: The Euler

equation is

(ct + �ct�1)
 = �Et[� �(ct+1 + �ct)

 (13)

+((ct+1 + �ct)
 + ��(ct+2 + �ct+1)

)
�
�t+1�k

��1
t + 1 � d

�i

To map this model into framework (1) we take z and u as in Example

II. The system g is given by (13) and (4) and � is given by

�(zt+2; zt+1; zt) = ��(ct+1 + �ct)
 + (14)

((ct+1 + �ct)
 + ��(ct+2 + �ct+1)

)
�
�t+1�k

��1
t + 1 � d

�

Notice that, in this case, � depends on two leads of the endogenous

variables6. Again, the model can be shown to be recursive with stan-

dard dynamic programming techniques but where we add one addi-

tional state variable to obtain the vector xt = (kt�1; ct�1; �t) in order

to have (2).

The example is used to illustrate three issues: �rst, the e�ects on

computational costs of having an additional continuous state variable

(namely ct�1); second, the e�ects of having two shocks (namely �t+1; �t+2)

6Having two leads in � does not match exactly the framework of (1), but it is a trivial

extension.

10

inside the conditional expectation on the computational costs of the al-

gorithm.

We will also solve the model by rewriting the above Euler equation

separating out two expectations. This is obviously an ine�cient ap-

proximation since it will involve computing two functions, but it will

be done for pedagogical reasons since it demonstrates the issues related

with having more than one conditional expectation to solve for.

� Example VI (Two Capital Goods)

This extends Example II to include two capital goods. More precisely,

assume that the production function is Cobb-Douglas with two capital

goods, so that the feasibility conditions are:

ct + i1;t + i2;t = �tk
�1
1;t�1 k

�2
2;t�1 (15)

kj;t = kj;t�1(1� dj) + ij;t ; kj;�1 given, (16)

for j = 1; 2. The Euler equations are:

c

t = �Et[c

t+1 (�t+1�1k
�1�1
1;t k

�2
2;t + 1� d1)] (17)

c

t = �Et[c

t+1 (�t+1�2k
�2�1
2;t k

�1
1;t + 1� d2)]: (18)

Relative to Example II, we have to include the second capital stock

both in z and in x and, by now, it is clear how we could set up the

functions g and � given the expressions above.

This example will serve to show how to deal with several potential

pitfalls with PEA. First of all, this example demonstrates the issue

that, sometimes, the natural way to write system g does not allow the

researcher to invert the system; this issue is quite delicate, as it does not

arise in other algorithms. Also, this example will serve to discuss some

problems that come up because of the addition of another state variable;

we will see that, unless we are careful, the second state variable tends to

generate non-stationary simulations, and the algorithm breaks down.

Finally, the simulations of this model will be of interest in themselves.

Given the assumptions of the model, if the depreciation rate is the same

for the two types of capital goods the model can be easily transformed

into a model with just one capital good, since the ratio of the two

11

capital stocks will be constant over time7. We could therefore solve

the case d1 = d2 directly from the solution of Example II. In order to

avoid this trivial solution, we will consider di�erent depreciation rates.

We will, however, study the case of equal depreciation rates by solving

it ignoring this theoretical knowledge. This will serve to demonstrate

some problems that arise with PEA when the state variables are highly

correlated and we will be able to perform an elementary consistency

check on the functioning of the algorithm, just checking if it reproduces

this known property of the exact solution.

A key assumption that we will place on the system g is that it is invertible

with respect to its second argument. Therefore, we will insist on writing the

system of di�erence equations in such a way that, given a function E and past

values of the series, we can then generate the current value for z by solving

the system g. In this chapter, the term 'solving the model' refers to generat-

ing a stochastic process fzt;utg on the computer that satis�es, approximately,

equations (1) and (2). Under the above invertibility requirement on g, we

can back out the series fztg from a candidate E and simulated values of ut,

so we will use the term 'solving the model' interchangeably with the term

'�nding E'.8; 9

2.2 De�nition and Calculation of an Approximate PEA

Solution

The general idea of PEA is to substitute the conditional expectations in (1)

by exible functions that depend on the state variables and some coe�cients.

Then (1) is used to generate simulations for z consistent with the parameter-

ized expectations; with these simulations we can iterate on the parameterized

expectations until they are consistent with the solutions they generate.

By a 'exible functional form' we mean a function (�;x) for some co-

e�cients � 2 R
� such that, as we increase the number of coe�cients to let

7From the Euler equations it is clear that the ratio k1;t=k2;t is determined by
fk1

fk2

= 1.
8As is always the case in numerical analysis, these 'solutions' are only approximate, so

we often do not use the term 'approximate solution'.
9The usual restrictions apply to all the parameters in these examples, namely: ;

l
<

0; 0 < d; d1; d2; �; �1; �2; � < 1; and b > 0.

12

� !1; we can approximate any function f(x) arbitrarily well (e.g. polyno-

mials, splines, etc.). By 'simulations for z consistent with the parameterized

expectations' we mean a process fzt(�); utg
1

t=0 that, for all t; solves the sys-

tem

g((�;xt(�)); zt(�); zt�1(�); ut) = 0 (19)

Obviously, the function (�; �) could be quite di�erent from E(�) for an ar-

bitrary �. We will ensure that (�; �) is a good approximation by �xing

an order of approximation � (e.g., �-degree polynomials, or splines with �

intervals ...), and choosing � in such a way that, within the approximating

class for a given �, the function is as close as possible to the conditional

expectation function E. For this purpose, we have to discuss how to �nd a

good approximating �:10

We now describe a algorithm to solve for such a �. Here, we describe the

structure of the algorithm. Many details will be discussed later and in the

context of the examples.

� Step 1: Write the system g in (1) so that it is invertible with respect

to its second argument; in other words, the system g has to be such

that, given the �rst, third and fourth arguments the value for zt can

be uniquely determined from (1). Find a set of state variables x that

satis�es (2). Replace the true conditional expectation by the parame-

terized function (�; �) to obtain (19). Fix the initial conditions u0 and
z0. Draw a series futg

T

t=0 from a random number generator that obeys

the distribution of u in the model, with T su�ciently large.

� Step 2: For a given � 2 R
� such that fzt(�); utg has a stationary

distribution, recursively calculate fzt(�); utg
T

t=0
using (19) and the re-

alization for u drawn in the previous step.

� Step 3: Find G(�) that satis�es

G(�) = arg min
�2R�

1

T

TX
t=0

k �(zt+1(�); zt(�))� (�;xt(�)) k
2

(20)

This minimization is easy to perform by computing a non-linear least

squares regression with the sample fzt(�); utg
T

t=0, taking � (zt+1(�); zt(�))

10We do not discuss here the issues related to convergence with arbitrary accuracy as

� !1. See Marcet and Marshall (1994) for a convergence proof.

13

as the dependent variable, (�; �) as the explanatory function, and � as

the parameter vector to be estimated.

� Step 4: Find the �xed point

�f = G(�f) (21)

Then, fzt(�f); utg
T

t=0
is our approximate solution. Or, equivalently, (�f ; �)

is our approximation to the conditional expectation E or, equivalently, the

inverse of g in (19) with respect to its second argument (setting � = �f) is

the approximate equilibrium law of motion of the model. Clearly, in order to

�nd the �xed point �f one needs to iterate on Steps 2 to 4 (there is no need

to redraw the u's or to change initial conditions) until a �xed point is found.

The non-linear regression of Step 3 is meant to approximate the best

predictor in the steady state distribution of the model. This is why, in Step

2, the values of � are restricted to generate a stationary distribution for

fzt(�); utg
1

t=0; otherwise, there is no reason why G(�) should deliver a good

predictor and the solution might be explosive and give numerical errors.

We now discuss how to set up each example to apply the above steps.

The issues related to algorithms for �nding the non-linear regressions of Step

3 and the �xed point of Step 4 will be discussed later. Also, in the discussion

of this section we use only a �rst degree approximation. In section 5 we

discuss some issues related with increasing the degree of approximation.

� Example I (Lucas Asset Pricing Model)

Consider now the simplest case where there is only one asset J = 1. In

Step 1 we have to choose the functional form of . Since the variable

inside the expectation is positive, we use a polynomial of order one:

 (�;xt) = �1 + �2 dt (22)

In order to apply Step 2, notice that (3) delivers the following equation

for the stock price:

pt(�) = � (�; dt)

which is used to generate simulations for pt(�).

In order to apply Step 3, we just need to construct the 'dependent

variable'

Yt(�) �
c

t+1

c

t

(pt+1(�) + dt+1)

14

and run a regression on the equation:

Yt(�) = �1 + �2dt + �t

where �t is the regression error. The vector of parameters � that mini-

mizes the sum of squared residuals (in this case, simply the OLS esti-

mator) is, precisely, G(�).

Notice that, because we use a regular polynomial in , it is possible for

the approximate solution to deliver negative prices. This will not cause

any problem in the implementation of the algorithm. Furthermore,

under the assumption of no default, the correct solution might actually

involve negative prices. This is in contrast with the other examples,

where non-negativity of the expectation needs to be imposed.

The cases for J = 2 and positive dividends will be discussed in greater

detail in Section 4.

� Example II (Simple Stochastic Growth Model)

For the functional form of , using a regular polynomial as in the

previous example might be problematic because, eventually, it might

generate a negative value for and, since this number is raised to

a real power in Step 2 (see equation (24) below), a numerical error

would ensue. Furthermore, since the variable inside the expectation

is positive, we know that the true E takes only positive values so, by

imposing this feature on our approximating , we are likely to get a

better �t with fewer parameters.

For these reasons, we use an exponentiated polynomial of order one:

 (�;xt) = �1 exp(�2 log kt�1 + �3 log �t) (23)

which is guaranteed to be positive and so generate a positive solution

for consumption. Increasing the degree of the polynomial inside exp we

can approximate the conditional expectation with arbitrary accuracy.

In order to apply Step 2, notice that system (19) delivers the following

equation for consumption:

ct(�) = (� (�; kt�1(�); �t))
1

 (24)

15

and capital can be found from

kt(�) = kt�1(�)
�
�t � ct(�) + (1� d)kt�1(�)

These equations generate simulations for (ct(�); kt(�)).

For Step 3, we construct the 'dependent variable'

Yt(�) � ct+1(�)
 (kt(�)

��1
��t+1 + 1 � d)

and run a non-linear regression on the equation:

Yt(�) = �1 exp(�2 log kt�1(�) + �3 log �t) + �t

where �t is the regression error. The vector of parameters � that mini-

mizes the sum of squared residuals in this regression is, precisely, G(�).

Notice that it would not be correct to take logs on both sides of the

equation and run a linear regression of log Yt(�) on (log kt�1(�); log �t); this

would only give the correct answer if the error were multiplicative

(which is the case under log-normality), but it is not the case in general

for conditional expectation errors. This is a reection of the fact that

this model is, in fact, non-linear, and linear functions are at best good

approximations.

� Example III (Stochastic Growth Model with Flexible Labor Supply

and Proportional Taxes)

We choose as in the previous example. As for Step 2, the correspond-

ing system (19) delivers

� (�; kt�1(�); �t) =
b(1� lt(�))

llt(�)
�

�t (1 � �) kt�1(�)� (1 � � l)
(25)

which, given the state variables, is a non-linear equation in lt(�). This

non-linear equation has to be solved numerically for each t and �.

Consumption is found as in the previous example. Finally, from the

resource constraint (corresponding to market clearing) we obtain kt(�).

Clearly, the non-linear regression to be run in Step 3 is similar to Exam-

ple II, the only di�erence is that labor and taxes enter in the calculation

of Yt(�):

16

� Example IV (Simple Growth Model with Lower Bounds on Invest-

ment)

We show how to use the Kuhn-Tucker conditions to �nd fct(�); kt(�)g

while imposing inequalities (9) and (12. The system (19) is given by:

ct(�)
 � �t(�) = � (�; kt�1(�); �t) (26)

((ct(�)��t(�)�� (�; kt�1(�); �t))(kt(�)�(1�d)kt�1(�)) = 0 (27)

�t(�) � 0 and kt(�)� (1� d)kt�1(�) � 0 (28)

We can then proceed as follows: for each t,

(a) compute (ct(�); kt(�)) from (26) under the conjecture that �t(�) =

0: In this case, the mechanics for computing consumption and

capital are exactly like in Example II. If investment is positive, go

to t+ 1. If investment is negative use the next step:

(b) set kt(�) = (1�d)kt�1(�); �nd ct(�) from the feasibility constraint,

and then compute �t(�) from (26).

In applying this procedure, we have to make sure that the Kuhn-Tucker

conditions are satis�ed. Notice that, for a �xed value of (�; kt�1(�); �t),

the left side of (28) is increasing in kt(�) in step (a). Hence, if step (a)

delivers a negative investment, consumption will be lower when we go

to step (b), so ct(�)
 will be higher (relative to (a)), and (26) delivers

a positive � in Step (b), so (28) is satis�ed. Clearly, (27) is satis�ed,

since either one or the other large parenthesis is automatically set to

zero.

Notice that the Lagrange multiplier is treated just like an additional

variable in our problem. Its value is derived from solving a system

of equalities and inequalities corresponding to the g system. In the

present model the Lagrange multiplier a�ecting investment appears

also inside the expectation, and so its realized values are needed to

compute the � expression; this is how the possibility of having future

binding constraints a�ects today's investment.

It must be noticed that there are some ways of writing the Kuhn-Tucker

condition that would be inappropriate. For example, by multiplying

17

both sides of (10) by c
�2
t , the Kuhn-Tucker condition can be correctly

expressed as,

c
�

t � �tc
�2
t = (29)

� Et

h
c

t+1 c
�2
t (k��1t � �t+1 + 1� d)� (1 � d)(1 � �t+1)

i

However, (29) would be an inappropriate choice for g if PEA is used as

a solution algorithm, because the function c� is decreasing in today's

k: Then, step (b) would deliver a negative value for the multiplier �:

In terms of the step-by-step description of the algorithm, (29) violates

step 1, since it implies a representation for g that is not invertible with

respect to its second element.

To summarize, one can simply simulate by putting the Lagrange mul-

tiplier to zero, checking the inequality constraint, if it is not satis�ed,

impose the inequality constraint and obtain the multiplier from the

Euler equation. Due to our previous derivations, the researcher can be

con�dent that the relevant inequalities for the Kuhn & Tucker condi-

tions are satis�ed, but this should be checked for a di�erent example,

in order to avoid situations such as the one discussed with (29).

Clearly, the non-linear regression to be run is as in Example II, except

that now � enters in the calculation of Yt(�):

� Example V (Habits in Consumption)

We choose the same kind of as in Example II, but now we need to

include an additional state variable:

 (�;xt(�)) = �1 exp(�2 log kt�1(�) + �3 log �t + �4 log ct�1(�)) (30)

In order to apply Step 2 we obtain consumption from

ct(�) = (� (�; kt�1(�); �t; ct�1(�))
1

 � �ct�1(�);

then we solve for capital as in Example II. As in all previous examples,

we run the regression of Step 3 with Yt(�) given by the right hand

side of (14). Notice that inside the conditional expectation of the Eu-

ler equation (13) we now have random variables a�ected by the two

shocks, �t+1 and �t+2. However, the number of computations required

18

by the algorithm has barely increased because of this fact. This is in

contrast for algorithms that use explicit integration of the conditional

expectation (for example, algorithms that use quadrature to evaluate

the conditional expectation at each point), adding stochastic shocks

with continuous distributions leads to a large increase in the cost of

computing the integral. Of course, the number of computations will

certainly increase because of the fact that now we have to solve for

a �xed point of a four-coe�cient vector, but this is common to all

algorithms that approach this problem.

We use this example to discuss the issues that arise when there is more

than one conditional expectation in the model. Notice that (13) could

have been written as

(ct + �ct�1)
 = �Et[((ct+1 + �ct)

 + ��(ct+2 + �ct+1)
) (31)�

�t+1�k
��1
t

+ 1� d

�
]� ��Et(ct+1 + �ct)

and we can approximate each of these expectations with two di�erent

functions (�1;x) and (�2;x) where each �i has four elements, and

is as in (30). Clearly, this option is computationally ine�cient, because

we now have to compute a �xed point of eight coe�cients � � (�1; �2) 2

R
4�2, but it should give a correct approximation to the true solution11.

Clearly, now the simulation generated in step 2 is given by

ct(�) =
�
� (�1; kt�1(�); �t; ct�1(�))� �� (�2; kt�1(�); �t; ct�1(�))

� 1
��ct�1(�)

Notice that the variables depend on the whole vector �, but the coef-

�cient that appears as an argument of each depends on i = 1; 2.

Now, in order to apply Step 3, we need to run two separate non-linear

regressions, with the same right hand side but with the explanatory

variables:

Y
2
t (�) = (ct+1(�) + �ct(�))

Y
1
t (�) = (Y 2

t (�) + ��Y
2
t+1(�))(�t+1�kt(�)

��1 + 1� d)

Now, letting Gi(�) be the result of regression i = 1; 2, we de�ne G(�) �
(G1(�); G2(�)), so that G : R4�2 ! R

4�2, and the �xed point of Step

4 involves eight coe�cients.

11Assuming T and � go to in�nity.

19

� Example VI (Two Capital Goods)

We have two endogenous state variables and, unavoidably, two param-

eterized expectations. Each parameterized expectation is of the form

 (�i; k1;t�1(�); k2;t�1(�); �t;), and the same issues discussed at the end

of the previous example apply.

Consider the Euler equations (17) and (18) with (�i; �) in the right

hand side. We can obtain a value for ct(�) from any one of the two Euler

equations, but we have no way to compute k1;t and k2;t. This system

is underdetermined for the capital stocks. But if we want both Euler

equations to be satis�ed, the system is overdetermined for consumption.

This is the sense in which the system g in this example is, in principle,

not invertible. We simply can not proceed to Step 2 in the way that

the Euler equations have been initially written.

In order to proceed, we have to rearrange the Euler equations in a

way that allows us to compute the simulated series. There are many

alternatives; we should choose one where the series are easily solved

and, of course, we have to be careful that the new system still delivers

a su�cient condition for an equilibrium. We could proceed by pre-

multiplying both sides of the Euler equation by k2;t to obtain

c

t k2;t = �Et[c

t+1 (�t+1 �2 k
�2
2;t k

�1
1;t + (1� d2)k2;t)]

Clearly, since k2;t is never zero in equilibrium, this equation is satis�ed

if and only if the original Euler equation is satis�ed, and it can replace

su�cient condition for the optimum. We can determine ct(�) from the

�rst Euler equation as in Example II, and then obtain k2;t from the

second one by setting:

k2;t(�) = �
 (�i; k1;t�1(�); k2;t�1(�); �t)

ct(�)
(32)

2.3 An Algorithm to Find �f and the Use of Homo-

topy

Having discussed how to �nd G for a given �, we now turn to the problem of

�nding the �xed point of Step 4. Our comments here apply to all examples.

20

Although we could use a standard hill-climbing algorithm for solving non-

linear systems of equations this may not be the best alternative. First of all,

hill climbing algorithms are relatively complicated, often unstable, and they

require the knowledge of some numerical analysis; second, these algorithms

work by calculating the gradient of G; which can become very expensive in

models with many coe�cients.

Applications of PEA often use the following algorithm, based on modi�ed

successive approximations:

�(� + 1) = (1� �) �(�) + � G(�(�)) (33)

for some � > 0 and some �xed initial condition �(0); here, �(�) represents the

� -th iteration of the algorithm. The algorithm is extremely easy to program

and each iteration is calculated very fast. The most obvious point at which to

stop the algorithm is when all the elements of the matrix �(�) are su�ciently

close to the corresponding element of G(�(�)):

There are two possible shortcomings of the above algorithm. First of

all, (33) will typically need more iterations to converge than a hill-climbing

algorithm12; because of that, it could happen that the gain in speed from

avoiding computation of the gradient is lost in the additional iterations. Sec-

ond, hill-climbing algorithms are (typically) locally stable, but the above

algorithm could be locally unstable. Nevertheless, it can be shown that the

above algorithm is locally unstable only in models where the rational expec-

tations algorithm cannot be learnt by agents in the economy. More precisely,

consider a model of learning where agents, instead of having rational expec-

tations, form their forecasts with (�t;xt); where �t is the parameter that

agents use on the basis of today's information. Assume that agents incorpo-

rate the new information that arrives at every period and they update their

beliefs on � by using least squares estimators using all past observations. It

can be shown that such a learning model converges to rational expectations

(locally) if and only if iterations on (33) are locally stable for � su�ciently

small. Therefore, it is possible to use the above algorithm in all models where

the rational expectations equilibrium can be justi�ed as the limit of a learn-

ing model. As many economists believe that rational expectations equilibria

are only interesting if they can be learnt by agents in the model, this works

12This is because hill-climbing algorithms converge in one step when they are in the

neighborhood of the �xed point, and this is not the case in (33).

21

precisely for models that, in this sense, are of interest13. In any case, it turns

out that least squares learning is locally stable in most applications, and the

above algorithm can be used to compute the �xed point of Step 4 in most

applications.

In order to use the above algorithm successfully, one needs good initial

conditions; formally we need �(0) to be not too far away from �f . This is

needed for two reasons; �rst, because iterations are more likely to get 'lost'

and never converge if the initial condition is too far away from the limit14.

Second, a good initial condition is needed because in Step 2 we need to

consider �'s that generate fzt(�)g that possess a stationary distribution. One

could ensure stationarity by writing a general test for existence of a stationary

and ergodic distribution15, and then impose the restriction that only �'s that

satisfy such a condition are considered in the algorithm that looks for the

�xed point of Step 4. This is a valid but rather cumbersome alternative

since solving non-linear systems of equations subject to restrictions is a tricky

business. An alternative solution that works in practice is to use the ideas of

homotopy, which amounts to imposing good initial conditions in a systematic

way.

The idea of homotopy is very simple - start with a version of the model

that is easy to solve, then modify these parameters slowly to go to the desired

solution. As long as the model goes from the known to the desired solution

in a smooth way (formally, as long as the solutions are continuous with

respect to the parameter that drives the model from the known to the desired

solution), we are always solving models with good initial conditions. It is

often possible to �nd such 'known' solutions and to build a bridge that goes

to the desired solution. For example, den Haan and Marcet (1990) explained

how to solve the simple growth model of Example II by starting the solution

at the case of d = 0 and = �1 , which happens to have an analytic solution.

The 'bridge' to the desired model is obtained by slowly setting depreciation

to the desired level of, say, d=.9 . In this case, d is the parameter that drives

13One caveat to this claim is that the model of learning we outline in the main text is

not the only way that a learning model could be speci�ed.
14This is also a commonproblem with hill-climbing algorithms and with most algorithms

for solving non-linear systems, where only local stability is guaranteed.
15Some tests are provided by Du�e and Singleton (1993) and Domowitz and el Gamal

(1993). The chapter by Novales et al. in this book has an explicit discussion of how to

impose stationarity.

22

the model from the known solution to the desired solution. Also, one can

go from Example II to Example III by starting at b = 0 and zero taxes.

One can go from Example II to Example IV by adding to Example II the

constraint kt � (1 � d)kt�1 � K; for a very low (and negative) value of K;

the solution is as in Example II; by increasing K to zero we approach the

solution to Example III. This exercise can even be performed when we change

the functional forms of the fundamentals. For example, if we wanted to solve

the simple growth model with the CARA instantaneous utility function -

e
��ct ; we could consider solving the growth model with a utility function

�e��ct� +
c
+1
t

 + 1
(1� �):

Clearly, we know the solution for � = 0 (since this is just Example II) and

to get to the desired solution with CARA utility we need to increase until

� = 1:

In each case, we would start at the solution that is known and change

the relevant parameter slightly. We would solve the model for this slightly

di�erent value of the parameter, using as initial condition the solution to

the model under the previous parameter. For example, assume that we have

already solved Example II and we would like to calculate the solution to

Example IV. Let's say that gross investment in Example II is never less than

-50. Let �K
f be the solution for a given K; clearly, we know the solution

for ��50
f (this is just the solution of Example II), and we want to have the

solution for �0f (which is the solution to Example IV). To use a homotopy

algorithm we could increase K by, for example, one unit at a time, using the

previous �xed point as the initial condition in the algorithm to �nd the new

�xed point. More precisely, letting GK be the mapping of Step 3, for each

K between -50 and 0 we would use the algorithm

�
K(� + 1) = (1 � �) �K(�) + � G

K(�K(�)) (34)

with initial condition �K(0) = �
K�1
f :

In this way, we only need local stability of the algorithm that solves for

the �xed point, since we always have a good initial condition. Also, since

the algorithm is never too far from the �xed point, all the �'s we consider

generate fzt(�)g with a stationary distribution, so that there is no need to

impose the stationarity requirement on � explicitly.

23

In our personal experience, we have found that many researchers try to

avoid the use of homotopy. Perhaps this is because homotopy slows down the

algorithm and because it looks like a unsophisticated way to make an unstable

algorithm converge16. In fact, using homotopy often ends up saving time to

the researcher: researchers often spend hours in front of the computer (even

though this activity is never discussed in papers) watching their hill-climbing

algorithms drift all over the place or even diverge for no apparent reason.

Then they spend even more hours trying to guess what initial condition

could possibly work. By contrast, homotopy �nds the good initial condition

in a systematic way. So, even if it consumes more computing time, it is likely

to save on researcher's time.

Here we have just discussed homotopy informally and in its most trivial

form although there is a large mathematics literature on it. This literature

discusses many tricks that can be used to speed up the algorithm. For ex-

ample, along the homotopy it is not necessary to require high accuracy of

the �xed point, since the intermediate models are only accessory. Also, this

literature studies some pitfalls of the procedure. For example, if the model

has a region of parameters where the solution is unde�ned, it is likely that

the homotopy may cross it sooner or later, so one has to be careful about

the existence and the continuity of the homotopy path. For example, we will

show in section 4 that setting up a continuous homotopy path for Example

III is possible, but not trivial. We do not discuss this literature in detail for

lack of space, but we hope to arise some interest. In the program we have

a built in homotopy (only the most simple minded homotopy), and in the

examples below we show how this can be applied.

3 General Description of the Program

The fortran program open can be used to compute the steady state dynamics

of non-linear stochastic models �tting into the general framework discussed

above. In the following we will discuss issues related to the practical imple-

mentation of the algorithm, making reference to this program, and describing

how to apply it to our examples.

16A very good expression of this sentiment was provided by a referee to a previous PEA

paper, who referred to the homotopy discussion as 'making a big deal out of �nding good

initial conditions, which is something we all know how to do'.

24

The source code open.for (and its variants used in some of the examples)

includes all the subroutines needed to perform the algorithm (matrix inver-

sion, random numbers generator, etc.). Some parts of the program have been

written on separate short �les, called psis.for, der.for, ginvert.for 17.

These are the parts of the programs that are speci�c to the economicmodel at

hand and to the functional form used to approximate the expectation terms.

In principle, the user will need only to write these program �les, and to �ll

the �les containing the parameters (alpha.dat, par.dat and pini.dat) in

order to use the main program open.for for di�erent economic applications.

On the web there is a directory for each example, each containing the �le

open.for (or some variant of it) and all the auxiliary and parameter �les

needed to solve that example.

In this section we refer to variables in the program in italics; most vari-

ables in the program are named as in the chapter. For example, beta is the

coded version of �, phi is the coded version of �, and so on. The index t

always refers to time-period.

Let us illustrate the functioning of the program following steps 1 to 4.

First of all, the program reads the control parameters for the algorithm (in

par.dat), the parameters of the model (in alpha.dat) and the initial pa-

rameters beta for the functions psi (in pini.dat). The program generates a

random sequence of shocks theta(l; t) (l is the index for the exogenous shock)

that will be used throughout the computations18. All the model parameters

are stored in a vector alpha, the parameters controlling the disturbance pro-

cess are stored in the arrays am, cm, and dm and the series are stored in the

vector Z.

Then, the iterative process to compute the beta is started.

� Subroutine simul (Step 2): The program simulates a time series Z(i; t).

a) In order to compute psi(j; t) it uses the initial values for the state

variables set in par.dat and the parameterized expressions de�ned in

psis.for with the initial beta set in pini.dat.

17Common fortran compilers will automatically include the text of these auxiliary �les

into the main program, during the compiling phase.
18The program includes a subroutine that generates i.i.d. standard normal disturbances,

and a subroutine that can be adapted to generate processes with di�erent autocovariance

structure. The parameters controlling the process for the shocks are also set in alpha.dat.

25

b) With these data available the program can solve, for every time

period, the system corresponding to equation (19), in order to obtain

the state variables in the current period Z(i; t). The algebraic steps

corresponding to the inversion of (19) are de�ned in ginvert.for by

the user, according to the model at hand. This part of the program

makes use of the parameters of the model set in alpha.dat. If a nu-

merical approximation is needed for this purpose (as in Example III) a

subroutine for this task can be easily appended to the main program

open.for.

c) The program computes the realized values of the expressions that

appear inside the expectations |that is, the phi(t � nfor; j) in the

same loop that computes the values for the Z(i; t) variables. nfor is

the maximum number of leads appearing inside the expectations, and

at period t is the �rst time at which we are able to compute all the

expressions, whose value we were trying to predict t � nfor periods

before using psi. If nfor is greater than 1 you can start to compute

phi only after nfor� 1 periods. This is not a problem in the examples

discussed since we are computing the steady state parameters. In this

case the program drops the �rst observations (150 in the programs

described) in the nonlinear regression and then it is set to compute phi

just from the 150th period on.

� Subroutine Gbeta (Step 3): The parameters Gbeta are estimated with

a nonlinear regression of phi(t; j) on the state variables appearing in

psi. The nonlinear regression is performed following a common it-

erative procedure described, for example, in Pindyck and Rubinfeld

(1981) in which, at every step, the residuals and the derivatives of the

 function, using the parameters from the previous step, are used to

perform a linear regression that gives the coe�cients for next step.

Here the program needs to use both the form of psi de�ned by the

user in psis.for and the derivatives of psi de�ned in der.for. After

convergence is achieved for Gbeta we pass to step 4. The convergence

criterion for the non-linear regression acclnr and the maximumnumber

of iterations maxitnl are both set in par.dat.

� Convergence check and updating (Step 4): The parametersGbeta of the

regression in step 3 are compared with the beta parameters, which we

26

used to performed step 2. If the distance between them is smaller than

acc the algorithm stops. Clearly, this distance can be evaluated in many

di�erent ways. In most of the examples discussed below it is computed

simply as a sum of absolute di�erences, while in the program we use

to solve Example VI it is evaluated computing the distance (sum of

squared di�erences) between the simulated series obtained using beta

and the simulated series using Gbeta (see next section for the latter

convergence criterion).

The parameters are updated according to: beta0 = mu � Gbeta+ (1 �

mu) � beta. The value for mu is set in par.dat. In general an mu

closer to 1 makes the algorithm faster but is more likely to result in

non-convergence. If the algorithm converges the updated values for the

beta are stored in 'pini.dat' and the old parameters are discarded. In

this way, the next time that the program is used, it automatically uses

the �xed point of the last run (keep this is mind if you want to store a

�xed point for future use, in that case, you need to save the contents

of pini.dat in a di�erent �le).

After the iterations on beta converge (hopefully to �f), a simulation of the

series Z(i; t) is stored in the output �le openout.dat, along with descriptive

statistics of the series. It is very easy to adapt this part of the program so

as to obtain additional aggregate information on the series. Moreover, along

the program (in particular in ginvert.for) the user can compute whichever

auxiliary variable is needed, and store it as an additional series (Z(t; i)),

obtaining other useful information on the model.

It is advisable to set the initial conditions of the endogenous state vari-

ables at levels that are often visited in the stationary distribution. This is

because, with the algorithm described in section 2, there is no guarantee

that our approximation is any good outside the support of the stationary

distribution. The output �le may also be useful to choose an appropriate

initial value for the state variable (e.g. k
�1 in example II) when the param-

eters have been modi�ed and hence the stationary distribution of the state

variables has changed.

Notice the convention that the time subscript for phi(t; j) refers to the

period in which the expected value of phi(t; j) is needed to solve the system

(19) (and the approximated value psi(t; j) is used instead). In step 2 of the

program this notation gives the natural result that phi(t; j) is the dependent

27

variable to be explained by the state variables at time t in the parameterized

expression psi, but phi(t; j) depends on random variables whose value is

realized in the future. This is why, in ginvert.for, we compute the past

value phi(t�nfor; j) at period t. As noticed above it is impossible to compute

the value of phi(t; j) unless nfor periods later when we have all the needed

realized values.19 nfor is another parameter to be set in par.dat.

Parameter �les. The parameters controlling the algorithm are listed in

the �le par.dat. In particular in this �le the user will set neq, the number of

parameterized expressions corresponding to so many psi functions, and np(j)

for j = 1; : : : ; neq, the number of parameters in expression j (i.e. the number

of beta coe�cients in each psi), and nz the number of Z variables used, and

the control parameters for the various iterative procedures performed by the

program. Another �le alpha.dat contains the parameters of the model and

also parameters controlling the automatic homotopy steps.20

Program �les. Here we summarize the content of program �les that

are model dependent and have to be written by the user. The parameterized

forms (psi) have to be written in the �le psis.for and the derivatives of

psi in �le der.for. In this version there is not a prede�ned functional form,

the user has to provide it in psis.for and to provide analytical derivatives

for psi in der.for. Clearly, as far as you are satis�ed with an exponenti-

ated polynomial, you can simply adjust the expressions in the psis.for and

der.for used in the examples II to VI.

In ginvert.for there are the algebraic or numerical steps to solve the

equation (19) and the expressions to compute the ex-post values for phi21.

Finally, to avoid repeated computation of logarithms we have introduced the

auxiliary variables Zlog(i; t) that may be used (but need not to) along the

program to store the values of the log of Z(i; t). Usually the logarithms are

computed in ginvert.for immediately after the computation of the Z(i; t).

The general form of the parameter �les is described in the program, along

with a list of all the variable names.

19This is also the reason why we have to drop the last nfor observations when performing

the regression, simply because the last values of phi are not available.
20See the detailed description of the �les in the program.
21Notice also that in psis.for and der.for the parameters are named b(h; j) (h-th param-

eter of the j-th expression), so that the program can use the same de�nition {substituting

beta(h; j) or Gbeta(h; j) for b(h; j){ in di�erent steps of the algorithm.

28

Built-in Homotopy. As discussed above, in order to ensure convergence

of the PEA it is often a good idea to change the parameters in small steps

along a homotopy path, from a model already solved to the target model.

Since this procedure is indispensable in many models, the program has been

set up to perform it automatically. The built-in homotopy steps are activated

setting 1 in the third line of alpha.dat (after the list of the alpha parame-

ters), and adding a line with the following control parameters: the identi�er

i of the parameter alpha(i) to be changed, the target value for alpha(i) and

the size of the step of adjustment. As initial value the program takes the

alpha(i) in the list at the beginning of alpha, notice that at the end of the

program the �le alpha.dat is updated automatically. In this way, once the

program has �nished the computations, the �les alpha.dat and pini.dat

are always in line. The �le alpha.dat is not changed if the homotopy is not

activated. Also, if the program �nds the same target value as alpha(i) the

homotopy steps are omitted. If you do not want to activate the homotopy

procedure just leave a zero in the third line of alpha.dat.

4 Solutions to Examples

In this section we illustrate by means of Examples I to VI the use of the

general program open. We also discuss some of the results that we can

observe in the computations. Along with the Examples, we will describe

some common problems and will give some practical suggestions for the use

and the extension of the program. In the programs available on-line the

modi�cations to the basic model open.for are highlighted with two rows of

comments ('C') at the beginning and at the end of each insertion.

4.1 Example I. Lucas Asset Pricing

See �les in the directory ~\ex1luc. We begin with the case of one asset, we

compute it �rst with a regular polynomial and later with an exponentiated

polynomial. Then we compute the case for two stocks (J = 2). The program

�le open.for, allows for a general vector AR(1) structure of the shocks ut
(each component of the shock is labeled theta(t; j)), and can be easily mod-

i�ed to use a di�erent distribution for this process. The current example is

the only one in which we will consider more than one series of random shocks;

29

all the others will use a one-dimensional log AR(1) exogenous process. We

will take advantage of this example to show that the algorithm deals very

easily also with fairly rich stochastic structures.

The labeling of model variables is as follows.

i 1 2

Z(i; t) p1;t p2;t

j 1 2

alpha(j) �

The shocks theta follow a normal AR(1) process

thetalog(t) = D +A � thetalog(t� 1) + C � q(t) (35)

where q(t) is a vector of dimension nthe of standard normal independent

shocks, A and C are matrices (with components am(j; k), cm(j; k)) and D

is a vector determining the means, covariances and autocovariances of the

theta's. The values of these parameters are also set in the �le alpha.dat.

Consider �rst the case of one asset, serially independent dividends and

log utility. In order to consider the case where we allow for negative values

inside the conditional expectation, we set D = 1; A = 0 and C = :4, and we

take as the dividends dt = thetalog(t). In this case we obtain an analytical

solution for the asset price corresponding to

pj;t =
�

1 � �
dj;t (36)

Clearly, for this case, a �rst degree polynomial for with beta(1; 1) = 0

and beta(2; 1) = 20 gives the precise solution solution. We introduce a �rst

degree polynomial in the �les psis.for and the derivatives of psi de�ned

in der.for Then, we can move the autocorrelation parameter to some other

level, say A = :8 and = �2 to �nd a solution that is not analytic.

Next, take as the dividend process dt = exp(thetalog(t)). Since the ex-

pectation is now positive, we can use an exponentiated polynomial and, with

a similar reasoning as before, we see that a �rst order exponentiated poly-

nomial with beta(1; 1) = 20 and beta(2; 1) = 1 gives the precise solution for

the logarithmic case. To move to the case of A = :8, = �2, start with the

appropriate initial conditions, modify psis.for and der.for, and set up the

homotopy.

30

Let us now consider a model with two stocks so that J = 2, and let

us maintain strictly positive dividends dt = exp thetalog(t). We can start

the homotopy from the case of logarithmic utility and perfectly correlated

dividends (the latter feature makes the model identical to one with a single

asset). We now set

D =

"
0

0

#
A =

"
0 0

0 0

#
C =

"
:4 0

:4 0

#
(37)

Thus, in this case, an exponentiated �rst order polynomial in the current

thetalog's gives the exact solution. Since theta(t; 1) = theta(t; 2), letting the

parameters beta be (20, 0.5, 0.5), we have parameters to start the homotopy.

Clearly, if the two theta are perfectly correlated the non-linear regression will

fail because of perfect collinearity, thus we better start the homotopy with

a small departure from the C matrix above (say c(2; 2) = 0:0001). We also

have to set the number of expectations neq = 2.

Then, with a sequence of homotopy steps, we can change the parameters

of the dividend process to compute a model with two di�erent risky assets by

changing D;A;B and we can also change the risk aversion . Moreover if we

make the second row of C go to (0, 0) we approximate the case of a riskless

console bond that pays one unit of consumption with certainty in all periods

from now into the future. If we proceed like this, at a certain point we have

to eliminate theta(t; 2) from the psi, since it gets close to be a constant, and

the non-linear regression would fail. Notice that even when theta(t; 2) is a

constant still we will have two psi expressions, and perform two nonlinear

regression, because the riskless asset's price is still a non-degenerate random

variable.

4.2 Example II. Simple Stochastic Growth Model

See �les in the directory ~\ex2grow

The psi and its derivatives are de�ned in psis.for and der.for.

The variables and parameters are labeled as follows:

i 1 2

Z(i; t) kt ct

j 1 2 3 4

alpha(j) � � 1� d

31

The piece of program ginvert.for solves for ct in the equation

ct = (� psi(1; t))
1

 (38)

and then solves for kt using the resource constraint. Then it computes

phi(t� 1; 1) = c

t � (�t �k
��1
t�1 + 1� d)

The homotopy is started with the Brock-Mirman solution that applies in the

case of depreciation 1 and logarithmic utility. To do that we start with an

economy with parameters:

j 1 2 3 4

alpha(j) � � 1 � d

0.95 -1.00 0.33 0.00

In this case an appropriate exponentiated polynomial corresponds exactly

to the optimal policy. Using the formulas derived by Brock and Mirman, we

see that the relation between the expression for the optimal policy function

and those in the (exact) expression for the expectation can be easily derived

substituting ct = � � �t k
��1
t�1 in (38).

In particular, given the parameters �xed above, we have an equilibrium

characterized by:

beta(1; 1) = �(1� � �)� 1 = 1:533

beta(2; 1) = �� = �0:330

beta(3; 1) = �1:000

We can run the program with these parameters to check that this is, indeed,

the solution, and then change the parameters alpha manually or using the

built-in homotopy procedure to compute an approximate solution for other

sets of parameters; recall that, when the program ends, the last �xed point

calculated is stored in pini.dat, and the initial condition is scratched. It

is quite common that when there is full depreciation (d = 1) the series for

capital becomes easily non-stationary for small changes in beta away from the

optimal path, so that the algorithm may fail to converge. In the case we are

discussing a solution is to set a value for mu smaller than one (say .5) as long

32

as (1�d) is close to 0. This simple correction is enough to prevent beta from

exiting the stable region (i.e. the asymptotic unit circle). For example using

twice the automatic homotopy we can compute an approximate solution for

a model with depreciation, 1 � d = 0:8, and = �2:0, and with an AR(1)

process for log � with parameters � = :9 and � = :03.

In general the order in which we change the variables should not a�ect

the results obtained, but in models where there is a depreciation rate it seems

that it is better to move the depreciation rate away from 100%, after that

we can safely set mu closer to 1 and achieve faster convergence.

4.3 Example III. A Growth Model with Endogenous

Labor Supply and Proportional Taxes

See �les in the directory ~\ex3lab.

We now have to address the issue of the numerical solution of the system

g at each period t. Also, it will turn out that the setup of the homotopy in

order to have a continuous path is non-trivial.

As we discussed before, to complete the inversion of the g system we use

a simple numerical procedure to compute hours worked. Rewriting (7), we

see that solving for lt(�) amounts to �nding the zero of the function

f(l) � (1� �
l) � (�;xt(�)) �t (1 � �) k�t l

��

t � (1� lt)
lb (39)

in the interval [0,1]. A numerical algorithm to solve (39) is appended to

the main program as a subroutine named federzero. Also, at the end

of the main program there are the de�nitions of the function f and of its

derivative.22

To save computing time along the simulation we use as the starting point

for the numerical procedure at a given time period the solution found at

the preceding period (see discussion in the next section of this issue). This

solution is stored as whold at the end of ginvert.for and retrieved at its

beginning. Clearly, the very �rst period there is no whold, so at the beginning

of the simul subroutine the value of the labor supply is initialized at the value

22Notice that in order to allow the subroutine and the program to share the parameters

alpha we have rede�ned the common commands. Moreover the external functions f and

fder have been declared in the main program and in the subroutine simul.

33

Z(1; 2) = l1 written, for convenience, in par.dat as if lt were a state variable

(the number of 'state' variables nxini is accordingly set to 2).

The other interesting question here is how to set up the homotopy path

to move from the model already solved (Example II) down to the model we

want to solve (Example III). We need a general model that encompasses both

the initial model and the 'new' model, with some parameters controlling the

movement from one model to the other. Also, we need that as we change

these parameters a little bit the solution moves only slightly.

It is useful, though, to realize that all intermediate steps along the homo-

topy can correspond to a mechanical model where the equations do not nec-

essarily correspond to rational forward-looking behavior. The starting and

the ending point clearly will be fully edged models and in some cases the

intermediate models can be interesting too. However from a computational

standpoint it is often easier to just see them as dummy models connecting

one model to the other.

This is clear if we consider only the case of endogenous labor supply and,

for now, set tax rates to zero. Here we could try to specify an economic

model in which if a parameter takes on a particular value the labor supply

is identically equal to 1 in equilibrium, thus replicating the basic model of

growth. For example, we could let b in the utility function move from 0 to 1.

Unfortunately this procedure may bring additional problems from a com-

putational point of view, since (1 � l)l will typically have a derivative that

limits either to in�nity or to 0 as lt approaches 1. The subroutine federzero

makes largely use of this derivative, and will easily fail to converge under

these conditions. Formally, what happens is that the homotopy path de�ned

in this way is discontinuous, precisely, at b = 0.

We can bypass this complication in the following way. We can solve at any

period a model where actual working hours are given by l�t = s lt + (1 � s)

(with 0 � s � 1), where lt solves the �rst order condition of the original

optimization problem. We use l�t to compute the return on capital, total

production, and so on. In this way when s = 0 (and zero tax rates) the

problem will be identical to the basic growth problem. For 0 < s < 1 we

cannot give an economic interpretation to our simulations, but eventually, as

we reach s = 1, we have a correct solution to the model with endogenous labor

supply. This is the procedure we adopted when �rst running the homotopy.

Once we have an approximate solution for s = 1, we can as well eliminate it

from our program. From then on it is straightforward to modify the tax rates

34

from 0 to any level of interest, and in the same way to modify all the other

parameters. The order in which the parameter values are changed should not

matter for the �nal result, but sometimes the algorithm is faster changing

some parameters �rst. As noticed above, if we start from the Brock-Mirman

parameters, it is usually better to start by moving the depreciation rate away

from 1, and then modify the other parameters (including the s).

Here we summarize the variable and parameter labels used by the program

for this example. 23

i 1 2 3

Z(i; t) kt lt ct

j 1 2 3 4 5 6 7 8

alpha(j) � � l d �
l
�
k

s

4.4 Example IV. Non-negative Gross Investment.

See �les in the directory ~\ex4inv.

The naming of variables and parameters, and the baseline parameters

values are:

i 1 2 3 4 5

Z(t; 1) kt ct �t it bind.ind.

j 1 2 3 4

alpha(j) � � (1 � d)

0.95 -1.00 0.33 0.9

Notice that we introduced some auxiliary variables Z(t; i) that are not

necessary from the purely computational point of view. The �rst is the in-

vestment level, Z(t; 4), that may be useful in the simulated series stored in

openout.dat. The second is an indicator variable Z(t; 5), assuming value 1

whenever the non-negativity constraint is binding. The mean of the Z(t; 5)

23The program uses an additional variable Z(4; t) corresponding to the number of steps

needed for federzero to converge. This kind of auxiliary variable is useful to check the

performance of the numerical subroutine used. Also, an additional parameter used by the

program is alpha(9) that controls the speed of adjustment in the subroutine federzero.

35

variable represents the fraction of periods in which the non-negativity con-

straint is binding.24

The program opent.for is a slight modi�cation of open.for. The com-

putation of the summary statistics is performed not only at the end of the

algorithm but also along the homotopy steps, producing a table with the val-

ues obtained. This program illustrates how the homotopy steps can be used

to perform a comparative dynamics exercise. That is, along the homotopy

we can see how changes in parameters a�ect the summary statistic of some

simulated variable. In all cases in which the models along the homotopy have

economic meaning we can immediately store the values of some statistic of

interest. In this way the table we obtain displays the relation between a

parameter of the model and some statistical features of the equilibrium path

obtained.

For example, a simple qualitative result that we can expect from the

model with non-negative investment is that lower depreciation rate are asso-

ciated with a higher probability of being up against the constraint, and the

greater is the number of times the multiplier �t is positive.

With the appropriate modi�cation of the homotopy steps we obtain a

table displaying the relation between a parameter and a summary statistic

of the simulated model. For example, Table 1 displays the relation between

the depreciation rate and the percent of times in which the constraint binds

in the simulated economies, con�rming our intuition.

We can also study the e�ect of the elasticity of the instantaneous marginal

utility on investment and on the probability of having a binding constraint.

Again just performing the homotopy we obtain Table 2 below (1 � d is now

kept �xed at 0.975).

The relation we found between risk aversion (absolute value of) and

average investment is increasing, while the relation with the frequency of the

binding constraint is non monotonic. A possible intuition for this result is

the following. If the constraint binds often, this introduces higher volatility

in consumption, since agents can not smooth consumption by eating their

capital; the way to avoid this unpleasantly volatile consumption is to keep, on

average, a larger investment and capital stock, so that hitting the constraint

24To increase copmutational e�ciency all the variables that are not strictly needed for

the iterations, such as Z(t; 4) and Z(t; 5) in this case, would be computed after the �xed

point has been found. In the current model, however, the gain in e�ciency would be

minimal.

36

(1 � d) Binding fraction E(it) E(�t)

.9000 .0000 .3273 .00000

.9100 .0000 .3260 .00000

.9200 .0000 .3232 .00000

.9300 .0000 .3181 .00000

.9400 .0000 .3098 .00000

.9500 .0010 .2969 .00000

.9600 .0032 .2770 .00004

.9700 .0203 .2455 .00032

.9800 .0998 .1915 .00208

.9900 .3677 .0952 .01216

Table 1: Frequency of binding constraint and (1� d)

is less likely. With higher risk aversion �, agents are more willing to settle,

in steady state, to a high level of the capital stock in order to reduce the

probability of being up against the constraint. This, in turn, has ambiguous

implications on the observed frequency of the binding constraint. When risk

aversion is higher there is more need to bu�er against bad shocks eating the

capital stock, but at the same time the capital stock is endogenously kept

higher making this event less likely, as a consequence the frequency with

which the lower bound is hit may be larger or smaller. Computation helps

us to see these two opposite e�ects are balancing each other in our speci�c

case, so that the binding frequency oscillates around 5 percent.

4.5 Example V. Habits in Consumption

See the directory ~\ex5hco.

We only discuss here the case with two expectations.

The routine Gbeta now is performing two nonlinear regressions with four

parameters each. The program lines in ginvert.for substitute the 's for

the corresponding expectations in the Euler equation and use the transition

for k to solve for ct and kt, given the shock process and the past values of

capital and consumption. Since now ct�1 is a state variable the number of x

to be initialized (nxini) is 2, and there is a starting value c1 for consumption

37

 Binding fraction E(it) E(�t)

-.7 .056 .219 .0009

-1.1 .048 .221 .0009

-1.5 .047 .223 .0009

-1.9 .047 .225 .0009

-2.3 .048 .228 .0009

-2.7 .049 .231 .0009

-3.1 .049 .235 .0009

-3.5 .049 .239 .0008

-3.9 .049 .243 .0008

-4.2 .049 .246 .0007

-4.4 .048 .249 .0007

-4.6 .048 .251 .0006

-4.8 .047 .254 .0006

-5.0 .047 .256 .0005

Table 2: Binding constraint and

38

in the �le par.dat. The variables and parameters labeling is exactly as in

Example II with the addition of alpha(5) = �.

Notice that when � = 0 the model coincides with the one in Example II.

Hence, the homotopy steps are taken in a natural way starting with the beta's

computed for that case and beta(i; 4) = 0. Let � = 0 in alpha.dat, and set

to 0 the � corresponding to log ct�1 in pini.dat. All the �'s for the second

expression (psi(t; 2)) can be set freely at the �rst stage of the homotopy,

because when � = 0 they do not a�ect the simulated path and so they cannot

cause non-stationarity (at this stage the problem for the series phi(t; 2) is just

a problem of estimation, that does not feed back into the simulation part).

After estimating the �'s for the two parameterized expressions in the case

� = 0, we can safely proceed with the homotopy and move � toward the

range we are interested in.

4.6 Example VI.

Before discussing the use of the algorithm it is useful to describe the closed

form solution that can be obtained in the simple case in which d1 = d2 = 1

and utility is logarithmic. Using the result stated above of a constant ratio of

k2;t to k1;t on the optimal path, this case can be made to �t into the Brock-

Mirman framework if �1 = �2 = �. In this case, the form of the optimal

policy for consumption and investment can be shown to be

ct = (1 � 2��)�k�1;tk
�

2;t (40)

k1;t = k2;t = ���k
�

1;tk
�

2;t (41)

In turn, the �rst of these equations implies the following (exact) form for the

expectation in (17) and (18).

�Et : : : = (1� 2��)�1 exp(log �t + � log k1;t + � log k2;t) (42)

This solution will be useful both as a starting point for the homotopy steps

and as a reference in order to discuss the convergence of the algorithm.

As we try to implement the algorithm using the equations (16), (17)

and (32), the �rst problem we face is the choice of the state variables to be

included in the parameterized expressions psi. The two capital stocks are

natural candidates. But if we try, for example, to specify the function as

an exponentiated �rst order polynomial in k1;t�1, k2;t�1 and �t , we will be

39

in trouble with the non-linear regression. The obvious reason is that the two

capital stocks are highly collinear. Actually in the case already mentioned of

d1 = d2 the two capital stocks are perfectly collinear, since
k2;t

k1;t
= �2

�1
on the

optimal path.

On the other hand if we use only one capital level as a state variable we

incur in a di�erent type of problem. For example, if we tried simply to drop

one of the capital stocks from the speci�cation of psi, it turns out that, the

simulated series for consumption and capital stocks either diverge or take

negative values, and the algorithm often fails to converge.

Now consider the two capital goods model and in particular consider the

case d = 1, in which the Brock-Mirman solution applies and consumption and

investment are proportional to current production. Suppose we omit the �rst

capital good from the state variables and we use only k2;t�1 to compute the

psi's. At the simulation stage every small numerical error in the ratio of the

capital stocks is ampli�ed along the simulation, for example, if k2;t�1=k1;t�1 =

1+ � the production will be overstated, ct and k2;t will be larger, while k1;t is

computed as a residual, the implied di�erence equation is explosive, and so

the ratio will tend to increase. A similar problem of non-stationary behavior

of the simulated series arises also with di�erent speci�cation of the psi's.

It seems that a source of this problem was the fact that one of the two

capital stocks was computed as a residual, so we have chosen a di�erent

transformation of the second Euler equations, namely

c

t

k2;t

k1;t
= �Etc

t+1

"
�t+1�2k

�1�1
1;t k

�2
2;t + (1� d2)

k2;t

k1;t

#
(43)

Then, we have set the ginvert.for�le to invert the system given by (16),

(17), and (43), recovering the k2;t to k1;t ratio from (43), and computing

investment in the two capital goods according to this ratio and the total

production available for capital (i.e. yt+ (1� d1)k1;t�1 + (1� d2)k2;t�1� ct).

Setting up the system (19) in this way we are able to overcome the prob-

lems of non-convergence mentioned above. Thus, we can compute an ap-

proximate solution of the model for di�erent sets of parameter values, using

the built-in homotopy steps. Moreover as we move away from the case of

identical depreciation we can add to the explanatory variables in the expo-

nentiated polynomial the log of k2;t�1, without having problems with the

regression subroutine. Clearly the two variables are still highly correlated,

40

but this is not a problem given that we are not interested in the values of the

coe�cients beta but only in the predictions. Nevertheless the high correlation

between two explanatory variables may be a practical problem if it generates

spurious movements in the computed beta along the algorithm (movements

that the program interprets as non-convergent behavior). For this reason, it

is safer in these cases to use the convergence criterion based on the distance

of the implied series. This is discussed more formally in the next section.

The program opens.for is designed for this purpose.

As noted above this model di�ers in an interesting way from the growth

model in Example II only insofar as the depreciation rates are di�erent. A

qualitative question we may ask is how investment is distributed between the

two capital stocks with di�erent depreciation rates over the cycle.

We have computed a solution for the parameters values reported below,

together with the labels of the variables.

i 1 2 3 4

Z(t; i) k1;t k2;t ct k2;t=k1;t

j 1 2 3 4 5 6

alpha(j) � �1 �2 (1� d1) (1 � d2)

0.96 -1.00 0.4 0.2 0.3 0.8

For the two psi forms we have speci�ed exponentiated polynomials in �,

log k1;t and log k2;t (the last beta was set equal to zero in the region close

to the identical depreciation case). The program output shows a correlation

between Z(t; 3) and Z(t; 4) of .148, indicating a positive relation between

consumption and the proportion of capital good k2;t to the total stock. This

economy displays booms in which accumulation is concentrated on capital

goods with low depreciation rates, while during recessions the capital stock

composition is costlessly modi�ed in favor of k1;t, in order to increase pro-

ductivity in the short term (as �1 > �2).

The following table (obtained as the tables in Example IV) displays the

relation between the risk aversion parameter and some statistics on the sim-

ulated series. As gamma increases the comovement of capital composition

with the cycle is enhanced. That is, during booms more capital is shifted

towards low-depreciation/low-return capital stocks. As a consequence of this

policy consumption variability is slightly decreased for larger risk aversion.

If we let the homotopy steps go back to a case of identical depreciation

rate (e.g. move d1 to 0.8) we obtain the comforting result that the simulated

41

 corr(c,ratio) std.dev(c) std.dev(ratio)

-1.0000000 .1481591 .0538640 .0652414

-1.1000000 .1683820 .0537597 .0676530

-1.2000000 .1882749 .0536681 .0700300

-1.3000000 .2081062 .0535875 .0723799

-1.4000000 .2279308 .0535159 .0747565

-1.5000000 .2470898 .0534498 .0770776

-1.6000000 .2657092 .0533886 .0793931

-1.7000000 .2837222 .0533309 .0817056

-1.8000000 .3013010 .0532761 .0840440

-1.9000000 .3177685 .0532227 .0863246

-2.0000000 .3335457 .0531707 .0886010

Table 3: Risk aversion and the commovement of consumption with capital

composition

ratio k2;t=k1;t is on average 0.5056 with standard deviation of 0.0086, which is

pretty close to the theoretical result of a ratio constant over time and equal

to 0.5 (=�2
�1
).

5 Conclusion

In this chapter we discuss some very practical aspects of solving non-linear

stochastic dynamic models with PEA. As we mentioned in the introduction,

our purpose is not to describe the full scope of all the applications that can

be performed with PEA, and we have limited our discussion to solving Euler

equations at the stationary distribution. Restricted to this case, we have

discussed many practical issues and the use of a publicly available fortran

program. We hope the reader will see that the ideas here are easy to apply.

We have shown how the computational costs do not increase exponentially

if more state variables or stochastic shocks are introduced, how one can

re�ne the solution by introducing more exible functional forms, and how

the algorithm can be used to calculate suboptimal equilibria.

Missing from the chapter is a comparison with other methods, both at the

42

theoretical and practical level. The reader of the book will probably realize

that this is an important issue, as each method has advantages and disadvan-

tages, there is no algorithm that is the best one for all models, and there is

no general framework that encompasses a large number of algorithms. Here,

we can o�er some informal comments on how PEA compares to other algo-

rithms. It should be clear to the careful reader of this chapter that a grid was

never introduced in the state space and that an integral was never explic-

itly calculated (although Step 3 does calculate an integral implicitly). This

means that all the problems with grids and integration in multi-dimensional

spaces are avoided here. There is no 'curse of dimensionality' as we introduce

more state variables, and models with three or four state variables can be

easily solved taking into account of the non-linearities in the solution. Fur-

thermore, the algorithm endogenously selects the values of the state variables

at which to �t the solution, by performing the simulation of Step 2. This is

important because the user does not have to specify a range of relevant val-

ues for the state variables, and we need a lower degree of the polynomial to

achieve a reasonable �t, and the number of computations does not increase

exponentially as the state space increases. For these reasons, this approach

to solving non-linear models is relatively more e�cient when there are several

state variables and stochastic shocks with continuous distributions.

The simple-minded-numerical-analysis approach that we have taken here

is overly simplistic and could be improved upon. There are better ways of

computing integrals in Step 3 than just running the long run simulation of

Step 2. Certain forms of hill-climbing to �nd the �xed point might be a

good idea. And the possibilities for homotopy have only been scratched.

But before we complicate our lives introducing these techniques, it seems

interesting to see how far we can go solving models just by computing a few

simulations and running a few regressions.

43

References

� Christiano, L. and J. Fisher (1994); "Prototype Algorithms for Solv-

ing Dynamic Models with Occasionally Binding Constraints", working

paper, Northwestern University and University of Western Ontario.

� Coleman, W.J. (1991) "Equilibrium in a Production Economy with an

Income Tax", Econometrica, 59, pp 1091-1104.

� den Haan, W. and Marcet A. (1994); "Accuracy in Simulations", Re-

view of Economic Studies, January.

� den Haan and Marcet (1990); "Solving a Simple Growth Model by Pa-

rameterizing Expectations" Journal of Business and Economic Statis-

tics, January, 31-34.

� Domowitz I. and M. A. el Gamal (1993); \A Consistent Test of Stationarity-

Ergodicity" Econometric Theory, vol. 9, no. 4, pp 589-601

� Du�e, D., and K.J. Singleton (1993); "Simulated Moments Estimation

of Markov Models of Asset Prices," Econometrica, vol. 61, 929-952.

� Judd, K."Projection Methods in Optimal Growth Models", Journal of

Economic Theory, December pp. 410-453.

� Marcet, A. (1988); "Solving Non-linear Stochastic Models by Parame-

terizing Expectations", working paper, Carnegie Mellon University.

� Marcet, A. and Marimon, R. (1992); "Communication, Commitment

and Growth", Journal of Economic Theory, December, pp. 219-250.

� Marcet, A. and D.A. Marshall (1994); "Convergence of Approximate

Model Solutions to Rational Expectations Equilibria Using the Method

of Parameterized Expectations," Working Paper No. 73, Department

of Finance, Kellogg Graduate School of Management, Northwestern

University.

� Marcet, A. and K.J. Singleton (1990) "Equilibrium Asset Prices and

Savings of Heterogeneous Agents with Portfolio Constraints" Working

Paper, Carnegie Mellon University.

44

� Pindyck, R.S. and D.L. Rubinfeld (1981) Econometric Models and Eco-

nomic Forecasts (2nd. ed.), New York, McGraw-Hill.

45

