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Abstract

Experimental evidence is presented documenting a subject’s behavior when
faced with simple games that require turn taking for efficiency. Both symmet-
ric and asymmetric games as well as games with explicit punishment actions
are studied and compared. The length of the game is a treatment variable;
experiments simulating one-shot, finite and infinite repetition games are con-
ducted. Group outcomes are sorted by the player’s average payofls and the
importance of focal solution concepts like group welfare, equality, and symme-
try arc iferred. Individual strategies used in the experiments are also sorted
and compared enabhing a discussion of endgame effects and conflict within the

garmes.




1 Reciprocity Games

As described in Ostrom (1990), the farmers near the city of Valencia, Spain
take turns directing water from canals onto their fields. When one farmer
has taken all the water he needs, the next farmer, who has been waiting, gets
to take all the water he needs. There is obvious temptation for the waiting
farmers to try to take water out of turn; Valencia is hot and dry and the crops
are in constant danger, especially in drought years. Remarkably enough these

turn-taking schemes have survived for centuries.

The purpose of the turn-taking scheme is to insure an eflicient, or at least
near efficient, use of the water supply. Without the agreement to rotate,
the farmers would waste valuable resources fighting amongst themselves over
the scarce water. It is possible that farmers closer to the canals, or further
upstream, would have an advantage in an unfettered contest for the water.
The advantaged farmers might even be better off with free competition than
with the turn-taking scheme. However, the disadvantaged farmers might be
forced out of business without the turn-taking scheme, and the total amount
of crops produced might go down. By following the turn-taking scheme, the

farmers avoid these potential problems.

There are other situations in which turn-taking schemes can enable groups
of people to exploit a resource to their collective advantage. Two firms, for

example, can alternatively offer monopoly price bids in a series of contract




auctions. Without the turn-taking scheme, the firms would be forced to offer
competitive price bids; the earnings of the auction’s winner would be drasti-
cally reduced. Similarly, two opposed politicians can alternatively vote against
their immediate best interests so that a string of bills, some of which please
their constituents, will be assured of passage. If the politicians did not agree
on a turn-taking scheme, their votes would cancel out and perhaps no bills

would pass.

All these situations can be classified under the rubric of Reciprocity Games.
A Reciprocity Game, then, is any noncooperative situation in which some ef-
ficient outcomes can only be realized by utilizing nontrivial correlated strate-
gies, or turn-taking. Repeated versions of classical games like the Battle of the
Sexes and Chicken are Reciprocity Games, pure coordination games like The

Repeated Prisoner’s Dilemma are not.

As an example of a Reciprocity Game, consider the repeated, finite action,
two player game implied by the stage-game payoff matrix G, where

3,3) (3,
. (3,3) (3,7)

(7,3) (4,4)
Label the actions A and B. Let the top and bottom rows represent the payoffs
if the row player chooses action A or B, respectively. Let the left and right-

hand columns represent the payoffs if the column player chooses action A or




B, respectively.

Assuming that both players are rational, or expected utility maximizers,
that they are non-altruistic, and that they have complete information about
the payoffs and the rationality of the other player, noncooperative game theory

offers certain predictions about the player’s behavior. The clarity of these

predictions degends upon the number of times (hal the stage-game s repeated.

If the stage-game is not repeated, each player has a dominate strategy,
which is to choose action B. Play of this action at every stage is also the unique
subgame perfect equilibrium of any finite repetition game. In equilibrium,
each player receives a payoff of four in each stage. The equilibrium is efficient
only in the non-repeated or one-shot game; in the repeated game, all the
efficient outcomes involve alternating between the stage-game payoffs of (3,7)
and (7,3). To gain these payoffs, both players must choose their dominated
action, and furthermore, the players must coordinate so that they do not choose
the dominated action at the same time. Given an even number of stages, the
simple alternation scheme of having the players take turns choosing actions A
and B leads to an outcome in which each player gets an average stage payoff

of five.

If the stage game is repeated an infinite number of times, the folk theorem
implies that there are an infinite number of subgame perfect equilibria. Any

outcome that has payoffs greater than or equal to four is subgame perfect.




In fact, there are an infinite number of efficient subgame perfect equilibria,
each one involving some pattern of alternation between (3,7) and (7,3). The
multiplicity of equilibria is in itself a problem for the players — which equilib-
rium should they coordinate on? Axiomatical concepts like symmetry, group
welfare, or equality can be used to determine focal points, yet, even with these
concepts there need not be a unique equilibrium. The efficient payoffs do share
a common trait, however. In the efficient outcomes, the players must resort to

a pattern of alternation between the stage-game payoffs of (3,7) and (7,3).

The purpose of this paper, then, is to examine the ability of people to enter
into alternation schemes and achieve efficient outcomes to reciprocity games.
The games will be studied under three different repetition conditions: one-shot,
finite repetition, and infinite repetition. Comparisons will be made between
a game that has symmetric payoffs and a game that has asymmetric payoffs.
The effects of adding a third action, one intended to be a clear punishment,

will also be considered.

2 Related Research

The previously mentioned book by Ostrom (1990) is concerned with examining
the ability of people to efficiently exploit common pool resources. She reviews

several case histories in which groups of people are able to introduce rotation




schemes and successfully exploit the resource. Some of her examples have been

in place for centuries.

Ostrom et al. (1991) have abstracted from these real life examples in an
experimental study of the use of a common pool resource. In their study,
rotation schemes offer an efficient way to exploit the resource, and, in fact,
some of the eight-person groups try to institute these schemes. Ostrom et al.
find that these schemes fail do to mistrust, mistakes or cheating. The authors
find that the efficiency of the use of the resource increases if individuals are
allowed to impose fines on one another; however, resource use never reaches

optimal levels.

Murninghan et al. (1987) studied modified Prisoner’s Dilemranas that were
in fact Reciprocity Games. They found that in infinite repetition treatments
and with the ability to communicate, subjects often resorted to alternation
schemes, some sacrificing potential payoffs to do so. Some subjects also
attempted complez alternation schemes in an effort to generate more equal
payoffs.!  Their treatments are similar to the infinite repetition, symmetric
treatment considered here. The main differences between the treatments are
that Murninghan et al. allow communication, and also the asymmetries in

their payoff structure occur on the main diagonal.

Paifrc, and Rosenthal (1991a; 1991b) and Cooper et al. (1990; 1989; 1987)

have studied various public goods and coordination games that with repeti-




tion become Reciprocity Games. Cooper et al. (1990; 1987) also examined
the addition of an action deemed to be a punishment. They found that the

availability of the extra action did effect the players choice of strategies.

Selten and Stoecker (1986), in their work on finitely repeated Prisoner’s
Dilemmas, developed a system of outcome classification that is similar to the

strategy classification system used here.?

3 The Experimental Design

Each of four different payoff treatments will be examined under three different
repetition conditions. The four different payoff treatments are: symmetric
(Gy), asymmetric (G2), symmetric with punishment (G3), and asymmetric
with punishment (G4). Each of these treatments is represented by a payoff
matrix in Table 1. The different repetition conditions are: one-shot, finite

repetition, and infinite repetition.

3.1 Equilibria

The equilibria for Gy have been discussed already, but for completeness, they

will also be examined here along with the equilibria in the other three games.

First, in the one-shot conditions of both Gy and (G; there is either a unique




dominate strategy or dominate solvable Nash equilibria. In G; the unique
equilibrium is for both players to choose action B, it gives each of them a
payoff of four. The outcome will be denoted by the pair {B, B} so that each
player’s move is reflected. In G, the unique equilibrium, {A, B}, is for the row
player to choose action A and get a payoff of three, and for the column player

to choose action B and get a payoff of seven.

Recall that the games G3 and G4 are identical to the games G; and G,
respectively, except that G5 and G4 have an additional action available to
the players. The action is clearly not a desirable action; if it is played, both
players get much worse payoffs. However, the availability of the action means
that both 3 and G4 have three equilibria instead of only one. They share the
equilibria of their counterparts, namely {B, B} and {A, B}, respectively, plus

they each have two additional equilibria.

In G; the additional equilibria are: {(;B,2C),(3B,3C)}, the fractions
representing the weights in a mixed strategy, and {C, C}. In G4 the additional
equilibria are: {(34,2C),(34,3C)} and {C,C}. These additional equilibria
are dominated, in the sense that both players get higher payoffs, by the { B, B}

equilibrium in G3 and the {A, B} equilibrium in Gjy.

Finite repetition creates no additional equilibria in either Gy or in G,.
However, in G5 and in G4 finite repetition creates many additional equilibria.

In fact, due to a finite game folk theorem, any minimax-dominating outcome




can be approximated by a subgame perfect equilibrium if the number of stages
is large enough.3 The folk theorem result causes a problem that is very
similar to the problem encountered in the infinite repetition games, how do

players coordinate on a particular equilibrium when the set of equilibria is very

large?

Infinite repetition, in all four games, leads to sets of equilibria that are very
large indeed ~ they are infinite. In fact, the infinite repetition folk theorem says
that if the discount rate is low enough, any outcome to a game which results
in average stage-game payoffs which are greater than the minimax payoffs is
supportable as a subgame perfect equilibrium. * Note that the minimax
payoffs for G through G, are: (4,4),(3,7),(12,12), and (1%,1%). Again, the
question is: How do players coordinate on a particular equilibrium when the

set of equilibria is very large?

It is possible to pare the sets of equilibrium outcomes down to the manage-
able level of three or less by applying the axiomatic refinements of Equality,
Symmetry, and Welfare Maximization, along with Pareto Optimality. The
Equality refinement requires each player to receive the same payoff; the Sym-
metry refinement requires each player to choose their dominated action the
same number of times; and the Welfare Maximization refinement requires the
sum of the player’s payoffs to be maximized. Pareto Optimality, of course,

means that each outcome must be efficient. The equilibria that pass these




refinements will be called focal solutions.

Specifically, in G and (3, the one to one alternation scheme leads to
average stage payoffs of (5,5) and satisfies all four of these refinements. For the
symmetric games, the imposition of the refinements means that the number
of focal solutions is the same in the one-shot, finite, and infinite repetition

conditions. In each case, there is a unique focal solution.

On the other hand, in G, and G4, a one to one alternation scheme satisfies
only the Symmetric refinement and leads to average stage payoffs of (4,5). To
satisfy the Equality refinement requires a one to two alternation scheme. In
this scheme the row player chooses action A half as often as the column player
chooses action B and players end up with average stage payoffs of (4%,4%)
Furthermore, to satisfy the Welfare Maximizing refinement leads to play of
the {A, B} stage game equilibrium and average stage payoffs of (3,7). For the
asymmetric games, the imposition of the refinements means that the number
of focal solutions is three in the infinite repetition condition and in the finite
repetition condition of G4. The one-shot condition and the finite repetition

condition of GG; have unique focal solutions.

The behavior in the one-shot games should be considered as a calibrating
device. The outcomes achieved are worst case outcomes in the sense that

there is no chance for the players to use an efficient rotation scheme. Theory

predicts that behavior will conform to the Nash Solution, which will be defined




as Hypothesis 1.

Although not equilibria in all cases, the following hypotheses will be con-
sidered for both the finite and infinite repetition treatments (notice that they
do not specify behavior in the earliest stages of the game; they allow a period

of time for the players to coordinate):

Hypothesis 1 (Nash Solution) After a certain period, each player chooses
the action which leads to the highest Pareto-Ranked, subgame perfect equilib-

rium.

Hypothesis 2 (Alternating Solution) After a certain period, the outcome
to the game will have players alternating between action A and action B such

that the realized play will be {...,{A, B},{B, A}, {4, B},...}.

Hypothesis 3 (Welfare Solution) After a certain period, the outcome to

the game will be such that the sum of the players payoffs is mazimized.

Hypothesis 4 (Equality Solution) After a certain period, the outcome to
the game will mazimize the sum of the players payoffs subject to having each

player receive the same payoff.

Hypothesis 1 embodies the predicted outcome in the finite repetition games.
The Nash Solution is also an equilibrium in any of the infinite repetition games,

although it is not an efficient equilibria in the symmetric cases. Hypothesis
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2 embodies the axiomatic refinement of Symmetry, it requires the players to
adopt a one to one rotation scheme; Hypothesis 3 embodies the axiomatic
refinement of Welfare Maximization; and Hypothesis 4 embodies the axiomatic
refinement of Equality. Although not always equilibria, these three solutions

are efficient outcomes to the finite repetition games.

4 The Experiments

All the experiments were performed in a laboratory at the California Institute
of Technology. The experiments were run on a set of computers linked together
in a network. The subject pool consisted of students, most of whom were re-
cruited from introductory economics and political science courses. There were
nine experimental sessions: one session for each finite and infinite repetition
treatment of GG, G2, (G3, and G4; and one session for all the one-shot treat-
ments. The number of subjects in each session varied from ten to fourteen

because some recruited subjects did not show up for some experiments.

The following outline describes the order of events that took place in a

typical experimental session:

1. Each subject entered the laboratory and sat at the terminal of their

choice.

2. The subjects were read a set of directions detailing the rules of the ses-
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sion. The subjects were not shown a payoff matrix, instead each action
and payoff was explained to them independently. The subjects were led

through two practice periods and then quizzed.®

3. In a period, each subject chose either A or B (or C) and was then in-

formed of their payoff and partner’s choice. This was repeated under the

following conditions:

(a) In the one-shot treatments, each subject was randomly matched

with another at the beginning of each period. The game ended

after 15 periods.

(b) In the finite repetition treatments, each subject played the same

person each period. The game ended after 15 periods.

(c) In the infinite repetition treatments, each subject played the same
person every period. After the 15th period, a ten-sided die was
rolled so that the subjects could see the result. If a 9 was rolled
then the game ended, otherwise the game continued another period
after which there was another die roll. The game did not end until

a 9 was rolled.

4. At the end of the game, the subjects were randomly matched with a

person whom they had not played and another game was started.

5. Each subject in a session played 4 games and was then paid cash for

12




each point they earned in the experiment. In the one shot treatments,
the order of games was: G, Ga, G2, and G4. In the finite and infinite

repetition treatments, the subjects played the same game four times.

6. The experimental session ended.

In the symmetric treatments, every player faced the same payoffs, so there
was no difference between a row and a column player. Hence, in the symmetric

treatments, all subjects were treated identically.

On the other hand, in the asymmetric treatments, the labels row and col-
umn had meaning, the player unlucky enough to be a row player was at a
disadvantage. In order to prevent row players from gambling that they wouild
become column players later in the session, at the beginning of each asymmet-
ric treatment half of the subjects were informed that they would be row players
for all four games in the session. In the one-shot session, this division took

place before the third game, after all the symmetric games had been played.

Table 2 reports the number of subjects and the number of observations,
respectively, in each treatment.® An observation consists of the outcome of
one complete game and two sequences of actions, one for each player involved.
The table also shows the dates of each session, the length, the exchange rate,

and the order of the one-shot treatments.




5 The Results

5.1 The One-Shot Treatment

The first step is to examine the players’ behavior in the one-shot treatments.
The Table 3 describes the number of times each possible outcome pair was

observed.”

In order to determine whether or not an individual’s actions changed as
s/he gained experience with the game, the data was split into the first eight
periods and the last seven periods and then compared using a standard x?
test.®  In no case was there a significant difference between the distribution
of actions at the beginning and the distribution of actions at the end. The x?s
were: 0.3370 for Gy, 0.2983 for G, row players, 1.2301 for G, column players,
1.6290 for G3, and 2.5813 for G4 column players. The column players in (74

chose action B in every case.

In G,, fourteen of the 150 observations, or 9.3 percent, assigned payoffs be-
low the minimax to at least one of the players. In G4, sixteen of the seventy-five
row player observations and six of the seventy-five column player observations,
21.3 percent and 8 percent respectively, assigned payoffs below minimax pay-
offs. Assuming that the true frequency of below individually rational payoffs
i1s the lower end of a 95 percent confidence interval around these observed

frequencies would lead to the following percentages: 5.4, 13.4, and 2.8, respec-
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tively.

Obviously, there is a substantial minority of players who play non-
equilibrium strategies. In an ideal environment, Hypothesis 1, that each player
chooses the subgame perfect equilibrium strategy, would be rejected on the ba-
sis of even one non-equilibrium play. However, the criteria adopted for this
experimental environment allows their rejection only if the upper bound of the
95 percent confidence interval around the observed proportion of plays is less
than 0.95. These bounds are displayed in the Table 4. Hypothesis 1 must be
rejected for GGy, and for the row players in both asymmetric treatments. The
fact that not all people always play the unique, subgame perfect equilibrium

strategy in one-shot games has been observed many times.®

Notice the significant change in the behavior of the column players when
comparing G, to G4. In G, 8 percent of the actions chosen by the column
players violate the Nash Solution, in G4 no actions chosen violate the Nash
Solution. This is an anomaly because behavior does not change for the row
player, neither does it change between G} and GG3. One explanation for the data
is that, because GG; and G4 were played in succession by the same players, the
column players learned how to play according to Hypothesis 1. Oddly enough,

the row players did not share in the revelation.
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5.2 The Finite and Infinite Repetition Treatments:

Average Payoffs

The outcomes to the finite and infinite repetition treatments are represented
by the average payoffs of both players. To allow a period of time for the
players to coordinate on a specific outcome, the first four periods are ignored.
Also, so that the infinite repetition treatments remain comparable to the finite
repetition treatments, the averaging ends with the fifteenth period (the finite

repetition treatments were fifteen periods long).

Referring to Figure 1, the set of possible outcomes to () if it were infinitely
repeated is represented by the triangular figure in both the top and bottom
diagrams. Given that a ten period average is used, the possible outcomes are
a subset of the triangular set. Actualeutcomes to the games are shown by
a letter representing one or more observations. The letter is located at the

coordinates determined by the average payoffs of the players.

For an outcome to be Pareto Optimal, it must be located on the hypotenuse
of the triangular set. The 45° line highlights the outcomes in which the players
receive equal payoffs. Every outcome located northeast of the dotted lines
payoff dominates the minimax. These minimax dominating outcomes, given
a small enough discount rate, are subgame perfect equilibria if the game is

infinitely repeated.
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In Figure 1, the top diagram represents the outcomes of the finite repe-
tition treatment of G;. The bottom diagram represents the outcomes of the

infinite repetition treatment of G;. Similar figures are constructed for the two

treatments of G2, G3, and Gy.

Note that in (G; and G5 there is no difference between a row and a column
player. In order to avoid drawing conclusions from arbitrarily scattered out-
comes, all the outcomes are located on or below the 45° line. In G, and Gy,

there is a difference between a row and a column player.

Again referring to Figure 1, specifically to the top diagram which shows the
outcomes of the finite repetition treatment, notice that the outcomes occur in
two clusters. One cluster is located around the unique one-shot equilibrium cr
Nash Solution, point (4,4). The other is located around the focal solution, the
outcome that embodies the Alternating Solution, the Equality Solution and
the Welfare Maximizing Solution, point (5,5). The observations are divided
roughly between the two clusters. Although the Nash Solution was the most
observed with five, fourteen groups were able to improve upon it using some
pattern of reciprocation, three actually implemented the focal solution. One

player out of the twenty pairs received below minimax payoffs.

The bottom diagram, which shows the outcomes of the infinitely repeated
treatment, is in sharp contrast to the top one. Here, twenty-one of twenty-

four observations are located at the focal solution. Of the three remaining
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outcomes, two are located near the Nash Solution, and the last is located at
an outcome better than the Nash Solution but not as good as the focal solution.
The extension of the time-horizon from finite to infinite draws many outcomes
away from the Nash Solution and to the focal solution. People appear to have
few problems implementing a rotation scheme and achieving efficient payoffs,

approximately 90 percent succeed, if G is infinitely repeated.

Figure 2 shows the outcomes of the finite and infinite repetition treatments
of G3. Recall that G5 is identical to G; except that an additional action, a
punishment, was added to the action space. Despite the additional strategy,
Figure 2 closely resembles Figure 1. In the top diagram, the finite repetition
treatment, thirteen of the twenty outcomes are close to the focal solution. In
the bottom diagram, the infinite repetition treatment, nineteen of the twenty-

four outcomes are at the focal solution.

The top diagram in Figure 3 shows the outcomes of the finite repetition
treatments of (G5, the first of the asymmetric games. Seven outcomes were at
the Nash and Welfare Maximizing Solutions, point (7,3). One outcome was at
the Alternating Solution, point (5,4). No outcomes were at or even near the
Equality Solution, point (4%,4%).10 More than half of the outcomes, eleven

of twenty, have the row player receiving less than minimax payoffs.

The bottom diagram shows the outcomes to the infinite repetition treat-

ment of G,. Unlike in the symmetric games, there is no improvement in the
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efficiency of the outcomes as the time horizon gets longer. Roughly the same
proportion of outcomes are at the Nash Solution, the Alternating Solution, and
the Equality Solution (eight, two, and zero observations out of twenty-four, re-
spectively) as in the finite repetition treatment. Again, half of the outcomes
have the row player receiving less than minimax payoffs. If anything, the pay-
offs in the infinite repetition treatment are worse than the payoffs in the finite

repetition treatment.

Figure 4 shows the outcomes to G4. Recall that G, is identical to G,
except that a punishment action is added. Unlike in the symmetric case, here
the presence of the punishment action changes behavior. In the top diagram,
the most observed outcome is the Alternating Solution, point (5,4:. This is ia
contrast to the most observed outcome in the finite repetition treatment of G,
which was the Nash or Welfare Solution, point (7,3). However, a substantial
number of outcomes are still inefficient outcomes. The bottom diagram has
these same features: the most observed point is the Alternating Solution,
and many observations are at inefficient outcomes. Again, drawing on the
similarity between the top and bottom diagram, infinite repetition did not

greatly improve the chances of coordinating on an efficient outcome.

Table 5 shows the distribution of outcomes over the focal point solutions. It
is clear that infinite repetition makes a difference in the symmetric treatments

— it results in a higher percentage of efficient Alternating Solution outcomes.
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In the asymmetric case, infinite repetition does not seem to make a difference,
the distribution over the focal solutions remains similar. However, the addition
of a punishment action causes a shift from the Welfare Maximizing Solution
to the Alternating Solution. In every asymmetric treatment, a substantial

number of outcomes are not efficient.

5.3 Comparing Average Payoffs

Table 6 shows the average payoffs in the one-shot treatments and in rounds
5 to 15 of the finite and infinite repetition treatments. In the symmetric
treatments, the average payoffs rise as the time horizon lengthens. In the
one-shot treatment, the average is near the payoff associated with the Nash
Solution, which assigns each player four. In the infinite repetition treatments,
the average is near the payoff associated with the Alternating Solution, which
assigns each player five. There seems to be little lost or gained from the

addition of the punishment action.

The asymmetric treatments are much different than the symmetric ones,
the longer horizons do not imply more efficient group payoffs. In fact, from
the point of view of the column player, the longer time horizon is disastrous —
especially when the punishment action is present. The average column player’s
payoff drops more than 20 percent when moving from the one-shot treatment

to either the finite or infinite repetition treatment of G4. From the group’s
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perspective, this drop in the column player’s payoff is not made up for by the
small increase in the payoffs of the row player. The average row player only
gets around 10 percent more when moving from the one-shot to either repeated
treatment of G4. The finite repetition treatment of GG, is the only treatment

where the players improve upon the payoffs of the one-shot treatment.

5.4 The Finite and Infinite Repetition Treatments:

The Strategy Space

The following definitions divide the strategy sets associated with each repeti-

tion treatment into three disjoint parts:

Definition 1 (Alternating Strategy) An individual’s sequence of play is
an Alternating Strategy if, for every period in the sequence, the group’s play in
the previous period was {A, B} or {B, A}, then individual’s play in this period

s B if last period it was A and A if last period it was B.

Definition 2 (Nash Strategy) An individual’s sequence of play is a Nash
Strategy if for every period in the sequence, the individual’s play corresponds
to the action taken in the highest Pareto ranked, one-shot, subgame perfect

equtlibrium.

Definition 3 (Other Strategy) An individual’s sequence of play is an

Other Strategy if it is not an Alternating Strategy or a Nash Strategy.
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It is possible to sort every individual’s complete sequence of actions into one
of the three previous categories. The Alternating Strategy category includes
all strategies that try to alternate — dire punishment strategies as well as
completely forgiving strategies. The Nash Strategy category includes only the
one strategy.!!  The Other Strategy category is a catchall and could contain

many things, completely random behavior being one example.

Table 7 shows the distribution of strategies for each game’s finite repetition
treatment. Notice that in the symmetric games G; and G,, the Alternation
Strategy is picked most often. Also there is not a significant difference between

the distributions, so the punishment action makes little difference.

In the asymmetric games G2 and Gy, there is a significant difference be-
tween the distribution of strategies with and without the presence of the pun-
ishment action. The difference exists for both the row and the column players.
The presence of Other Strategies on the part of the row players in G, shows
that there were attempts at alternation — they do not just play the Nash Strat-
egy. Most of the column players, however, play the Nash Strategy. So, the row
players tend to either give up and play the Nash Strategy themselves or they
punish their partners with the minimax. Most of them start playing the Nash

Strategy.

The proportion of players that play an Alternating Strategy in G4 is much

higher for both types when the the punishment action is present. Note that
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the players never have to use this action, its presence is enough to cause the
shift. A substantial number of players, both row and column, still pick an

Other Strategy.

In fact, in each of the finite repetition games, a large number of Other
Strategies are chosen. Possible explanations for this is that there is conflict
between the players, or that they miscoordinate in the early rounds. In any
case, there is uncertainty during the game about which equilibrium strategy,

the Alternating Strategy or the Nash Strategy, each player is supposed to use.

Another explanation is that there are end-game effects present. With end-
game effects, players who had been choosing their action according to the
Alternating Strategy would change to the Nash Strategy before the last period.
Unlike in Gy and G, in G3 and G4 end-game effects would be consistent with

many subgame perfect equilibria.

Table 8 reproduces each strategy distribution when the last two periods
of play are ignored.!? There 1s, in fact, a dramatic end-game effect in
both symmetric games; 17.5 percent of the subjects switched from Alternating
Strategy to Other Strategy in the last two periods of GGy, 20 percent switched in
(3. The data from the asymmetric games, on the other hand, show positively
no evidence of an end-game effect. One must conclude, then, that the Other

Strategies present in G, and G4 are due to conflict or miscoordination.
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Table 9 shows the distribution of strategies for each game’s infinite rep-
etition treatment. Notice that in the symmetric games G, and G5, the Al-
ternation Strategy is again picked most often. Also there is not a significant
difference between the distributions, so the punishment action makes little

difference.

The presence of the punishment action also makes little difference in the
asymmetric games, although there is some shift away from the Nash Strategy
for the column players. The high number of Other Strategies shows that the
conflict and miscoordination present in the finite repetition treatments is still

there in the infinite repetition treatments.

The strong difference between the symmetric finite and infinite repetition
treatments is not surprising considering the presence of the end-game efiects.
What is surprising is the strong difference between the finite and infinite rep-
etition treatments of G,. There was no end-game effect present in the finite

treatment of G.

6 Conclusions

After considering the evidence presented here, it is not unreasonable to predict
that some groups of people, like the aforementioned Valencian farmers, will be

able to enter into stable alternation schemes if they are faced with situations
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similar to Reciprocity Games. The farmers are in a symmetric situation, 80
percent of the farms are less than 1 hectare. The farmers are involved in an
infinite repetition conflict, the farms have been there for centuries. Like most
of the participants in infinite repetition treatments of G; and Gj, the farmers

have been able to institute an efficient rotation scheme.

In these experiments, it has been shown that people faced with symmetric
Reciprocity Games enact solutions which are progressively more efficient as
the time horizon increases from one-shot to finite repetition to infinite repeti-
tion. End-game effects have been found in the finite repetition treatments. In

symmetric situations, punishment options play very little role.

The ability of groups of people to obtain efficient outcomes if there are large
asymmetries between them is much mcre doubtful. As has been seen, there
can be a conflict or miscoordination if the turn-taking and welfare maximizing
solutions are different. Although some succeed in instituting one of these two
efficient focal outcomes, of those who fail, many get non-individually rational
payoffs. Not a single group successfully instituted a one to two, or equal payoff,

rotation scheme.

Unlike the symmetric games, efficiency in the asymmetric games does not
tend to increase as the time horizon lengthens. In fact, due to prolonged con-
flict or miscoordination, average payoffs in the infinite repetition treatments

are below the average payoffs in the one-shot treatments. With finite repeti-
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tions, the presence of the punishment action causes an increase in the number
of alternation schemes that are successfully implemented or tried, although the

number of efficient outcomes does not increase significantly and the average

payofts fall.

Certainly the results of the examination of the asymmetric games high-
lights problems from a policy standpoint. Common welfare criteria, like the
Utilitarian criterion (maximize the sum of the payoffs), the Rawlsian criterion
(maximize the minimum payoff ), Pareto Optimality, or even simple rationality
are not always achievable without intervention. In fact, clearly bad outcomes

occur frequently.

And what type of intervention will work? If you care about the sum of
the payoffs you may choose to shorten the length of the game. Shortening
the length of the game will certainly benefit the group, but the disadvantaged
will suffer for it. If you care about equality you may choose to endow people
with the ability to punish, or tax, or fine the other participants. Among the
efficient outcomes, there will be more egalitarian behavior, but the combined

benefits of the group will likely fall on average.

On the other hand, the results of the symmetric games are very encourag-
ing from a policy standpoint. Punishments, taxes or fines are not necessary.

Simply in..ease the time horizon and efficiency rises.
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Notes

1 Murninghan et al., p. 17.

2 In Selton and Stoecker (1986) either a Cooperative outcome or End-
Effect Play occurs if the cooperative alternative in the one-shot game is chosen
consecutively for m > 4 periods during the supergame. Unlike Selten and
Stoecker, this paper examines the sequence of play at the individual level and
makes inferences about the types of strategies that each individual plays, either

Alternating, or Nash (or Other).

3 For example, for G repeated T >= 3 times,
[{B? A}h {Aa B}27 {B, A}S, LRI {Aa B}T——l, {Ba B}T!

with the threat of playing {C, C'} for each subsequent stage if there is a defec-
tion is subgame perfect. To be more specific, in repeated versions of one-shot
games that have multiple Nash equilibria, for any individually rational and
feasible outcome u there exists a length T and a subgame perfect equilibrium

such that if U is the average stage payoft in the equilibrium,
U —u| <€

for any € > 0. The result holds for two-person games and for n-person games
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if the dimensionality of the payoff space is equal to the number of players. For

details see Benoit and Krishna (1985); p. 919; refer to Theorem 3.7.

4 The equilibrium payoffs must be such that the following equation holds:

1 > 54 5 .

T—s =TT
1 - 1 t L t, .
1_51),» —1_5((1—5)1),‘,,“”-{-51),)

where v; is the average payoff of the equilibrium strategy given no defection, v;
is the maximum payoff a player can get by deviating, v:* is the average payoff
of the chosen punishment strategy, and § is the discount rate. Equation 1 says
that the total payoff for playing the equilibrium must be greater than the total
payoff for deviating once and then getting the punishment payoff for the rest
of the game. For details see Fudenberg and Maskin (1986); pp. 533 - 554; refer
to Theorem 1. In the infinite repetition treatments, the discount rate was ten

percent.

5 A copy of the directions and quiz used in the one-shot treatment of G4

1s included 1n the appendix.

6 There were 93 subjects total. An effort was made not to have expe-

rienced players, however 7 did participate in two sessions. Two participated
in 4/20/90 and 5/17/90, one participated in 5/17/90 and 5/18/90, and four

participated in 5/11/90 and 5/18/90. These people were never matched with
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the same person more than once, even across sessions.

7 In Gy, half of the subjects played A at least once. In G4, one subject

was responsible for all the plays of action C.

8 X2, here and elsewhere, is the standard test statistic using Yate’s con-
tinuity correction. It has a x? distribution with i degrees of freedom. For a

complete explanation of this test, see Everitt (1977) pp. 12 - 14.
9 See Ledyard (1992), Dawes (1980) and Cooper et al. (1987; 1990).

10 The Equality Solution requires a one to two rotation scheme, i.e. row
plays A once for each two times that column plays A. This rotation scheme
has a three move cycle. What is exhibited in the figures is a ten move average
payoff. Even if a one to two rotation scheme was implemented, the ten move
average would not give equal payoffs. However, any one to two rotation scheme
would result in payoffs located on the Pareto Frontier and the averaging sys-
tem used would locate the outcome within 0.2 payoff points of the Equality

Solution. No outcomes were within these tolerances.

11 It is possible to have a sequence of plays defined as both an Alternating
and a Nash Strategy. In the symmetric treatments, if both players choose
action B in every round, each player’s strategy will be put into both categories.

Fortunately, no pair of players chooses action B in each round, so the problem

does not surface.




12 Two was chosen because it is the minimum number of periods that

allows both players a chance to defect from the Alternate strategy.

30




References

(1]

2]

8]

[4]

(5]

(6]

[7]

Cooper, R. D., D. V. DeJong, R. Forsythe and T. W. Ross. November,

1990. “Cooperation without Reputation.” mimeograph.

Cooper, R. D., D. V. DeJong, R. Forsythe and T. W. Ross. 1989. “Com-
munication in the Battle of the Sexes Game.” Rand Journal of Economics

Vol. 20: pp. 568 - 587.

Cooper, R. D., D. V. DeJong, R. Forsythe and T. W. Ross. December
1987. “Selection Criteria in Coordination Games: Some Experimental
Results.” Hoover Institution Working Papers in Economics No. E-87-54.

Stanford: Stanford University.

Benoit, J. P. and V. Krishna. 1985. “Finitely Repeated Games.” Fcono-

metrica Vol. 53, No. 4: pp. 905 - 922.

Devore, J. L. 1982. Probability and Statistics for Engineering and

the Sciences. Monterey, California: Brooks/Cole Publishing Company.

Dawes, R. M. 1980, “Social Dilemmas.” Annual Review of Psychology Vol.

31: pp. 169 - 193.

Everitt, B. S. 1977. The Analysis of Contingency Tables. London:

Chapman and Hall Ltd.

31




8]

[9]

[10]

[11]

[12]

[13]

[14]

Fudenberg, D. and E. Maskin. 1986. “The Folk Theorem in Repeated
Games with Discounting or with Incomplete Information.” Econometrica

Vol. 54, No.3: pp. 533 - 554.

Ledyard, John, O. 1992. “Public Goods: A Survey of Experimental Re-

search.” mimeograph.

Murninghan, J. K., T. R. King, and F. Schoumaker. June 1987. “The

Dynamics of Cooperation in Asymmetric Dilemmas.” mimeograph.

Ostrom, E. 1990. Governing the Commons: The Evolution of In-
stitutions for Collective Action. Cambridge: Cambridge University

Press.

Ostrom, E., J. Walker, and R. Gardner. 1991. “Covenants with and with-
out a Sword: Self-Enforcement is Possible.” Workshop in Political Theory

and Policy Analysis working paper, Indiana University.

Palfrey, T. and H. Rosenthal. 1991. “Testing for Effects of Cheap Talk in
a Public Goods Game with Private Information.” Games and Economic

Behavior Vol. 3: pp. 183 - 220.

Palfrey, T. and H. Rosenthal. 1991. “Testing Game-Theoretic Models of
Free Riding: New Evidence on Probability Bias and Learning.” in Lab-
oratory Experiments in Political Economy, T. Palfrey, Ed.. Ann

Arbor: University of Michigan Press, in press.

32



[15] Schelling, T. C. 1960. The Strategy of Conflict. Cambridge, Mas-

sachusetts: Harvard University Press.

[16] Selten, R. and R. Stoecker. 1986. “End Behavior in Sequences of Finite
Prisoner’s Dilemma Supergames: A Learning Theory Approach.” Journal

of Economic Behavior and Organization Vol. 7: pp. 47 - 70.

[17] Weissing, F. and E. Ostrom. 1990. “Irrigation Institutions and the Games
Irrigators Play: Rule Enforcement without Guards.” in Game Equilib-
rium Models II: Methods, Morals, and Markets, R. Selten, Ed..

Berlin: Springer-Verlag, in press.

33




Appendix A: Instructions

The following is a copy of the instructions given in the one-shot treatments of

Gs.

INSTRUCTIONS FOR A DECISION-MAKING

EXPERIMENT

This is an experiment in decision making. You will be paid in cash at the
end of the experiment. The amount of money you earn will depend upon the
decisions you make and on the decisions other people make. We request that
you do not talk at all or otherwise attempt to communicate with the other
subjects except according to the specific rules of the experiment. If you have
a question, feel free to raise your hand. One of us will come over to where you

are sitting and answer your question in private.

This experiment has 15 separate rounds and then it will end. During each
round of the experiment you will be randomly paired with another subject.

You will never be paired with the same subject for two rounds in a row.

Each round you will be given a token which will be worth either 4 or 2. It
will always be worth the same amount. Each round you will be able to use the

token in one of three ways: option A, or option B, or option C.
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PAYOFFS

The amount of money you earn in a round depends upon which option you pick
as well as which option your partner picks. WHAT HAPPENS IN YOUR
GROUP HAS NO EFFECT ON THE PAYOFFS TO MEMBERS

OF THE OTHER GROUPS AND VICE VERSA. In each round, you

have nine possible earnings. These are shown in the following table:
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EARNINGS TABLE

Your Choice His/Her Choice Your Earnings

A A 3 points

A B 3 points

A C 1 point

B A Your Token Value + 3 points
B B Your Token Value

B C 1 point

C A ~ 1 point

C B 1 point

C C 2 points

To summarize the table:

1 ROWS 1 to 3: If you choose option A you will get 3 points if your
partner picks either option A or option B. If you choose option A and

your partner chooses option C, you will get 1 point.

2 ROWS 4 to 6: If you choose option B you will get your token value +
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3 points if your partner picks option A, you will get your token value if
your partner picks option B, or you will get 1 point if your partner picks

option C.

3 ROWS 7 to 9: If you choose option C you will get 1 point if your
partner picks either option A or option B. If you choose option C and

your partner chooses option C, you will get 2 points.

SPECIFIC INSTRUCTIONS:

At the end of the experiment you will be paid 5 cents for every point you have

accumulated.
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Appendix B: Quiz

The following is a copy of the quiz given in the one-shot treatments of Gy.

QUIZ

id #.

1. If my token is worth 4 points, the other player in my group will have a

token value equal to:

1. 4 points.

—

1. 2 points.
ii. Either 4 or 2 points.

iv. None of the above.

2. If someone was in my group on round 5 of an experiment, it will be
certain, very likely, impossible that he or she will be in my group

on round 6.

3. If my token value is 2 and I choose option B and my partner chooses

option A, how many points will I earn?

4. I I choose option A and my partner chooses option C, how many points

will T earn?
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5. If at the end of a round I have 2 points, how much am I paid for that

round?
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Table 1: The payoff tables for the four different payoff treatments: symmetric

(G1), asymmetric (Gz), symmetric with punishment (G3), and asymmetric
with punishment (GYy).

The Payoff Tables

3,7) B

4,4) } G2 =
(1,1) (3
(L) | Gy=| (5
(2,2) (1
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Table 2: The date of each experiment along with the number of subjects, the
number of observations, the number of periods, the exchange rate, and, if there
were different treatments in one session, the order of treatments. O, F, and I
stand for one-shot, finite repetition, and infinite repetition, respectively.

Experiments
game trtmnt  date  subj. obs. length By order
G 0) 2/4/91 10 75 1 5 1
F 1/31/91 10 20 15 4 -
{61, 37,
I 5/18/90 12 24 17, 29} 4
Gs ) 2/4/91 10 75 1 5 2
F 1/14/91 10 20 15 4 -
‘ y {20, 41,
I 5/17/90 12 24 2%, 25} 4 -
G, 0) 2/4/91 10 75 1 5 3
F 2/1/91 10 20 15 4 -
{28, 19,
5/11/90 12 24 16, 20} 4 -
G4 ) 2/4/91 10 75 1 5 4
F 2/1/91 14 28 15 4 -
{16, 29,
I 4/20/90 12 24 21, 24} 4 -
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Table 3: The distribution of outcomes in the one-shot treatments. The entries
in each table represent the number of times each outcome was observed in that
treatment. The outcomes that satisfy Hypothesis 4, the Nash Solution, have
been underlined. Notice that there are no entries below the diagonal in the
symmetric games 7 and G3; the symmetric outcomes are classified together.
In the asymmetric games, all outcomes are classified separately.

The Distribution of Outcomes
One-Shot Treatments

o[ 5] a[s8]

62 0 16
1 9 0 0 58 0
Gs = 63 2 Gyq=(0 13 0
0 0 4 0
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Table 4: For each One-Shot treatment, the breakdown of individual strat-
egy choices between successes and others for the Nash hypothesis is shown.
Also shown is the frequency of success and the upper bound of its 95 percent
confidence interval. Finally, the distribution of observations under the hypoth-
esis when there is no punishment strategy is compared to the distribution of
observations when there is a punishment strategy; a x? statistic is reported.

One-Shot Contingency Table

Hyp. 1 Nash Solution

Row Column
Gl G3 Gg G4 G2 G4
successes 136 137 59 58 69 75
other 14 13 16 17 6 0
freq. 0.9066 0.9133 0.7866 0.7733 0.9200 1.000
high 0.9460 0.9514t 0.8657 0.8541 0.9723t+ 1.000%f
x} 0.0000 0.0000 4.3403"

1 - significant at o = 0.05
- significant by adopted criteria
high is the upper bound of the 95% c. interval around freq.

*
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Table 5: For each finite (F) and infinite (I) repetition treatment, the distribu-
tion of outcomes over each focal point solution is shown.

Distribution of Outcomes Over
Focal Point Solution Concepts:

Hyp. 2 Alternating 3 21 5 19 1 2 8 7
Hyp. 3 Welfare ¥ ox x ox 7 8 3
Hyp. 4 Equality ¥ ox o x 0 0 0 0

o

Hyp. 1 Nash 5 0 1 Qg xx oxx oxx oxx
Other 12 3 14 5 12 14 17 12

* - Hyp. is the same as Alternating
** - Hyp. is the same as Welfare
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Table 6: The average payoffs in the one-shot treatment and in rounds 5 - 15

of the finite and infinite repetition treatments.

Average Payoffs

One-Shot Finite Infinite
Gy G Gy G Gy G
player 4.147 4.027 4.535 4.585 4.908 4.850
group 8.294 8.054 9.070 9.170 9.816 9.700
One-Shot Finite Infinite
G2 G4 G2 G4 G2 G4
row 2.785 2.725 2.955 3.021 2.896 3.029
col 6.040 6.160 6.175 4.757 5.638 4.821
group 8.825 8.885 9.130 7.778 8.534 7.850
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Table 7: In each Finite Repetition treatment, the distribution of strategy
choices is shown. The distribution of strategies when there is no punishment
strategy is compared to the distribution of strategies when there is a punish-
ment strategy; a x* statistic is reported.

Finite Repetition Contingency Table

ROW  COL

Gy Gz Gy Gi Gy G
Alt. 21 23 0 11 4 10
Nash 6 4 2 2 15 4
Other 13 13 18 15 1 14
X3 0.4909 10.2234* 19.4124

* - significant at a = 0.05
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Table 8: The different strategy distributions over the focal solutions obtained
when all periods are taken into account and also when all but the last two pe-
riods are taken into account are displayed for each finite repetition treatment.

Finite Repetition,
Strategy Distributions,
All Periods and All But the Last 2 Periods:

G] GS
all periods all periods - 2 all periods all periods - 2
Alt. 21 28 23 30
Nash 6 6 4 )
Other 13 6 13 5

Row Players

G, Gy
all periods all periods - 2 all periods all periods - 2
Alt. 0 0 11 11
Nash 2 2 2 2
Other 18 18 15 15

Column Players

G G4
all periods all periods - 2 all periods all periods - 2
Alt. 4 4 10 10
Nash 15 15 4 )
Other 1 1 14 13
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Table 9: In each Infinite Repetition treatment, the distribution of strategy
choices is shown. The distribution of strategies when there is no punishment
strategy is compared to the distribution of strategies when there is a punish-
ment strategy; a x? statistic is reported.

Infinite Repetition Contingency Table

ROW COL
G, Gs G, Gy Gy Gy

Alt. 42 40 6 6 2 7
Nash 2 1 6 4 12 6
Other 4 7 12 14 10 11
X3 1.2003  0.5538 4.8254

* - significant at a = 0.05
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Figure 2: The outcomes to the repeated treatments of G3. The top diagram
shows the finite repetition treatment, the bottom diagram shows the infinite
repetition treatment. Each letter represents one or more outcomes. The dots
show the payoffs to the stage game. Every outcome on or to the northeast of
the dotted line dominates each players minimax payoff. The 45° line represents
equal payofls.
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the dotted line dominates each players minimax payoff. The 45° line represents
equal payoffs.
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Figure 4: The outcomes to the repeated treatments of G4. The top diagram
shows the finite repetition treatment, the bottom diagram shows the infinite
repetitior ‘reatment. Each letter represents one or more outcomes. The dots
show the payoffs to the stage game. Every outcome on or to the northeast of
the dotted line dominates each players minimax payoff. The 45° line represents
equal payoffs.
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