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Abstract

We present a simple randomized procedure for the prediction of a binary sequence.

The algorithm uses ideas from recent developments of the theory of the prediction of

individual sequences. We show that if the sequence is a realization of a stationary and

ergodic random process then the average number of mistakes converges, almost surely,

to that of the optimum, given by the Bayes predictor.



1 Introduction

We address the problem of sequential prediction of a binary sequence. A sequence of bits
y0; y1; y2; : : : 2 f0; 1g is hidden from the predictor. At each time instant i = 1; 2; : : :, the bit
yi�1 is revealed and the predictor is asked to guess the value of next outcome yi. Thus, the

predictor's decision, at time i, is based on the value of yi�1
1 = (y1; : : : ; yi�1). We also assume

that the predictor has access to a sequence of i.i.d. random variables U1; U2; : : :, uniformly

distributed on [0; 1], so that the predictor can use Ui in forming a randomized decision for

yi. Formally, the strategy of the predictor is a sequence g = fgig1i=1 of decision functions

gi : f0; 1gi�1 � [0; 1]! f0; 1g

and the randomized prediction formed at time i is gi(y
i�1
1 ; Ui). The predictor pays a unit

penalty each time a mistake is made. After n rounds of play, the normalized cumulative loss
on the string yn1 is

L
n
1(g; U

n
1 ) =

1

n

nX
i=1

I
fgi(y

i�1
1 ;Ui)6=yig

;

where I denotes the indicator function. When no confusion is caused, we will simply write
Ln(g) = L

n
1 (g; U

n
1 ). In general, we denote

L
n
m(g; U

n
1 ) =

1

n �m+ 1

nX
i=m

I
fgi(y

i�1
1 ;Ui) 6=yig

:

We also write bLn
1(g) = ELn

1(g; U
n
1 ) and bLn

m(g) = ELn
m(g; U

n
1 )

for the expected loss of the randomized strategy g.
In this paper we assume that y1; y2; : : : are realizations of the random variables Y1; Y2; : : :

drawn from the binary-valued ergodic process fYng1�1 (which is independent of the random-
izing variables U1; U2; : : :).

In this case there is a fundamental limit for the predictability of the sequence. This is

stated in the next lemma:

Theorem 1 For any prediction strategy g and stationary ergodic process fYng1�1,

lim inf
n!1

Ln(g) � L
� almost surely,

where
L
� = E

h
min

�
PfY0 = 1jY �1

�1
g;PfY0 = 0jY �1

�1
g
�i

is the minimal (Bayes) probability of error of any decision for the value of Y0 based on the

in�nite past Y �1
�1

= (: : : ; Y�3; Y�2; Y�1).
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Proof. An easy application of the Azuma-Hoe�ding inequality for sums of bounded

martingale di�erences (Hoe�ding [8], Azuma [2]) shows that for any prediction strategy g

and � > 0,

P

(�����Ln(g)�
1

n

nX
i=1

Pfgi(Y i�1
1 ; Ui) 6= YijY i�1

�1
g
����� > �

���U1; : : : ; Un

)
� 2e�2n�2

:

In particular,

lim
n!1

 
Ln(g)�

1

n

nX
i=1

Pfgi(Y i�1
1 ; Ui) 6= YijY i�1

�1
g
!
= 0 almost surely:

It is well known (see, e.g., [6]) that for any predictor gi,

Pfgi(Y i�1
1 ; Ui) 6= YijY i�1

�1
g � Pfg�i (Y i�1

�1
) 6= YijY i�1

�1
g

= min
�
PfYi = 1jY i�1

�1
g;PfYi = 0jY i�1

�1
g
�
;

where g�i is the optimal (Bayes) decision for Yi based on Y
i�1
�1

given by

g
�

i (y
i�1
�1

) =

(
1 if PfYi = 1jY i�1

�1
= y

i�1
�1
g � 1=2

0 otherwise.

Note that by stationarity, g�1 = g
�

2 = � � � def= g
�. Therefore,

lim inf
n!1

Ln(g) � lim inf
n!1

1

n

nX
i=1

min
�
PfYi = 1jY i�1

�1
g;PfYi = 0jY i�1

�1
g
�

almost surely.

Finally, we note that by the ergodic theorem (see, e.g., Stout [13]) the average on the right-
hand side converges almost surely to L�, so the proof is �nished. 2

Based on Theorem 1 the following de�nition is meaningful.

De�nition 1 A prediction strategy g is called consistent if for all ergodic processes fYng1�1,

lim
n!1

Ln(g) = L
� almost surely:

Therefore, consistent strategies asymptotically achieve the best possible loss for all er-
godic processes. The �rst question is, of course, if such a strategy exists. The a�rmative

answer may be easily deduced from earlier results of Ornstein and Bailey as follows:

Theorem 2 There exists a consistent prediction scheme.

Proof. Ornstein [12] proved that there exists a sequence of functions fi : f0; 1gi ! [0; 1],

i = 1; 2; : : : such that for all ergodic processes fYng1�1,

lim
n!1

fn(Y
�1
�n ) = PfY0 = 1jY �1

�1
g almost surely: (1)
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(A simpler estimator with the same convergence property was introduced by Morvai, Yakowitz,

and Gy�or� [11].) Bailey [3] showed that for such estimators, for all ergodic processes

lim
n!1

1

n

nX
i=1

j(fi(Y i
1 )�PfYi+1 = 1jY i

1gj = 0 almost surely: (2)

Indeed, (1) and Breiman's generalized ergodic theorem (see, e.g., Algoet [1]) yield (2).
Once such a sequence ffig of estimators is available, we may de�ne a (non-randomized)

prediction scheme by

gn(y
n�1
1 ) =

(
1 if fn�1(y

n�1
1 ) � 1

2

0 otherwise.

By [6, Theorem 2.2],

P
n
gn(Y

n�1
1 ) 6= YnjY n�1

�1

o
�P

n
g
�(Y n�1

�1
) 6= YnjY n�1

�1

o
� 2

���fn�1(Y
n�1
1 )�P

n
Yn = 1jY n�1

�1

o��� ;
therefore

jLn(g)� L
�j �

�����Ln(g)�
1

n

nX
i=1

P
n
gi(Y

i�1
1 ) 6= YijY i�1

1

o�����
+
1

n

nX
i=1

���Pngi(Y i�1
1 ) 6= YijY i�1

1

o
�P

n
g
�(Y i�1

�1
) 6= YijY i�1

�1

o���
+

�����1n
nX
i=1

P
n
g
�(Y i�1

�1
) 6= YijY i�1

�1

o
� L

�

�����
�

�����Ln(g)�
1

n

nX
i=1

P
n
gi(Y

i�1
1 ) 6= YijY i�1

1

o�����
+
2

n

nX
i=1

���fi�1(Y
i�1
1 )�P

n
Yi = 1jY i�1

�1

o���
+

�����1n
nX
i=1

P
n
g
�(Y i�1

�1
) 6= YijY i�1

�1

o
� L

�

����� :
The �rst term of the right hand side tends to zero almost surely by the Hoe�ding-Azuma

inequality [8], [2] by a similar argument that was used in the proof of Theorem 1. The second

one converges to zero almost surely by (2) and the third term tends to zero almost surely by

the ergodic theorem. 2

Unfortunately, all known estimators satisfying (1) are either very complicated or need so

large amounts of data that their practical use is unrealistic. Therefore, designing a simple

direct algorithm is called for.
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2 A simple consistent algorithm

In this section we present a simple prediction strategy, and prove its consistency. It is
motivated by some recent developments from the theory of the prediction of individual
sequences (see, e.g., Vovk [14], Feder, Merhav, and Gutman [7], Littlestone and Warmuth

[9], Cesa-Bianchi et al. [5]). These methods predict according to a combination of several

predictors, the so-called experts.

The main idea in this paper is that if the sequence to predict is drawn from a stationary

and ergodic process, combining the predictions of a small and simple set of appropriately
chosen predictors (the so-called experts) su�ces to achieve consistency.

First we de�ne an in�nite sequence of experts h(1)
; h

(2)
; : : : as follows: Fix a positive

integer k, and for each s 2 f0; 1gk and y 2 f0; 1g de�ne

bP k
n (y; y

n�1
1 js) =

���fk < i < n : yi�1
i�k = s; yi = yg

������fk < i < n : yi�1
i�k = sg

��� ; n > k + 1: (3)

0=0 is de�ned to be 1=2. Also, for n � k + 1 we de�ne bP k
n (y; y

n�1
1 js) = 1=2. In other words,b

P
k
n (y; y

n�1
1 js) is the proportion of the appearances of the bit y following the string s among

all appearances of s in the sequence yn�1
1 .

Also introduce the function

Fk(z) = Ifz2[0:5�1=k;0:5+1=k]g

z � 0:5 + 1=k

2=k
+ Ifz>0:5+1=kg:

The expert h(k) is a sequence of functions h(k)
n : f0; 1gn�1 � [0; 1] ! f0; 1g, n = 1; 2; : : :

de�ned by

h
(k)
n (yn�1

1 ; u) =

(
0 if u < Fk( bP k

n (0; y
n�1
1 jyn�1

n�k))
1 otherwise,

n = 1; 2; : : : :

That is, expert h(k) looks for all appearances of the last seen string y
n�1
n�k of length k in the

past and predicts according to the larger of the relative frequencies of 0's and 1's following
the string. The function Fk only plays a role if these frequencies are close to 1=2. In such

a case a randomized prediction is made. (Note that Fk(z) is continuous and it di�ers from

Ifz�1=2g only if jz � 1=2j < 1=k.)
The proposed prediction algorithm proceeds as follows: Let m = 0; 1; 2; : : : be a non-

negative integer. For 2m � n < 2m+1, the prediction is based upon a weighted majority of

predictions of the experts h(1)
; : : : ; h

(2m+1) as follows:

gn(y
n�1
1 ; u) =

8>><>>:
0 if u <

P2m+1

k=1 Fk( bP k
n (0; y

n�1
1 jyn�1

n�k))wn(k)P2m+1

k=1 wn(k)
1 otherwise,

n = 1; 2; : : : ;

where wn(k) is the weight of expert h
(k) de�ned by the past performance of h(k) as

w2m(k) = 1 and wn(k) = e
��mbLn�1

2m
(h(k))

n > 2m;
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where �m =
q
8 ln(2m+1)=2m. Recall that

bLn�1
2m (h(k)) =

1

n� 2m

n�1X
i=2m

P
n
h
(k)
i (yi�1

1 ; Ui) 6= yi

o

is the average number of mistakes made by expert h(k) between times 2m and n � 1. The

weight of each expert is therefore exponentially decreasing with the number of its mistakes

on this part of the data.

Our main result is the consistency of this simple prediction scheme:

Theorem 3 The prediction scheme g de�ned above is consistent.

In the proof we use a beautiful result of Cesa-Bianchi et al. [5]. It states that, given a set
of N experts, and a sequence of �xed length n, there exists a randomized predictor whose

number of mistakes is not more than that of the best predictor plus about
q
(n=2) lnN

for all possible sequences yn1 . The simpler algorithm and statement cited below is due to

Cesa-Bianchi [4]:

Lemma 1 Let ~h(1)
; : : : ; ~h(N) be a �nite collection of prediction strategies (experts). Then if

the prediction strategy ~g is de�ned by

~gt(y
t�1
1 ; u) =

8>><>>: 0 if u <

PN
k=1P

n
~h(k)(yt�1

1 ; U) = 0
o
~wt(k)PN

k=1 ~wt(k)
1 otherwise,

t = 1; 2; : : : ; n, where for all k = 1; : : : ; N

~w1(k) = 1 and ~wt(k) = e
��bLt�1

1 (~h(k))
; t > 1

with � =
q
8 lnN=n, then for every y

n
1 2 f0; 1gn,

bLn
1 (~g) � min

k=1;:::;N

bLn
1(
~h(k)) +

s
lnN

2n
:

Proof of Theorem 3. By Lemma 1, we have that the expected number of errors committed

by g on a segment 2m; : : : ; 2m+1 � 1 is bounded, for any y
2m+1

�1
2m 2 f0; 1g2m, as

b
L

2m+1
�1

2m (g) = E

24 1

2m

2m+1
�1X

i=2m

I
fgi(y

i�1
1 ;Ui) 6=yig

35
� min

k�2m+1

bL2m+1
�1

2m (h(k)) +

s
ln(2m+1)

2 � 2m

= min
k=1;2;:::

b
L

2m+1
�1

2m (h(k)) +

s
ln(2m+1)

2 � 2m ;

5



where the last equality follows from the fact that since n < 2m+1, all experts h
(k) with

k � 2m+1 predict zero with probability 1=2 up to time n (and therefore they are identical to

h
(2m+1)).
Therefore, denoting n = 2blog2 nc+1, for any sequence y1; y2; : : :,

nbLn
1 (g) =

blog2 nc�1X
m=0

2m bL2m+1
�1

2m (g) + (n� n=2 + 1)bLn
n=2(g)

�
blog2 nc�1X

m=0

2m

0@ min
k=1;2;:::

bL2m+1
�1

2m (h(k)) +

s
ln(2m+1)

2 � 2m

1A
+(n� n=2 + 1)

0@ min
k=1;2;:::

bLn
n=2(h

(k)) +

vuut ln(n)

2 � (n� n=2 + 1)

1A ;

therefore

bLn
1(g) � min

k=1;2;:::

bLn
1

�
h
(k)
�
+

1

n

0@blog2 nc�1X
m=0

s
2m ln 2m+1

2
+

s
(n� n=2 + 1) ln n

2

1A
� min

k=1;2;:::

bLn
1

�
h
(k)
�
+

1

n

blog2 ncX
m=0

s
2m+1 ln 2m+1

2

� min
k=1;2;:::

bLn
1

�
h
(k)
�
+

1

n

p
ln 2

q
blog2 nc + 1

blog2 ncX
m=0

2m=2

� min
k=1;2;:::

bLn
1

�
h
(k)
�
+

1

n

p
ln 2

q
log2 n+ 1

p
2n

(
p
2 � 1)

� min
k=1;2;:::

bLn
1

�
h
(k)
�
+ c

s
log2 n + 1

n
;

where

c =

p
2ln 2p
2� 1

� 2:84:

It follows from McDiarmid's inequality (McDiarmid [10]; see also [6, Theorem 9.2]) that

for any sequence yn1 ,

P
n���Ln

1 (g; U
n
1 )� bLn

1 (g)
��� > �

o
� 2e�2n�2

:

Therefore, if L and bL are now evaluated on the random sequence Y1; Y2; : : :, we obtain

lim sup
n!1

L
n
1 (g; U

n
1 ) � lim sup

n!1

0@ min
k=1;2;:::

bLn
1(h

(k)) + c

s
log2 n+ 1

n

1A :

= lim sup
n!1

min
k=1;2;:::

bLn
1 (h

(k)) almost surely:

Thus, it remains to show that for any ergodic process Y1; Y2; : : :,

lim sup
n!1

min
k=1;2;:::

bLn
1 (h

(k)) � L
� almost surely: (4)

This will follow easily from the following lemma:

6



Lemma 2 For each k � 1,

lim sup
n!1

��� bLn
1 (h

(k))�P
n
g
(k)(Y �1

�k ) 6= Y0

o��� � 2

k
almost surely;

where for any s 2 f0; 1gk,

g
(k)(s) =

(
1 if P

n
Y0 = 1jY �1

�k = s

o
� 1

2

0 otherwise

is the Bayes decision for Y0 given Y
�1
�k .

Proof. Note that

b
L
n
1 (h

(k))

=
1

n

nX
i=1

E

�
I
fh

(k)

i
(Y i�1

1
;Ui)6=Yig

jY 1

0

�

=

 
1

n

nX
i=1

E

�
I
fh

(k)

i
(Y i�1

1
;Ui)6=Yig

jY 1

0

�
� 1

n

nX
i=1

I
fg(k)(Y i�1

i�k
)6=Yig

!
+

1

n

nX
i=1

I
fg(k)(Y i�1

i�k
) 6=Yig

:

For the second term on the right-hand side, it follows from the ergodic theorem that

lim
n!1

1

n

nX
i=1

I
fg(k)(Y i�1

i�k
) 6=Yig

= P
n
g
(k)(Y �1

�k ) 6= Y0

o
almost surely:

Therefore, it su�ces to show that

lim sup
n!1

�����1n
nX
i=1

E

�
I
fh

(k)

i
(Y i�1

1 ;Ui)6=Yig
jY 1

0

�
� 1

n

nX
i=1

I
fg(k)(Y i�1

i�k
)6=Yig

����� � 2

k
almost surely:

To see this, write

1

n

nX
i=1

E

�
I
fh

(k)

i
(Y i�1

1 ;Ui)6=Yig
jY 1

0

�
� 1

n

nX
i=1

I
fg(k)(Y i�1

i�k
) 6=Yig

=
1

n

nX
i=1

�
E
h
Yi + h

(k)
i (Y i�1

1 ; Ui)� 2Yih
(k)
i (Y i�1

1 ; Ui)jY 1

0

i
� Yi � g

(k)(Y i�1
i�k ) + 2Yig

(k)(Y i�1
i�k )

�
(using that if a; b 2 f0; 1g then Ifa6=bg = a+ b� 2ab)

=
1

n

nX
i=1

�
Yi + (1� 2Yi)E

h
h
(k)
i (Y i�1

1 ; Ui)jY 1

0

i
� Yi � (1� 2Yi)g

(k)(Y i�1
i�k )

�
=

1

n

nX
i=1

(1 � 2Yi)
�
Fk( bP k

i (1; Y
i�1
1 jY i�1

i�k ))� g
(k)(Y i�1

i�k )
�

=

 
1

n

nX
i=1

(1 � 2Yi)
�
Fk( bP k

i (1; Y
i�1
1 jY i�1

i�k ))� Fk(PfYi = 1jY i�1
i�k g)

�!

+

 
1

n

nX
i=1

(1 � 2Yi)
�
Fk(PfYi = 1jY i�1

i�k )g � g
(k)(Y i�1

i�k )
�!

: (5)

7



Now it follows from the ergodic theorem that

lim
n!1

max
y2f0;1g;s2f0;1gk

��� bP k
n (y; Y

n�1
1 js)�P

n
Y0 = yjY �1

�k = s

o��� = 0 almost surely;

and therefore

lim
i!1

��� bP k
i (1; Y

i�1
1 jY i�1

i�k ))�P
n
Yi = 1jY i�1

i�k )
o��� = 0 almost surely;

so by the continuity of Fk, we have, for the �rst term on the right-hand side of (5), that

lim
n!1

1

n

nX
i=1

(1 � 2Yi)
�
Fk( bP k

i (1; Y
i�1
1 jY i�1

i�k ))� Fk(PfYi = 1jY i�1
i�k g)

�
= 0 almost surely:

For the second term on the right-hand side of (5), note that by the ergodic theorem, almost

surely,

lim
n!1

�����1n
nX
i=1

(1� 2Yi)
�
Fk

�
P
n
Yi = 1jY i�1

i�k

o�
� g

(k)(Y i�1
i�k )

������
=

���E h(1� 2Y0)
�
Fk

�
P
n
Y0 = 1jY �1

�k

o�
� g

(k)(Y �1
�k )

�i���
=

���E hE h(1 � 2Y0)
�
Fk

�
P
n
Y0 = 1jY �1

�k

o�
� g

(k)(Y �1
�k )

� ���Y �1
�k

ii���
=

���E h�1 � 2P
n
Y0 = 1jY �1

�k

o� �
Fk

�
P
n
Y0 = 1jY �1

�k

o�
� g

(k)(Y i�1
i�k )

�i���
� E

�����1� 2P
n
Y0 = 1jY �1

�k

o�
IfjPfY0=1jY �1

�k g�1=2j�1=kg
����

� E

�
2

k
IfjPfY0=1jY �1

�k g�1=2j�1=kg
�

� 2

k
;

and Lemma 2 is proved. 2

Now we return to the proof of Theorem 3. Since

P
n
g
(k)(Y �1

�k ) 6= Y0

o
= E

h
min

�
PfY0 = 1jY �1

�k g;PfY0 = 0jY �1
�k g

�i
;

it follows from the martingale convergence theorem and Lebesgue's dominated convergence
theorem that

lim
k!1

P
n
g
(k)(Y �1

�k ) 6= Y0

o
= lim

k!1

E
h
min

�
PfY0 = 1jY �1

�k g;PfY0 = 0jY �1
�k g

�i
= E

h
min

�
PfY0 = 1jY �1

�1
g;PfY0 = 0jY �1

�1
g
�i

= L
�
: (6)

Therefore, we conclude that

lim
k!1

lim sup
n!1

��� bLn
1 (h

(k))� L
�

���
� lim

k!1

lim sup
n!1

���� bLn
1 (h

(k))�P
n
g
(k)(Y �1

�k ) 6= Y0

o���+ ���Png(k)(Y �1
�k ) 6= Y0

o
� L

�

����
� lim

k!1

2

k
(By Lemma 2 and (6)):

= 0:

8



Finally, for a �xed � > 0, choose the positive integerK such that lim supn!1

��� bLn
1 (h

(K))� L
�

��� <
�. Then

lim sup
n!1

min
k=1;2;:::

b
L
n
1 (h

(k)) � lim sup
n!1

b
L
n
1 (h

(K))

� L
� + �:

Since � was arbitrary, (4) is established, and the proof of the theorem is �nished. 2

Remarks. 1. The proposed estimate is clearly easy to compute. One merely has to keep

track of the expected cumulative losses bLn�1
2m (h(k)) for k = 1; 2; : : : ; n.

2. We see from the analysis that for any sequence y1; y2; : : : and for all n,

b
L
n
1 (g) � min

k=1;2;:::

b
L
n
1

�
h
(k)
�
+ 3

s
log2 n+ 1

n
:

In other words, the algorithm is guaranteed to perform almost well as the best expert. The
rate of convergence to L� depends on the behavior of the best expert.

3. The function Fk is de�ned somewhat arbitrarily. All that's needed for consistency is that

Fk(z) is continuous and it only di�ers from Ifz�1=2g in a shrinking neighborhood of 1=2 as

k ! 1. For �nite-sample behavior the choice of Fk may be an important issue, however,
we cannot o�er any good intuition on this. Actually, Fk(z) = Ifz�1=2g is the most natural
choice, but continuity of Fk is needed in our analysis. We do not know if it is necessary.
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3 Prediction with side information

In this section we apply the same ideas to the seemingly more di�cult classi�cation (or
pattern recognition) problem. The setup is the following: let f(Xn; Yn)g1n=�1 be a stationary
and ergodic sequence of pairs taking values inRd�f0; 1g. The problem is to predict the value

of Yn given the data (Xn;Dn�1), where we denote Dn�1 = (Xn�1
1 ; Y

n�1
1 ). The prediction

problem is similar to the one studied in the previous section with the exception that the

sequence of Xi's is also available to the predictor. One may think about the Xi's as side

information.
We may formalize the prediction problem as follows. A (randomized) prediction strategy

is a sequence g = fgig1i=1 of decision functions

gi : f0; 1gi�1 �
�
Rd
�i � [0; 1]! f0; 1g

so that the prediction formed at time i is gi(y
i�1
1 ; x

i
1; Ui). The normalized cumulative risk for

any �xed pair of sequences xn1 ; y
n
1 is now

R
n
1 (g; U

n
1 ) =

1

n

nX
i=1

I
fgi(y

i�1
1 ;xi1;Ui)6=yig

;

We also use the short notation Rn(g) = R
n
1 (g; U

n
1 ). Denote the expected risk of the random-

ized strategy g by b
R
n
1 (g) = ERn

1 (g; U
n
1 ):

Similarly to the notation of the previous section, we write

R
n
m(g; U

n
1 ) =

1

n �m+ 1

nX
i=m

I
fgi(y

i�1
1 ;xi1;Ui) 6=yig

; and bRn
m(g) = ERn

m(g; U
n
1 ):

We assume that the randomizing variables U1; U2; : : : are independent of the process f(Xn; Yn)g.
Just like in the case of prediction without side information, the fundamental limit is given

by the Bayes probability of error:

Theorem 4 For any prediction strategy g and stationary ergodic process f(Xn; Yn)g1n=�1,

lim inf
n!1

Rn(g) � R
� almost surely,

where

R
� = E

h
min

�
PfY0 = 1jY �1

�1
;X

0
�1
g;PfY0 = 0jY �1

�1
;X

0
�1
g
�i
:

The proof of this lower bound is similar to that of Theorem 1, the details are omitted.
It follows from results of Morvai, Yakowitz, and Gy�or� [11] that there exists a prediction
strategy g such that for all ergodic processes, Rn(g) ! R

� almost surely. (The result of

[11] should be complemented with an argument similar appearing in the proof of Theorem
2 to obtain the above statement. To avoid repetition, the details are again omitted.) The

algorithm of Morvai, Yakowitz, and Gy�or�, however, is not useful in practice, as it requires
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an astronomical data size. The main message of this section is a simple consistent procedure

with a practical appeal. The idea, again, is to combine the decisions of a small number of

simple experts in an appropriate way.
We de�ne an in�nite array of experts h(k;`), k; ` = 1; 2; : : : as follows. Let P` = fA`;j; j =

1; 2; : : : ;m`g be a sequence of �nite partitions of the feature space Rd, and let G` be the

corresponding quantizer:

G`(x) = j; if x 2 A`;j

With some abuse of notation, for any n and x
n
1 2

�
Rd
�n
, we write G`(x

n
1) for the se-

quence G`(x1); : : : ; G`(xn). Fix positive integers k; `, and for each s 2 f0; 1gk and z 2
f1; 2; : : : ;m`gk+1 and y 2 f0; 1g de�ne

bP (k;`)
n (y; yn�1

1 ; x
n
1 js; z) =

���fk < i < n : yi�1
i�k = s;G`(x

i
i�k) = z; yi = yg

������fk < i < n : yi�1
i�k = s;G`(xii�k) = z; g

��� ; n > k + 1: (7)

0=0 is de�ned to be 1=2. Also, for n � k + 1 we de�ne bP (k;`)
n (y; yn�1

1 ; x
n
1 js; z) = 1=2.

The expert h(k;`) is now de�ned by

h
(k;`)
n (yn�1

1 ; x
n
1 ; u) =

(
0 if u < Fk( bP (k;`)

n (0; yn�1
1 ; x

n
1 jyn�1

n�k; G`(x
n
n�k)))

1 otherwise,
n = 1; 2; : : :

where Fk is de�ned in the previous section. That is, expert h(k;`) quantizes the sequence xn1
according to the partition P`, and looks for all appearances of the last seen quantized strings
y
n�1
n�k; G`(x

n
n�k) of lenght k in the past. Then it predicts according to the larger of the relative

frequencies of 0's and 1's following the string.
The proposed algorithm combines the predictions of these experts similarly to that of the

previous section. This way both the length of the string to be matched and the resolution of
the quantizer are adjusted depending on the data. The formal de�nition is as follows: For
any m = 0; 1; 2; : : :, if 2m � n < 2m+1, the prediction is based upon a weighted majority of
predictions of the (2m+1)2 experts h(k;`), k; l � 2m+1 as follows:

gn(y
n�1
1 ; x

n
1 ; u) =

8><>: 0 if u <

P
k;`�2m+1 Fk( bP (k;`)

n (0; yn�1
1 ; x

n
1 jyn�1

n�k; G`(x
n
n�k)))wn(k; `)P

k;`�2m+1 wn(k; `)
1 otherwise,

where wn(k; `) is the weight of expert h
(k;`) de�ned by the past performance of h(k;`) as

w2m(k; `) = 1 and wn(k; `) = e
��m bRn�1

2m
(h(k;`))

n > 2m;

where �m =
q
8 ln(2m+1)2=2m.

For the consistency of the method, we need some natural conditions on the sequence of

partitions. We assume the following:

(a) the sequence of partitions is nested, that is, any cell of P`+1 is a subset of a cell of P`,

` = 1; 2; : : :;

11



(b) each partition P` is �nite;

(c) if diam(A) = supx;y2A kx � yk denotes the diameter of a set, then for each sphere S

centered at the origin
lim
`!1

max
j;A`;j\S 6=;

diam(A`;j) = 0:

Theorem 5 Assume that the sequence of partitions P` satis�es the three conditions above.

Then the pattern recognition scheme g de�ned above satis�es

lim
n!1

Rn(g) = R
� almost surely

for any stationary and ergodic process f(Xn; Yn)g1n=�1.

Proof of Theorem 5. Exactly the same way as in the �rst part of the proof of Theorem

3, we obtain that for any stationary and ergodic process f(Xn; Yn)g1n=�1,

lim sup
n!1

R
n
1 (g; U

n
1 ) � lim sup

n!1

0BB@ min
k = 1;2; : : :

` = 1; 2; : : : ; n� 1

bRn
1 (h

(k;`)) + 2c

s
log2 n+ 1

n

1CCA
= lim sup

n!1

min
k = 1; 2; : : :

` = 1;2; : : : ; n � 1

b
R
n
1 (h

(k;`)) almost surely:

Thus, it remains to show that

lim sup
n!1

min
k = 1;2; : : :

` = 1;2; : : : ; n� 1

bRn
1 (h

(k;`)) � R
� almost surely:

To prove this, we use the following lemma, whose proof is easily obtained by copying that
of Lemma 2:

Lemma 3 For each k � 1,

lim sup
n!1

��� bR(h(k;`))�P
n
g
(k;`)(Y �1

�k ;X
0
�k) 6= Y0

o��� � 2

k
almost surely;

where for any s 2 f0; 1gk and z 2 f1; 2; : : : ;m`gk+1,

g
(k;`)(s; z) =

(
1 if P

n
Y0 = 1jY �1

�k = s;G`(X
0
�k) = z

o
� 1

2

0 otherwise

is the Bayes decision for Y0 given Y
�1
�k ; G`(X

0
�k).

Now we return to the proof of Theorem 5. For �x `, the sequences

PfY0 = 1jY �1
�k ; G`(X

0
�k)g and PfY0 = 0jY �1

�k ; G`(X
0
�k)g k = 1; 2; : : :

12



are martingales, and they converge almost surely to

PfY0 = 1jY �1
�1

; G`(X
0
�1

)g and PfY0 = 0jY �1
�1

; G`(X
0
�1

)g

respectively. Since the sequence of partitions P` is nested, and by (c), the sequences

PfY0 = 1jY �1
�1

; G`(X
0
�1

)g and PfY0 = 0jY �1
�1

; G`(X
0
�1

)g l = 1; 2; : : :

are martingales and they converge almost surely to

PfY0 = 1jY �1
�1

;X
0
�1
g and PfY0 = 0jY �1

�1
;X

0
�1
g:

Thus, it follows from Lebesgue's dominated convergence theorem that

lim
l!1

lim
k!1

E
h
min

�
PfY0 = 1jY �1

�k ; G`(X
0
�k)g;PfY0 = 0jY �1

�k ; G`(X
0
�k)g

�i
= E

h
min

�
PfY0 = 1jY �1

�1
;X

0
�1
g;PfY0 = 0jY �1

�1
;X

0
�1
g
�i

= R
�
:

Since

P
n
g
(k;`)(Y �1

�k ;X
0
�k) 6= Y0

o
= E

h
min

�
PfY0 = 1jY �1

�k ; G`(X
0
�k)g;PfY0 = 0jY �1

�k ; G`(X
0
�k)g

�i
;

we conclude that

lim
`!1

lim
k!1

lim sup
n!1

��� bRn
1 (h

(k;`))�R
�

���
� lim

`!1

lim
k!1

lim sup
n!1

���� bRn
1 (h

(k;`))�P
n
g
(k;`)(Y �1

�k ;X
0
�k) 6= Y0

o���
+
���Png(k;`)(Y �1

�k ;X
0
�k) 6= Y0

o
�R

�

����
= 0 almost surely:

Now it follows easily that

lim sup
n!1

min
k = 1;2; : : :

` = 1;2; : : : ; n� 1

bRn
1 (h

(k;`)) � R
� almost surely;

and the proof of the theorem is �nished. 2

Acknowledgement. We thank Nicol�o Cesa-Bianchi for teaching us all wee needed to know
about prediction with expert advise.
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