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Abstract

We derive a new inequality for uniform deviations of averages from their means.

The inequality is a common generalization of previous results of Vapnik and Chervo-

nenkis (1974) and Pollard (1986). Using the new inequality we obtain tight bounds for

empirical loss minimization learning.



1 Introduction

Let Xn

1 = (X1; : : : ;Xn) be a sequence of independent, identically distributed random vari-

ables taking their values from some set X , and consider a class F of uniformly bounded

functions f : X ! [0; 1]. We are interested in the maximal di�erence between the sample

average

Pn(f) =
1

n

nX
i=1

f(Xi)

and the mean P (f) = Ef(X1) over f 2 F . Several upper bounds have been established for

quantities of the above type, all of them involve some quantity to measure the size of the

class F . We work with covering numbers de�ned as follows: let x1; : : : ; xn 2 X , and consider

the distance d1 between two functions

d1(f; g) = max
i�n

jf(xi)� g(xi)j:

A �nite set of functions fg1; : : : ; gNg is called an �-cover of F (with respect to the distance d1)

if for every f 2 F there exists a gi, i � N , such that d1(f; g) < �. Let N1 (F ; xn1 ; �) denote
the smallest integer N for which such a covering exists. The covering number N1 (F ; xn1; �)
is de�ned similarly but with the distance d1(f; g) = (1=n)

P
i�n jf(xi)� g(xi)j replacing d1.

The �rst, now classical, work of Vapnik and Chervonenkis (1971) concentrated on the

special case when all functions in F take only two values: zero and one. For that case they

showed that

P

"
sup
f2F

jP (f)� Pn(f)j > �

#
� 4EN1

�
F ;X2n

1 ;
1

2n

�
e�n�

2
=8:

This inequality fails to capture the phenomenon that for those f 2 F for which P (f) is

small, the deviation jP (f) � Pn(f)j is also small with large probability. Still for the case of

binary-valued functions, Vapnik and Chervonenkis (1974) improved the previous inequality

to

P

2
4sup
f2F

P (f) � Pn(f)q
P (f)

> �

3
5 � 4EN1

�
F ;X2n

1 ;
1

2n

�
e�n�

2
=4: (1)

(The present constants were achieved by Anthony and Shawe-Taylor (1993).)

Several inequalities have been proved also for the general case of uniformly bounded

classes of functions. Haussler (1992), improving on an earlier result by Pollard (1986),

proved the following useful inequality: if � > 0 and � 2 (0; 1), then

P

"
sup
f2F

jP (f)� Pn(f)j
P (f) + Pn(f) + �

> �

#
� 4EN1

 
F ;X2n

1 ;
��

8

!
e�n��

2
=8: (2)

1



Even though this inequality is useful to bound the probabilities of large relative uniform

deviations, when specialized to binary-valued functions, it is somewhat weaker than (1). In

this paper we prove an inequality which is a common generalization of both (1) and (2). In

Section 3 we apply the new inequality for a general learning problem. For more inequalities

on probabilities of uniform deviations, see, for example, Alexander (1984), Devroye (1982),

Pollard (1984), Talagrand (1994), and Vapnik (1982).

2 The inequality

Theorem 1 If n � 1=
2, then

P

2
4sup
f2F

P (f)� Pn(f)� 
q
P (f)

> �

3
5 � 2EN1

�
F ;X2n

1 ;



4

�
e�n�

2
=4

and

P

2
4sup
f2F

Pn(f)� P (f) � 
q
Pn(f)

> �

3
5 � 2EN1

�
F ;X2n

1 ;



4

�
e�n�

2
=4:

Proof. We start with the �rst inequality. Our proof uses some ideas from the beautiful

short proof of (1) by Anthony and Shawe-Taylor (1993).

Step 1. Let X 0

1; : : : ;X
0

n
be auxiliary i.i.d. random variables, having the same distribution

at that of the Xi and independent of them. Denote P 0

n
(f) = (1=n)

P
n

i=1 f(X
0

i
). If n � 1=
2,

then

P

2
4sup
f2F

P (f) � Pn(f) � 
q
P (f)

> �

3
5 � 2P

2
4sup
f2F

P 0

n
(f)� Pn(f)� 


2q
1
2
(P 0

n
(f) + Pn(f))

> �

3
5 :

Proof: Let f satisfy P (f) � Pn(f) � 
 > �
q
P (f). If P 0

n
(f) � P (f) � 
=2, then since

(x� a)=
p
x+ a is a monotone increasing function in x > 0 (when a � 0), we have that

P 0

n
(f)� Pn(f)� 


2q
1
2
(P 0

n
(f) + Pn(f))

� P (f)� Pn(f)� 
q
1
2
(P (f) + Pn(f)� 


2
)
� P (f)� Pn(f)� 
q

P (f)
:

But by the Chebyshev-Cantelli inequality (see, e.g., Chow and Teicher, 1978), since var(f(X)) �
1=4, if n � 1=
2,

P [P 0

n
(f) < P (f)� 
=2] �

1
n
var(f(X))

1
n
var(f(X)) + 
2

4

� 1

2
;

which completes the proof of the �rst step.
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Step 2. Let � > 0, and de�ne F� to be a minimal �-cover of F with respect to the metric

d1 de�ned on the points X1; : : : ;Xn;X
0

1; : : : ;X
0

n
. De�ne

F�

�
= fg = f � � : f 2 F�g:

For � = 
=4,

P

2
4sup
f2F

P 0

n
(f) � Pn(f) � 


2q
1
2
(P 0

n
(f) + Pn(f))

> �

3
5 � P

2
4max
g2F

�

�

P 0

n
(g)� Pn(g)q

P 0
n
(f) + Pn(f)

>
�p
2

3
5 :

Proof: Assume that f satis�es

P 0

n
(f) � Pn(f) � 


2q
1
2
(P 0

n
(f) + Pn(f))

> �:

For each f 2 F , there exists a g 2 F�

�
such that g(x) � f(x) � g(x) + 2� for every x = Xi

and x = X 0

i
. Thus,

P 0

n
(f)� Pn(f)� 


2q
1
2
(P 0

n
(f) + Pn(f))

� P 0

n
(g) + 2� � Pn(g)� 


2q
1
2
(P 0

n
(g) + Pn(g))

=
P 0

n
(g) � Pn(g)q

1
2
(P 0

n
(g) + Pn(g))

:

This completes the proof of Step 2.

Step 3. Let �1; : : : ; �n be a sequence of i.i.d. random variables with P[�1 = �1] = P[�1 =

1] = 1=2. Clearly,

P

2
4max
g2F

�

�

P 0

n
(g)� Pn(g)q

P 0
n
(f) + Pn(f)

>
�p
2

3
5 = P

2
4max
g2F

�

�

1
n

P
n

i=1 �i(g(Xi)� g(X 0

i
))q

P 0
n
(g) + Pn(g)

>
�p
2

3
5

= E

0
@P

2
4max
g2F

�

�

1
n

P
n

i=1 �i(g(Xi)� g(X 0

i
))q

P 0
n
(g) + Pn(g)

>
�p
2

������X2n
1

3
5
1
A :

Now, we may bound the conditional probability above by the union bound and Hoe�ding's

inequality (Hoe�ding, 1963):

P

2
4max
g2F

�

�

1
n

P
n

i=1 �i(g(Xi)� g(X 0

i
))q

P 0
n
(g) + Pn(g)

>
�p
2

������X2n
1

3
5

� jF�jmax
g2F

�

�

P

2
4 1

n

P
n

i=1 �i(g(Xi)� g(X 0

i
))q

P 0
n
(g) + Pn(g)

>
�p
2

������X2n
1

3
5

� jF�je�n�2=4:
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This completes the proof of the �rst inequality. To prove the second inequality, only the �rst

step has to be modi�ed:

P

2
4sup
f2F

Pn(f)� P (f) � 
q
Pn(f)

> �

3
5 � 2P

2
4sup
f2F

Pn(f)� P 0

n
(f)� 


2q
1
2
(P 0

n
(f) + Pn(f))

> �

3
5 :

Proof: Assume that Pn(f)�P (f)�
 > �
q
Pn(f). Then obviously Pn(f) > P (f)+
=2. If

P 0

n
(f) � P (f) + 
=2, then since (a� x)=

p
a+ x is a monotone decreasing function in x > 0

(when a � 0), we have that

Pn(f) � P 0

n
(f) � 


2q
1
2
(P 0

n
(f) + Pn(f))

�
Pn(f)�

�
P (f) + 


2

�
� 


2q
1
2
(Pn(f) + P (f) + 


2
)
� Pn(f) � P (f) � 
q

Pn(f)
:

Again, by the Chebyshev-Cantelli inequality,

P [P 0

n
(f) > P (f) + 
=2] �

1
n
var(f(X))

1
n
var(f(X)) + 
2

4

� 1

2
:

The rest of the proof of the second inequality is identical to that of the �rst one.

2

Remark. The condition n � 1=
2 may be relaxed somewhat. By a trivial modi�cation of

the proof we obtain, for any � > 0, that if n � 4�=
2, then

P

2
49f 2 F :

P (f)� Pn(f)� 
q
P (f)

> � and var(f(X)) � �

3
5 � 2EN1

�
F ;X2n

1 ;



4

�
e�n�

2=4;

and a similar version of the second inequality of Theorem 1 also remains valid. 2

Remark. Theorem 1 uses d1 covering numbers, where (1) and (2) use d1 covering numbers.

It is easy to see that N1 (F ; xn1; �) � N1 (F ; xn1 ; �). While these covering numbers can be very

di�erent for a particular probability distribution on X , if we consider worst case distributions,

they are closely related. To see this, we need to introduce another type of covering number.

For a probability distribution P on the set X , let dP (f; g) = P jf � gj, and let N(F ; dP ; �)
denote the size of the smallest �-cover of F with respect to dP . Then there are constants

b1; b2; c1; c2 such that, for n � (b1=�
2) logN(F ; dP ; c1�),

log max
P

EN1 (F ;Xn

1 ; �) � log max
P

EN1 (F ;Xn

1 ; �)

� log max
xn
1

N1 (F ; xn1 ; �)

� b1 logmax
P

N (F ; dP ; c1�) log2(n=�)
� b2 logmax

P

EN1 (F ;Xn

1 ; c2�) log
2(n=�):
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(The �rst two inequalities are trivial, the third follows from Lemma 1 and Theorem 1 of

Bartlett, Kulkarni, and Posner (1997), and the last follows from an argument due to Haus-

sler (1992) in the proof of his Lemma 4.) This shows that when we apply this result in the

next section, the use of the d1 (instead of d1) covering numbers introduces no more than

log factors into the bounds on the sample size for empirical loss minimization learning. 2

Next we point out that using Theorem 1, we may recover an inequality like (2).

Corollary 1 If � 2 (0; 1), � > 0, and n � 4(1 + �)2=�2�2, then

P

"
sup
f2F

jP (f) � Pn(f)j
P (f) + Pn(f) + �

> �

#
� 4EN1

 
F ;X2n

1 ;
��

8(1 + �)

!
e�n��

2
=4(1��2):

Proof. We show that the �rst inequality of Theorem 1 implies

P

"
sup
f2F

P (f) � Pn(f)

P (f) + Pn(f) + �
> �

#
� 2EN1

 
F ;X2n

1 ;
��

8(1 + �)

!
e�n��

2
=4(1��2):

The other side of the inequality follows similarly from the second inequality of Theorem 1.

If f 2 F is such that P (f)�Pn(f)� 
 � �
q
P (f), then for any � > 0 we have two cases:

1. If P (f) < (1 + 1=�)2�2 then P (f) < Pn(f) + 
 + (1 + �)�2=�.

2. If P (f) � (1 + 1=�)2�2, then P (f) � Pn(f) + 
 + �P (f)=(1 + �), and so P (f) �
(1 + �)Pn(f) + (1 + �)
.

In either case,

P (f) � (1 + �)Pn(f) + (1 + �)(
 + �2=�):

Therefore, the �rst inequality of Theorem 1 implies that

P
h
9f 2 F : P (f) > (1 + �)Pn(f) + (1 + �)(
 + �2=�)

i
� 2EN1

�
F ;X2n

1 ;



4

�
e�n�

2
=4:

By choosing � = 2�=(1� �), 
 = ��=2(1 + �), and �2 = ��2=(1� �2) we obtain

P
h
9f 2 F : P (f) > (1 + �)Pn(f) + (1 + �)(
 + �2=�)

i

= P

"
9f 2 F : P (f) >

1 + �

1 � �
Pn(f) +

��

1 � �

#

= P

"
sup
f2F

P (f) � Pn(f)

P (f) + Pn(f) + �
> �

#
;

which proves the corollary. 2
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Even though the exponent in the upper bound of Corollary 1 is slightly better in most

cases than that of (2), Corollary 1 is weaker than Pollard's result. First, Corollary 1 has

d1 covering numbers instead of the smaller d1 covering numbers, though this is a minor

di�erence for worst case probability distributions, as we have pointed out above. However,

more importantly, the condition n � 4(1 + �)2=�2�2 may be quite restrictive in some appli-

cations (though it might be relaxed somewhat according to the remark following the proof

of Theorem 1 above). Nevertheless, in the next section we show that in a typical situation

where (2) has been used, the new inequalities provide signi�cantly stronger results.

3 Application for learning

In this section we apply Theorem 1 to obtain tighter upper bounds for the loss of a decision

selected by empirical loss minimization from a class of decisions.

Let Dn = ((X1; Y1); : : : ; (Xn; Yn)) be i.i.d. training data, and let l(�; �) be a loss function

taking its values in [0; 1]. Denote

L = fl(f(�); �) : f 2 Fg :

The loss of any f 2 F is

L(f) = E[l(f(X); Y )]

De�ne the optimal loss in the class by L� = inff2F L(f). Let fn be any function in F which

minimizes the empirical risk

Ln(f) =
1

n

nX
i=1

l(f(Xi); Yi):

Theorem 2 For every � > 0,

P[L(fn)� L� > 2�] � 2EN1

�
L;D2n;

�

8

�
e�n�

2
=(4L�+8�) + e�n�

2
=(8L�+2�):

In particular, for every � > 0 and � > 0 we have P[L(fn)� L� > �] � � if

n � max

�
16L�

�2

�
logN

�
�

16

�
+ log

4

�

�
;
16

�

�
logN

�
�

16

�
+ log

4

�

��
;

where N(�) = EN1 (L;D2n; �).

Proof. If

sup
f2F

L(f)� Ln(f)� �

2q
L(f)

� �p
L� + 2�

;

6



then for each f 2 F
Ln(f) � L(f) � �

s
L(f)

L� + 2�
� �

2
:

If, in addition, f is such that L(f) > L� + 2�, then by the monotonicity of the function

x� c
p
x (for c > 0 and x > c2=4),

Ln(f) � L� + 2�� �

s
L� + 2�

L� + 2�
� �

2
= L� +

�

2
:

Therefore,

P

"
inf

f :L(f)>L�+2�
Ln(f) < L� +

�

2

#
� P

2
4sup
f2F

L(f) � Ln(f) � �

2q
L(f)

>
�p

L� + 2�

3
5 :

But if L(fn) � L� > 2�, then there exists an f 2 F such that L(f) > L� + 2� and Ln(f) <

Ln(f
�). Thus,

P [L(fn)� L� > 2�] � P

"
inf

f :L(f)>L�+2�
Ln(f) < Ln(f

�)

#

� P

"
inf

f :L(f)>L�+2�
Ln(f) < L� +

�

2

#
+P

�
Ln(f

�) > L� +
�

2

�

� P

2
4sup
f2F

L(f) � Ln(f)� �

2q
L(f)

>
�p

L� + 2�

3
5+P

�
Ln(f

�)� L� >
�

2

�
:

Straightforward application of Theorem 1 and Bennett's version (Bennett, 1962) of Bern-

stein's inequality �nishes the proof of the �rst inequality. The second statement is a straight-

forward consequence. 2

Remark. Results for f0; 1g-valued functions f with the discrete loss function (l(y; y0) = 0

if y = y0 and 1 otherwise) show that, for some probability distributions, the convergence rate

of Theorem 2 cannot be improved (see Devroye and Lugosi, 1995, Ehrenfeucht et al, 1989).

2
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