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1 IntroductionWhat is the minimum WIP (Work-in-Process) performance level required to attain a targetthroughput level in a queueing system? When are threshold policies (which control the systemby setting a WIP cap) optimal for achieving a linear throughput-WIP performance objective? Toanswer these questions, which are important for the e�cient operation of modern manufactur-ing and communications systems (see, e.g., Hopp and Spearman (1996)), we need to understandthe trade-o� relation between throughput and WIP and the structure of the region of achievablethroughput-WIP performance pairs.A wide variety of optimal intensity control problems in queueing systems have been shownto be solved optimally by threshold policies. The way to establish threshold optimality hasbeen typically ad hoc. Although these problems can usually be formulated in the framework ofdynamic programming, it is often not clear how to derive this structural property from Bellman'sequations. This has led to a typical line of attack based on studying the properties of the optimalvalue function in a particular model, and deriving from them the threshold optimality result (see,e.g., Chen and Yao (1990)).The dynamic programming approach based on studying the problem's optimal value functionhas been developed into a general framework for investigating monotonicity properties of opti-mal policies, of which threshold optimality is the simplest case (see, e.g., Glasserman and Yao(1994)). This approach, however, as it focuses on the value function, does not answer importantperformance questions such as the throughput-WIP trade-o� issues discussed above.In this paper we present a new unifying framework for investigating the relation betweenthroughput and WIP, and the optimality of threshold policies, in queueing systems. Our approachis based, not on a study of value functions (as in the traditional dynamic programming approach),but on a study of the system's region of achievable throughput-WIP performance.This paper thus extends the performance region approach to stochastic optimization, whichhas up to now been developed only for stochastic scheduling problems (see, e.g., Ni~no-Mora(1995), and Bertsimas and Ni~no-Mora (1996)), to a new domain: that of optimal intensity controlproblems in queueing systems.Our framework is based on investigating the throughput-WIP performance region of a generalstochastic system under an assumption which we call the Threshold Property, strongly relatedto the satisfaction of certain diminishing returns properties of throughput with respect to WIP.We show that, under the Threshold Property, the throughput-WIP performance region has apolygonal structure, which allows to reformulate an optimal control problem with a linear per-formance objective as a (semi-in�nite) LP problem over a special polygon (a threshold polygon).The strong structural properties of such polygones explain threshold optimality, since their ver-tices are achieved by threshold policies. Furthermore, this knowledge of the system's performanceregion allows us to give a general analytical characterization of the min WIP function, giving theminimum WIP performance level required to attain a target throughput level.The structure of the paper is as follows: Section 2 presents our LP framework for studyingthreshold optimality. Section 3 describes a speci�c model we analyze within this framework: theversatile optimal queueing intensity control problem introduced by Chen and Yao (1990). Section4 presents the new results obtained from such analysis, including an analytical characterization ofthe min WIP function. Section 5 presents several key diminishing returns properties of thresholdpolicies, which are essential to the proof of the Threshold Property for this model. Section 6presents a new LP Value Decomposition property which relates the value of an arbitrary policywith that of a given threshold policy, thus giving directly LP optimality conditions (including Chenand Yao's). Section 7 presents the results of the LP analysis under the time-average criterion.Appendix A contains technical lemmas used for our model's analysis.2 An LP framework for threshold optimality in stochas-tic throughput-WIP controlConsider a general dynamic and stochastic system, controlled by a policy in a class U of admissiblepolicies. Its performance under policy u 2 U is given by a pair (~�u; ~Lu) � 0, which mustbe an expectation. We call (~�u; ~Lu) a throughput-WIP (Work-in-Process) performance pair, inaccordance with its typical interpretation in applications of this framework.2



We are interested in solving the optimal control problem~V �(c) = max �~�u � c ~Lu : u 2 U	 ; (1)for each cost c > 0. A wide variety of optimal control models can be cast as special casesof problem (1), which seeks to strike an optimal trade-o� between the bene�ts of high systemthroughput and the costs of high WIP levels.We are given a family of threshold-type policies, indexed by their integer critical thresholdvalues b � 0. We denote by (~�b; ~Lb) the performance pair for the b-threshold policy, and write itsobjective value as ~V b(c) = ~�b � c ~Lb:We present in this section a set of conditions on performance pair (~�u; ~Lu), summarized inthe Threshold Property in De�nition 1, which guarantee that problem (1) is solved by a thresholdpolicy, for each c > 0. The �rst part of the Threshold Property requires the performance pairs ofthreshold policies to satisfy the set of conditions we state next.Assumption 1 (Diminishing Vanishing Returns) The performance pairs f(~�b; ~Lb)gb�0 ofthreshold policies satisfy the following conditions:(i)[Strict Monotonicity (Increasing) of ~�b]0 � ~�b < ~�b+1; for b � 0;(ii)[Strict Monotonicity (Increasing) of ~Lb]0 � ~Lb < ~Lb+1; for b � 0;(iii)[Diminishing Marginal Returns of ~�b with respect to ~Lb]~�b+1 � ~�b~Lb+1 � ~Lb < ~�b � ~�b�1~Lb � ~Lb�1 ; for b � 1;(iv)[Vanishing Marginal Returns of ~�b with respect to ~Lb]limb!1 ~�b � ~�b�1~Lb � ~Lb�1 = 0;(v) there is a policy u0 2 U such that~Lu0 = min f~Lu : ~�u = 0; u 2 Ug;and ~Lu0 � ~L0;with ~Lu0 > ~L0 if and only if 0 = ~�u0 < ~�0:Let us de�ne a sequence of critical cost parameters c = fcbgb�0 bycb =8><>: ~�b�~�b�1~Lb�~Lb�1 if b � 1~�0�~�u0~L0�~Lu0 = ~�0~L0�~Lu0 if b = 0 and ~L0 < ~Lu00 otherwise, (2)and a sequence d = fdbgb�0 bydb = ~V b(cb) = ~�b � cb ~Lb; for b � 0: (3)De�nition 1 (Threshold Property) We say that performance pair (~�u; ~Lu) satis�es the Thresh-old Property with respect to the given family of threshold policies if(i) assumption 1 holds;(ii) under any admissible policy u 2 U ,(ii.a) ~�u � c0 ~Lu � d0;(ii.b) ~�u � cb ~Lu � db; for b � 1. 3



Remarks:1. Part (i) of the Threshold Property (Assumption 1) implies thatc1 > c2 > � � � > 0 � c0 and limb!1 cb = 0:2. Parts (ii.a-b) of the Threshold Property, together with c1 > c2 > � � � > 0 � c0, imply that,for b � 0, (~�b; ~Lb) is the unique solution of linear system� � cb L = db;� � cb+1 L = db+1:3. Part (ii.a) says that the 0-threshold policy is optimal for control problemmin f~�u � c0 ~L0 : u 2 Ug:4. Part (ii.b) says that, for c = cb (b � 1), the b-threshold policy solves problem (1).To establish the Threshold Property in a model we need, apart from showing that Assumption1 holds, to prove the optimality of threshold policies only for a countable set of critical costparameters fcbgb�0. This turns out to be enough to ensure that threshold policies are alsooptimal for all costs c > 0.We shall establish this threshold optimality result through an analysis of the system's throughput-WIP region of achievable performance, or performance region, de�ned byX = �(~�u; ~Lu) : u 2 U	 : (4)In particular, we shall show that, under the Threshold Property, performance region X is closelyrelated to the polygon (with a countable number of constraints)P(c;d) = �(�; L) � 0 : � � c0 L � d0 and �� cb L � db; for b � 1	 ;in the sense that, for any c > 0, we can reformulate optimal control problem (1) as a semi-in�niteLP problem over P(c;d):~V �(c) = max f�� c L : (�; L) 2 Xg = max f� � c L : (�; L) 2 P(c;d)g:This result, together with the structural properties of such polygones, accounts for thresholdoptimality, as we will show in Section 2.2.2.1 Threshold polygonesIn this section we study the properties of polygones of the formP(c;d) = �(�; L) � 0 : � � c0 L � d0 and �� cb L � db; for b � 1	 ;where c = fcbg1b=0 and d = fdbg1b=0 are real sequences satisfyingc1 > c2 > � � � > 0 � c0 and limb!1 cb = 0; (5)and d0 = 0 if and only if c0 = 0: (6)We present next the geometric counterpart of the Threshold Property.De�nition 2 (Threshold Polygon) We say that P(c;d) is a threshold polygon with parametersc and d if, for any integer b � 0, the unique solution (�b; Lb) of linear system�� cb L = db;� � cb+1 L = db+1satis�es (�b; Lb) 2 P(c;d):Remark: Notice that it follows from De�nition 2 that each (�b; Lb) is an extreme point ofthreshold polygon P(c;d). We have represented in Figure 1 an example of a threshold polygon.4
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Figure 1: A threshold polygon.LP over threshold polygonesWe show in this section that the optimal solution to an LP problem over a threshold polygon canbe characterized by a critical threshold value.Consider the (semi-in�nite) LP problem,V LP = max � � c L (7)subject to�� cb L � db for b � 1�� c0 L � d0�; L � 0;and its dual LP problem, having a dual variable yb corresponding to the bth primal constraint,V D = min 1Xb=0 db yb (8)subject to1Xb=0 yb � 1 : �1Xb=0 cb yb � c : Lyb � 0; for b � 1y0 � 0:Let us de�ne the critical threshold function b�(�) byb�(c) = min �b � 0 : cb+1 � c	 ;which, by (5), is well de�ned for c > 0.Proposition 1 (LP over Threshold Polygones) LP problem (7) is solved optimally by pair��b�(c); Lb�(c)�, for each c > 0.ProofLet us write, for ease of notation, b� = b�(c). We consider two cases: b� = 0 and b� � 1.5



Case I: b� = 0, i.e., c � c1. De�ne �y = f�ybg1b=0 by �y0 = (c � c1)=(c0 � c1), �y1 = 1 � �y0, and�yb = 0 for b � 2. Then, �y is a feasible solution for dual LP (8) satisfying complementary slacknesswith primal solution (�0; L0), which proves the optimality of both.Case II: for some b� � 1, cb�+1 � c < cb� : De�ne �y as follows: �yb� and �yb�+1 are de�ned asthe solution to linear system yb� + yb�+1 = 1;cb� yb� + cb�+1 yb�+1 = c;and �yb = 0 for all other b. Again, we have that �y is a feasible solution for dual LP (8) satisfyingcomplementary slackness with primal solution ��b� ; Lb��, which proves the optimality of both. 22.2 The Threshold Property and threshold optimalityWe show in this section that the Threshold Property in De�nition 1 implies the optimality ofthreshold policies for solving problem (1).We �rst reformulate this optimal control problem as the mathematical program~V �(c) = maxf� � c L : (�; L) 2 Xg; (9)where X is the system's throughput-WIP performance region de�ned by (4).Consider now polygon P(c;d), where c = fcbgb�0 is given by (2), and d = fdbgb�0 is givenby (3). Now, the Threshold Property says that X � P(c;d), hence the semi-in�nite LP problemV LP (c) = max f�� c L : (�; L) 2 P(c;d)g (10)is an LP relaxation of problem (9), and hence of (1), i.e.,V LP (c) � ~V �(c):Our main result in this section says that this LP is in fact exact.Theorem 1 (Semi-in�nite LP Formulation) Under the Threshold Property, P(c;d) is a thresh-old polygon and, for any c > 0, V LP (c) = ~V �(c):ProofThe results that P(c;d) is a threshold polygon and X � P(c;d), hence V LP (c) � ~V �(c); followdirectly from the Threshold Property.Furthermore, by Proposition 1 the optimal solution to LP problem (10) is always achievable,as it corresponds to some (~�b; ~Lb). This shows the other inequality, V LP (c) � ~V �(c), whichcompletes the proof. 2The characterization of the optimal LP solution over a threshold polygon given in Proposition1 translates now, by Theorem 1, into the optimality of threshold policies. Let us de�ne the criticalthreshold function b�(�) byb�(c) = min �b � 0 : cb+1 � c	 ; for c > 0:Corollary 1 (Threshold Optimality) Under the Threshold Property, the b�(c)-threshold pol-icy solves optimally control problem (1), for c > 0.We present next another important consequence of the Threshold Property. Let us de�ne theMinimum WIP function ~Lmin(�) by~Lmin(�) = minf~Lu : ~�u = �; u 2 Ug= minfL : (�; L) 2 Xg;so that ~Lmin(�) is the minimumWIP level required to attain a target throughput level �. Our nextresult gives an analytical characterization of the Minimum WIP function ~Lmin(�) as a piece-wiselinear function of throughput �.Corollary 2 (Min WIP Characterization) Under the Threshold Property,~Lmin(�) = ~Lb�1 + 1cb (�� ~�b�1); for � 2 �~�b�1; ~�b�, b � 1.6



We also state the following conjecture on the structure of performance region X .Conjecture 1 (Performance Region Characterization) Suppose the Threshold Property holdsand, in addition,(i) the class U of admissible policies is closed under randomization (or, equivalently, performanceregion X is convex);(ii) if WIP performance level L is achievable, then L0 is also achievable, for any L0 > L.Then, X = P(c;d);where P(c;d) denotes the closure of threshold polygon P(c;d).3 Model: Intensity control of a queueing systemIn this section we analyze within the LP framework developed in Section 2 the versatile input-output queueing intensity control model introduced by Chen and Yao (1990).Model description and formulationThe queueing system of interest consists of a service facility which services a single customerclass. Let L(t) denote the number of customers in the system (waiting or in service) at time t.We can control the number-in-system process fL(t)gt�0 through a policy that sets the currentstochastic intensities, �(t) and �(t), of the point processes (see, e.g., Baccelli and Br�emaud (1994)),modelling customer arrivals and departures, respectively. To be admissible, such a policy must:(1) be adapted to the current system's history FLt = �fL(� ); � 2 [0; t]g; (2) induce a stablenumber-in-system process; and (3) satisfy the sample-path capacity constraints �(t) � ��L(t) and�(t) � ��L(t), where f��kgk�0 and f��kgk�0 are given sequences of positive input and output capacitylimits (except for ��0 = 0). We denote by U the class of admissible policies.We present next two sets of conditions on capacity limits which, as we shall see, are essentialfor casting the model in the LP framework of Section 2. They are related to, but not identical,to the conditions assumed by Chen and Yao (see Remarks below). Let us denote the marginalinput and output capacities, respectively, by ���k = ��k � ��k�1 and ���k = ��k � ��k�1, for k � 1(notice that ���1 = ��1).Assumption 2 (Vanishing Marginal Output Capacity) Marginal output capacity satis�es(i) 0 � � � � � ���3 � ���2 � ���1 = ��1 > 0;(ii) limk!1 ���k = 0:Assumption 3 (Decreasing Input Capacity) Input capacity is decreasing on the number ofcustomers in the system: ��0 � ��1 � ��2 � � � � > 0:Remarks:1. Assumption 2(i) is condition (5.5b) in Chen and Yao. We add Assumption 2(ii) so thatproblem (11) below can be solved within our LP framework for any cost rate c > 0.2. Our Assumption 3, combined with Assumption 2(i), is stronger than condition (5.5a) ofChen and Yao (���k � ���k). However, we need our stronger assumption to establish theThreshold Property.Time-discounted optimal control problemWe consider the following economic structure: A unit (dollar) reward is received at the servicecompletion epoch of a customer. Furthermore, a customer in the system (waiting or in service),incurs holding costs at a rate of c > 0 dollars per unit time. Rewards and costs are continuouslydiscounted in time with discount factor � > 0.For a given policy u 2 U and initial state L(0) = k, we denote by ~V k;u(c) the correspondingobjective value, representing the total expected discounted value of rewards earned minus costsincurred over an in�nite horizon. The optimal control problem of interest consists in �nding anadmissible policy that maximizes such objective value:~V k;�(c) = max f ~V k;u(c) : u 2 Ug: (11)7



Time-discounted performance measures and problem formulationWe introduce next two natural performance measures for formulating problem (11). For a giveninitial state L(0) = k � 0 and policy u 2 U , we de�ne ~�k;u as the corresponding total expecteddiscounted number of service completions (scaled by �):~�k;u = �Eu �Z 10 �(t) e��t dt j L(0) = k� :We further de�ne ~Lk;u as the total expected discounted number of customers in the system (scaledby �): ~Lk;u = �Eu �Z 10 L(t) e��t dt j L(0) = k� :The corresponding (scaled) marginal performance measures are denoted by�~�k;u = 1� ~�k;u � ~�k�1;u;and �~Lk;u = 1� ~Lk;u � ~Lk�1;u; for k � 1:We can thus reformulate optimal control problem (11) as~V k;�(c) = max f~�k;u � c ~Lk;u : u 2 Ug: (12)Threshold policiesWe shall consider the following family of threshold policies: For each integer critical thresholdvalue b � 0, the b-threshold policy sets the input intensity at full capacity if L(t) < b; otherwise,input intensity is set to 0. Output intensity is always set at full capacity. We denote by (~�k;b; ~Lk;b)the performance pair achieved by such b-threshold policy, with L(0) = k, and write its objectivevalue as ~V k;b(c) = ~�k;b � c ~Lk;b:We further de�ne the corresponding (scaled) marginal value function as~vk;b(c) = 1� ( ~V k;b(c)� ~V k�1;b(c)) = �~�k;b � c�~Lk;b; for k � 1; b � 0.These functions are characterized by the recursions given in Lemmas 7 and 8 in Appendix A.In addition, we de�ne u0 to be the policy that lets no customers in nor out of the system, sothat L(t) = L(0) for t � 0.4 Model analysis via the Threshold PropertyWe show in this section how to formulate control problem (12) in the LP framework of Section 2,and the results that follow from such formulation.Let us de�ne the critical cost parameters ck;0� and c� = fcb�gb�1 byck;0� = � �� if k � 10 if k = 0, (13)and cb� = �~�b;b�~Lb;b for b � 1: (14)As we shall see, sequence (ck;0; c�) corresponds precisely to the de�nition of c given in (2). Thisis so because of certain invariance properties on the system's initial state, proven in Lemma 3.We show in Figure 2 a recursive algorithm for computing the cb's.We present next the main result of this section, which says that, under Assumptions 2 and 3,(~�k;u; ~Lk;u) satis�es the Threshold Property. 8



Theorem 2 (Threshold Property: Time-discounted Case) Suppose capacity limits satisfyAssumptions 2 and 3. Then, for any L(0) = k � 0, performance pair (~�k;u; ~Lk;u) satis�es theThreshold Property:(a) the performance pairs of threshold policies, f(~�k;b; ~Lk;b)gb�0, satisfy Assumption 1;(b) under any admissible policy u 2 U,(b.1) ~�k;u � ck;0� ~Lk;u � ~V k;0(ck;0� );(b.2) ~�k;u � cb� ~Lk;u � ~V k;b(cb�); for b � 1.ProofPart (a) is proven in Proposition 2, in Section 5. Part (b) is precisely Corollary 9 in Section 6. 2We present next some important consequences of Theorem 6. Let us consider the model'sthroughput-WIP achievable performance regionX k� = f(~�k;u; ~Lk;u) : u 2 Ug;and the polygonP(ck;0� ; c�;dk�) = �(�; L) � 0 : �� ck;0� L � dk;0� and �� cb� L � dk;b� ; for b � 1	 ;where sequence dk� = fdk;b� gb�0 is de�ned, analogously as in (3), bydk;b� = � ~V k;0(ck;0� ) if b = 0~V k;b(cb�) if b � 1.Since the Threshold Property holds, Theorem 1 applies, giving an exact semi-in�nite LPformulation of optimal control problem (12).Corollary 3 (Semi-in�nite LP Formulation) Under Assumptions 2 and 3, P(ck;0� ; c�;dk�) isa threshold polygon, whose vertex set includes f(~�k;b; ~Lk;b); b � 0g: Furthermore,~V k;�(c) = max f� � c L : (�; L) 2 P(ck;0� ; c�;dk�)g:Furthermore, Corollary 1 of the LP framework yields the characterization of the optimalthreshold policy we present next. Let us de�ne the critical threshold function b��(�) byb��(c) = min �b � 0 : cb+1� � c	 ; for c > 0.Corollary 4 (Threshold Optimality) Under Assumptions 2 and 3 on capacity limits, controlproblem (12) is solved optimally by the b��(c)-threshold policy, for c > 0.In addition, Corollary 2 gives an analytical characterization of the Min WIP function ~Lkmin(�),de�ned by ~Lkmin(�) = min f~Lk;u : ~�k;u = �; u 2 Ug = min fL : (�; L) 2 X k�g:Corollary 5 (Min WIP Characterization)~Lkmin(�) = ~Lk;b�1 + 1cb� (�� ~�k;b�1); for � 2 �~�k;b�1; ~�k;b�, b � 1.In the following two sections we develop the results that lead to the Threshold Property inTheorem 6.5 Diminishing returns under threshold policiesWe present in this section several properties of throughput-WIP performance measures underthreshold policies, which are essential to our proof of the Threshold Property in Theorem 6. Theysay, in short, that the marginal throughput performance level is subject to diminishing returnswith respect to the marginal WIP level, both on the critical threshold value and on the initialstate.First we present a preliminary result which establishes that our de�nition of the critical costparameter sequence (ck�; c�) in (13) and (22) is consistent with that of c in the general framework,as de�ned in (2). Notice that these critical cost parameters represent the successive relativemarginal throughput/WIP performance levels, as the threshold value varies.9



Lemma 3 (Invariance on Initial State) Suppose Assumptions 2 and 3 hold. Then, for b � 1:(a) For k � 0, ~�k;b+1 > ~�k;b and ~Lk;b+1 > ~Lk;b. Furthermore,�~�b+1;b+1�~Lb+1;b+1 = ~�k;b+1 � ~�k;b~Lk;b+1 � ~Lk;b ; for k � 0;(b) 1��~�k;0�~Lk;0 = �; for k � 1;(c) ~�k;0k�~Lk;0 = �; for k � 1:ProofPart (a) is precisely Corollary 6(c).(b) By Lemma 7(b, c) in Appendix A we have~�1;0 = � ��1��1 + � and ~L1;0 = ���1 + �:Since �~�1;0 = ~�1;0=� and �~L1;0 = ~L1;0=�, this proves the result for k = 1. For k � 2 we have,by Lemma 8(b, c), (��k + �)��~Lk;0 = ��k�1 ��~Lk�1;0 + �and (��k + �)�~�k;0 = ��k�1�~�k�1;0 +���k:Furthermore, since (��k + �) = ��k�1 +���k + �;it follows that (��k + �) (1��~�k;0) = ��k�1 (1��~�k�1;0) + �:Thus sequences f��~Lk;0gk�1 and f1��~�k;0gk�1 are generated by the same recursion. Since wehave shown that ��~L1;0 = 1��~�1;0, it follows that the two sequences are identical, proving theresult.(c) From the expressions for ~�1;0 and ~L1;0 in the proof of part (b), it follows that the resultholds for k = 1. For k � 2 we have, by Lemma 7(b, c),(��k + �) ~�k;0 = ��k ~�k�1;0 + � ��kand (��k + �) ~Lk;0 = ��k ~Lk�1;0 + �k:Since (��k + �) k = ��k (k � 1) + �k + ��k;it follows that (��k + �)� (k � ~Lk;0) = ��k � (k � 1� ~Lk�1;0) + � ��k:Thus sequences f~�k;0gk�1 and f� (k � ~Lk;0)gk�1 are de�ned by the same recursion and, since~�1;0 = � (1� ~L1;0), it follows they are identical, which completes the proof. 2We next establish the �rst part of the Threshold Property in Theorem 6. This includes theresult that the relative marginal throughput/WIP performance is subject to diminishing andvanishing returns on the threshold value.Proposition 2 Under Assumptions 2 and 3, the performance pairs of threshold policies f(~�k;b; ~Lk;b)g1b=0satisfy Assumption 1, for k � 0:(a)[Strict Monotonicity (increasing) of ~�k;b]~�k;b < ~�k;b+1; for b � 0;(b)[Strict Monotonicity (Increasing) of ~Lk;b]~Lk;b < ~Lk;b+1; for b � 0;(c)[Diminishing Marginal Returns of ~�k;b with respect to ~Lk;b]~�k;b+1 � ~�k;b~Lk;b+1 � ~Lk;b < ~�k;b � ~�k;b�1~Lk;b � ~Lk;b�1 ; for b � 1;10



(d)[Vanishing Marginal Returns of ~�k;b with respect to ~Lk;b]limb!1 ~�k;b � ~�k;b�1~Lk;b � ~Lk;b�1 = 0;(e) there is a policy u0 2 U such that~Lk;u0 = min f~Lk;u : ~�k;u = 0; u 2 Ug;and ~Lk;u0 � ~Lk;0;with ~Lk;u0 > ~Lk;0 if and only if 0 = ~�k;u0 < ~�k;0:Proof(a) The result follows from Corollary 6(c) combined with Lemma 9(b).(b) Similarly, this follows from Corollary 6(c) combined with Lemma 9(c).(c) In light of Lemma 3, we need to show that�~�b+1;b+1�~Lb+1;b+1 < �~�b;b�~Lb;b ; for b � 1.This follows since �~�b+1;b+1�~Lb+1;b+1 = �~�b;b + ���b+1��b�~Lb;b + 1��b (15)< �~�b;b�~Lb;b ; (16)where identity (15) follows from Lemma 9, and inequality (16) follows from Lemma 13(b) since,by Lemma 14 and Assumption 2(i) we have���b+1 � ���b < �~�b;b�~Lb;b :(d) This follows from Lemma 3 and Lemma 11(c). This is proven in Lemma 11(c) below.(e) Take as u0 the policy de�ned above that lets no customers in nor out of the system, sothat L(t) = L(0) for t � 0. It is trivial to check that this policy satis�es the stated conditions. 2Our next result shows that the relative marginal throughput/WIP level is subject to dimin-ishing returns on the system's initial state. This property is essential for threshold optimality, aswe will see in the next section.Lemma 4 (Diminishing Returns on Initial State) Under Assumptions 2 and 3,(a) �~�b;b�~Lb;b < �~�k;b�~Lk;b ; for 1 � k � b� 1;(b) �~�k+1;b�~Lk+1;b < �~�k;b�~Lk;b ; for k � b� 1.Proof(a) We use induction on b � 1. The case b = 1 is trivial. Now, suppose for some b � 2�~�b�1;b�1�~Lb�1;b�1 < �~�k;b�1�~Lk;b�1 ; for 1 � b� 2.Let 1 � k � b� 2. We have, by Lemma 3(a), Proposition 2(c) and the induction hypothesis, that�~�k;b ��~�k;b�1�~Lk;b ��~Lk;b�1 = �~�b;b�~Lb;b< �~�b�1;b�1�~Lb�1;b�1< �~�k;b�1�~Lk;b�1 :11



Therefore, by Lemma 13(a), �~�b;b�~Lb;b < �~�k;b�~Lk;b ;which completes the induction proof.(b) We use induction on k � b� 1. The case k = b� 1 was proven in part (a). Suppose nowthat, for some k � b� 1, �~�k+1;b�~Lk+1;b < �~�k;b�~Lk;b :Now, for such a k Lemma 8(b, c) yields(��k+1 + �)�~�k+1;b = ��k�~�k;b +���k+1;and (��k+1 + �)�~Lk+1;b = ��k�~Lk;b + 1:We can thus rewrite the induction hypothesis as�~�k+1;b�~Lk+1;b < (��k+1 + �)�~�k+1;b ����k+1(��k+1 + �)�~Lk+1;b � 1 :Now, this inequality is equivalent, by Lemma 13(a), to���k+1 < �~�k+1;b�~Lk+1;b :Since, by Assumption 2(i), ���k+1 � ���k, it follows hat���k+2 < �~�k+1;b�~Lk+1;b ;which, by Lemma 13(b), is equivalent to the inequality�~�k+2;b�~Lk+2;b = ��k+1�~�k+1;b +���k+2��k+1�~Lk+1;b + 1 � �~�k+1;b�~Lk+1;b :This completes the proof. 26 LP value decomposition, optimality conditions andthreshold optimalityTo establish the Threshold Property we still need to prove the optimality of threshold policies forthe corresponding sequence of critical cost parameters (Theorem 6(b)). This section is devoted toaccomplishing such task. We shall present su�cient optimality conditions for threshold policies,and then show that the critical cost parameters satisfy them.The �rst optimality conditions we present are those �rst given by Chen and Yao (in theirTheorem 4.1). Our approach to their derivation is, however, radically di�erent, and yields newinsights: While their proof is based on ad hoc probabilistic arguments, ours reveals that thoseconditions are precisely the standard LP optimality conditions. Consider the (in�nite dimensional)LP problem: V LP;k = max 1Xl=1 �l � c 1Xl=1 l pl (17)subject to�l � ��l pl � 0; for l � 0 : ��l�l � ��l pl � 0; for l � 1 : ��l�l+1 � �l + � 1Xm=l+1 pm = � 1fl < kg; for l � 0 : vl+11Xl=0 pl = 1 : V 0pl; �l; �l+1 � 0; for l � 0:12



The importance of LP problem (17) lies in the fact that, as we will see, it represents an exact LPformulation of optimal control problem (12). The simpler result that LP (17) is a relaxation of(12) follows by letting the variables of that LP correspond to the auxiliary performance measuresde�ned by� ~pk;ul = �Eu �R10 1fL(t) = lg e�� t dt j L(0) = k� ;� ~�k;ul = �Eu �R10 �(t) 1fL(t) = lg e�� t dt j L(0) = k� ;� ~�k;ul = �Eu �R10 �(t) 1fL(t) = lg e�� t dt j L(0) = k� ;and then applying Lemma 16 in Appendix A. We have indicated beside each constraint of LPproblem (17) the name of the corresponding dual variable. The dual LP problem isV D;k = min V 0 + � X0�l<k vl+1 (18)subject toV 0 � ��0 ��0 � 0 : p0V 0 � ��l ��l � ��l ��l + � (v1 + � � �+ vl) � �c l; for l � 1 : pl��l � vl+1 � 0; for l � 0 : �l��l + vl � 1; for l � 1 : �l��l ; ��l � 0:Now, from Lemma 8 it is easily seen that, for any threshold value b � 0, we can de�ne a feasiblesolution f(vl;b; ��;bl ; ��;bl+1)g1l=0 for dual LP (18), by letting vl;b = ~vl;b,��;bl = ~vl+1;b 1fl < bgand ��;bl+1 = 1� ~vl+1;b:On the other hand, we further know that ~V 0;b; f(~pk;bl ; ~�k;bl ; �k;bl+1)g1l=0 and ~V 0;u; f(~pk;ul ; ~�k;ul ; �k;ul+1)g1l=0are feasible solutions for primal LP (17), for any policy u 2 U .These facts lead to our LP Value Decomposition Theorem, presented next, which gives anexact relation between the value function ~V k;u, under policy u 2 U , and the value ~V k;b under theb-threshold policy.Theorem 5 (LP Value Decomposition) For any admissible policy u 2 U, initial state L(0) =k � 0 and threshold value b � 0, the following identities hold:(a) ~V k;u = ~V k;b + 1Xl=b ~vl+1;b ~�k;ul + X0�l<b ~vl+1;b (~�k;ul � ��l ~pk;ul ) + 1Xl=1 (1� ~vl;b) (~�k;ul � ��l ~pk;ul );(b)~�k;u = ~�k;b + 1Xl=b �~�l+1;b ~�k;ul + X0�l<b�~�l+1;b (~�k;ul � ��l ~pk;ul ) + 1Xl=1 (1��~�l;b) (~�k;ul � ��l ~pk;ul );(c) ~Lk;u = ~Lk;b + 1Xl=b �~Ll+1;b ~�k;ul + X0�l<b�~Ll+1;b (~�k;ul � ��l ~pk;ul )� 1Xl=1 �~Ll;b (~�k;ul � ��l ~pk;ul ):Proof(a) We have1Xl=0 ��;bl (~�k;ul � ��l ~pk;ul ) 13



+ 1Xl=1 ��;bl (~�k;ul � ��l ~pk;ul ) = 1Xl=0 ��;bl (~�k;ul � ��l ~pk;ul ) + 1Xl=1 ��;bl (~�k;ul � ��l ~pk;ul )+~V 0;b " 1Xl=0 ~pk;ul � 1#+ 1Xl=0 ~vl+1;b "~�k;ul+1 � ~�k;ul + � 1Xm=l+1 ~pk;um � � 1fl < kg#= ~pk;u0 �~V 0;b � ��0 ��;b0 �+ 1Xl=1 ~pk;ul " ~V 0;b � ��l ��;bl � ��l ��;bl + � lXm=1 ~vm;b + c k#+ 1Xl=0 ~�k;ul (��;bl � ~vl+1;b) + 1Xl=1 ~�l;u (��;bl + ~vl;b � 1)� ~V k;b + 1Xl=1 ~�l;u � c 1Xl=1 k ~pl;u (19)= � 1Xl=b ~vl+1;b ~�k;ul � ~V k;b + ~V k;u; (20)which is the required identity. Notice that identity (19) follows by rearranging terms and noticing~V 0;b + � 1Xl=0 ~vl+1;b 1fl < kg = ~V k;b;and �nal identity (20) follows from ~V 0;b � ��0 ��;b0 = 0and ~V 0;b � ��l ��;bl � ��l ��;bl + � lXm=1 ~vm;b + c k = 0;which is a consequence of Lemma 7(a).Parts (b) and (c) follow directly from (a). 2Theorem 5 gives directly recursions relating throughput and WIP performance measures undersuccessive threshold policies, as stated in our next result. Let function g(b) be as de�ned in (30).Corollary 6 (Throughput-WIP Recursions and Invariance) For any initial state L(0) =k � 0 and threshold value b � 0,(a)[Throughput Recursion]~�k;b+1 = ~�k;b +�~�b+1;b ~�k;b+1b= ~�k;b + �� ��b g(b)��b+1 + � �~�b+1;b+1 ~pk;b+1b ;(b)[WIP Recursion] ~Lk;b+1 = ~Lk;b +�~Lb+1;b ~�k;b+1b= ~Lk;b + ��b ��b g(b)��b+1 + � �~Lb+1;b+1 ~pk;b+1b ;(c)[Invariance] suppose Assumptions 2 and 3 hold; then, for k � 0, ~�k;b+1 > ~�k;b and ~Lk;b+1 >~Lk;b; furthermore, �~�b+1;b+1�~Lb+1;b+1 = ~�k;b+1 � ~�k;b~Lk;b+1 � ~Lk;b :14



Proof(a, b) The �rst identity in both (a) and (b) follows directly from Theorem 5. The second identityfollows from equation (32) in Appendix A.(c) In Appendix A it is shown that, under Assumptions 2 and 3, g(b) > 0, �~�b;b > 0 and�~Lb;b > 0, for b � 1 (see Lemma 9). The invariance property stated follows directly from theseresults, together with parts (a, b) and the fact that ~pk;b+1b > 0, which is easily seen to hold fromits probabilistic interpretation. 2The su�cient optimality conditions of Chen and Yao (1990) follow directly from Theorem 5:They are simply the LP optimality conditions for basic feasible solution ~V 0;b; f(~pk;bl ; ~�k;bl ; �k;bl+1)g1l=0of LP (17), namely, the reduced costs of non-basic variables are nonpositive.Corollary 7 (Optimality Conditions; Chen and Yao (1990)) Suppose for a given b� � 0the marginal value function of the b�-threshold policy satis�es the following conditions:(i) 0 � ~vl;b� � 1; for 1 � l � b�;(ii) ~vk;b� � 0; for l � b� + 1;or, equivalently, the cost rate c > 0 satis�es(i') �~�l;b��1�~Ll;b� � c � �~�l;b��~Ll;b� ; for 1 � l � b�;(ii') �~�l;b��~Ll;b� � c; for l � b� + 1.Then the b�-threshold policy is optimal for control problem (12) .ProofLet u 2 U be an arbitrary admissible policy. Then we have, for a b� satisfying (i) and (ii),~V k;u = ~V k;b� + 1Xl=b ~vl+1;b� ~�k;ul + b��1Xl=0 ~vl+1;b� (~�k;ul � ��l ~pk;ul ) + 1Xl=1 (1� ~vl;b�) (~�k;ul � ��l ~pk;ul )� ~V k;b� ;where the identity follows by Theorem 5(a), and the inequality follows from conditions (i), (ii)and Lemma 16(a, b).Conditions (i', ii') simply reformulate (i, ii), taking into account the de�nition of ~vk;b. 2We present next another optimality condition, which is needed to prove part of the ThresholdProperty for this model (Theorem 6(b.1)).Corollary 8 (Optimality Condition II) Suppose for a given c < 0,~vl;0 � 1; for l � 1;or, equivalently, 1��~�l;0�~Ll;0 � �c; for l � 1:Then, optimal control problem min f~�k;u � c ~Lk;u : u 2 Ug is solved optimally by the 0-thresholdpolicy.ProofLetting b = 0 in Theorem 5(a) we have, for each policy u 2 U ,~V k;u = ~V k;0 + 1Xl=0 ~vl+1;0 ~�k;ul + 1Xl=1 (1� ~vl;0) (~�k;ul � ��l ~pk;ul )� ~V k;0;where the last inequality follows from the hypothesis that ~vl;0 � 1 for l � 1. 2Having now at our disposal the su�cient optimality conditions given in Corollaries 7 and 8,we proceed next to apply them to verify the optimality of threshold policies for the critical costparameter values, as stated in Theorem 6(b).Proposition 3 Suppose Assumptions 2 and 3 hold. Then,(a) �~�l;b�1�~Ll;b < cb� < �~�l;b�~Ll;b ; for 1 � l < b;(b) �~�l;b�~Ll;b < cb�; for l � b+ 1;(c) 1��~�l;0�~Ll;0 = � = �ck;0� ; for k; l � 1: 15



ProofPart (a) follows from Lemma 15 and Lemma 4(a).Part (b) follows from Lemma 4(b).Part (c) follows from Lemma 3(b, c). 2Now, putting together the su�cient optimality conditions in Corollaries 7 and 8 with theresults in Proposition 3 yields directly part (b) of the Threshold Property in Theorem 6.Corollary 9 Suppose Assumptions 2 and 3 hold. Then, for any admissible policy u 2 U,(a) ~�k;u � ck;0� ~Lk;u � ~V k;0(ck;0� );(b) ~�k;u � cb� ~Lk;u � ~V k;b(cb�); for b � 1.7 The time-average caseWe show in this section that the time-average version of time-discounted optimal control problem(12) can be cast and analyzed in the LP framework of Section 2 in a straightforward way, basedon our analysis of the time-discounted case.We consider now the time-average throughput and WIP performance measures��u = limT!1 1T Z T0 Eu [�(t)]and �Lu = limT!1 1T Z T0 Eu [L(t)] ;respectively, where u 2 U .The key property we shall apply is that time-average performance measures correspond to thelimits of time-discounted measures as the discount factor � vanishes, by elementary Tauberiantheorems: For any L(0) = k � 0 and u 2 U we have��u = lim�!0 ~�k;uand �Lu = lim�!0 ~Lk;u:We further de�ne the limiting marginal performance measures���k;u = lim�!0 �~�k;uand ��Lk;u = lim�!0 ��Lk;u; for k � 0, u 2 U .We are interested in solving the time-average optimal control problem�V �(c) = max ���u � c �Lu : u 2 U	 ; (21)for each c > 0.Since our analysis of the time-average case follows directly from our analysis of the time-discounted case, letting �! 0, we state the results without proof.Let us de�ne the critical cost parameters c00 and c0 = fcb0gb�1 by setting c00 = 0 andcb0 = lim�!0 cb� = lim�!0 �~�b;b�~Lb;b for b � 1: (22)The recursion shown in Figure 2 is also valid for computing the cb0's, just by letting � = 0.We present next the main result of this section, which says that, under Assumptions 2 and 3,(��u; �Lu) satis�es the Threshold Property.Theorem 6 (Threshold Property: Time-average case) Suppose capacity limits satisfy As-sumptions 2 and 3. Then, performance pair (��u; �Lu) satis�es the Threshold Property:(a) the performance pairs of threshold policies, f(��b; �Lb)gb�0, satisfy Assumption 1;(b) under any admissible policy u 2 U,(b.1) ��u = ��u � c00 �Lu � �V 0(c00) = 0;(b.2) ��u � cb0 ~Lu � �V b(cb0) = ��b � cb0 �Lb; for b � 1.16



Let us consider the model's time-average throughput-WIP achievable performance regionX = f(��u; �Lu) : u 2 Ug;and the polygonP(c00; c0;d) = �(�; L) � 0 : �� c00 L � d0 and �� cb0 L � db; for b � 1	 ;where sequence d = fdb�gb�0 is de�ned, analogously as in (3), bydb = � 0 if b = 0�� � cb0 �L if b � 1.Since the Threshold Property holds, Theorem 1 applies, giving an exact semi-in�nite LPformulation of optimal control problem (21).Corollary 10 (Semi-in�nite LP Formulation) Under Assumptions 2 and 3, P(c00; c0;d) is athreshold polygon, whose vertex set includes f(��b; �Lb); b � 0g: Furthermore,�V �(c) = max f� � c L : (�; L) 2 P(c00; c0;d)g:Furthermore, Corollary 1 of the LP framework yields the characterization of the optimalthreshold policy we present next. Let us de�ne the critical threshold function b�(�) byb�(c) = min �b � 0 : cb+10 � c	 ; for c > 0.Corollary 11 (Threshold Optimality) Under Assumptions 2 and 3 on capacity limits, controlproblem (21) is solved optimally by the b�(c)-threshold policy, for c > 0.In addition, Corollary 2 gives an analytical characterization of the Min WIP function �Lmin(�),de�ned by �Lmin(�) = min f�Lu : ��u = �; u 2 Ug = minfL : (�; L) 2 Xg:Corollary 12 (Min WIP Characterization)�Lmin(�) = �Lb�1 + 1cb0 (�� ��b�1); for � 2 ���b�1; ��b�, b � 1.A Performance analysis of threshold policiesWe present in this Appendix a number of technical lemmas on basic identities and inequalitiessatis�ed by throughput-WIP pairs under threshold policies, and which are needed in our proof ofthe Threshold Property for the model analyzed in this paper.Basic identitiesLet ��bk = 1fk < bg ��k denote the input intensity under the b-threshold policy when there are kcustomers in the system. We further de�ne,, for notational convenience, ~V �1;b = ~��1;b = ~L�1;b =~v0;b = �~�0;b = �~L0;b = 0.Our next two results are elementary, and were given by Chen and Yao (1990), so we statethem without proof. They lay the groundwork for analyzing threshold policies.Lemma 7 (Value Function Recursion) For any threshold value b � 0, the following recur-sions hold:(a) (��bk + ��k + �) ~V k;b = ��bk ~V k+1;b + ��k ~V k�1;b + � (��k � c k); for k � 0;(b) (��bk + ��k + �) ~�k;b = ��bk ~�k+1;b + ��k ~�k�1;b + � ��k; for k � 0;(c) (��bk + ��k + �) ~Lk;b = ��bk ~Lk+1;b + ��k ~Lk�1;b + �k; for k � 0.Lemma 8 (Marginal Value Function Recursion) For any threshold value b � 0, the follow-ing recursions hold:(a) (��bk�1 + ��k + �) ~vk;b = ��bk ~vk+1;b + ��k�1 ~vk�1;b +���k � c; for k � 1;(b) (��bk�1 + ��k + �)�~�k;b = ��bk�~�k+1;b + ��k�1�~�k�1;b +���k; for k � 1;(c) (��bk�1 + ��k + �)�~Lk;b = ��bk�~Lk+1;b + ��k�1�~Lk�1;b + 1; for k � 1.17



The following discussion and notation is also adapted from Chen and Yao's analysis. For athreshold value b � 1, let us write ~vb = (~v1;b; : : : ; ~vb;b)0: By Lemma 8(a) we have ~vb = Bb ~vb+hb;where hb = � ���1 � c��0 + ��1 + �; : : : ; ���b � c��b�1 + ��b + ��0 (23)and Bb is the tri-diagonal matrix de�ned byBb =0BBBBBB@ 0 ��1��0+��1+���1��1+��2+� 0 ��2��1+��2+�. . . . . . . . .��b�2��b�2+��b�1+� 0 ��b�1��b�2+��b�1+�0 ��b�1��b�1+��b+� 0
1CCCCCCA ;for b � 2, and B1 = 0: Chen and Yao (1990) show that, if���k � ���k; for k � 1; (24)then the spectral radius of Bb is strictly less than one, and hence the inverse matrix (I�Bb)�1 >0 (I is the identity matrix). Since (24) follows from our Assumptions 2 and 3 we thus have(I �Bb)�1 > 0, and ~vb = (I �Bb)�1 hb: (25)Let v̂b+1 be the �rst b components of ~vb+1, i.e., v̂b+1 = (~v1;b+1; : : : ; ~vb;b+1)0. We then havev̂b+1 = Bb v̂b+1 + ĥb+1; (26)where ĥb+1 = hb + ��b��b�1 + ��b + � ~vb+1;b+1eb; (27)and eb = (0; : : : ; 0; 1)0. Therefore, by (25) and (26),v̂b+1 � ~vb = (I �Bb)�1 (ĥb+1 � hb): (28)It can be veri�ed that the (b; b)th element of (I�Bb)�1 is det(I�Bb�1)= det(I�Bb). Hencethe bth component of v̂b+1 � ~vb is~vb;b+1 � ~vb;b = ��b��b�1 + ��b + � det(I �Bb�1)det(I �Bb) ~vb+1;b+1: (29)Lettingg(b) = ��b + ��b+1 + ���b � ��b��b�1 + ��b + � det(I �Bb�1)det(I �Bb) = ��b + ��b+1 + ���b det(I �Bb+1)det(I �Bb) > 0 (30)and d(b) = det(I �Bb)= det(I �Bb�1); with d(1) = 1, Chen and Yao show that the recursionsgiven in Figure 2 hold and, furthermore,g(b) � 1 + ���b+1 + ���b � 1 + ���b : (31)In addition, from the identities (obtained from Lemma 8),(��b+1 + �) ~vb+1;b = ��b ~vb;b +���b+1 � c(��b + ��b+1 + �) ~vb+1;b+1 = ��b ~vb;b+1 +���b+1 � c;and relation (29), the following identity follows (corresponding to Chen and Yao's equation(5.16a)): ~vb+1;b = ��b g(b)��b+1 + � ~vb+1;b+1: (32)Our next result corresponds to equation (6.5) in Chen and Yao.18



Input: � � 0; f��kg1k=0 > 0; f��kg1k=1 > 0.Output:fcb�g1b=1 (�~�1;1;�~L1;1) = 1��0 + ��1 + � (��1; 1)c1� = �~�1;1�~L1;1 = ��1d(1) = 1for b � 1:cb+1� = �~�b;b + ���b+1��b�~Lb;b + 1��bg(b) = 1 + 1��b ���b +���b+1 + �� ��b ��b��b�1 + ��b + � 1d(b)�(�~�b+1;b+1;�~Lb+1;b+1) = 1g(b) �(�~�b;b;�~Lb;b) + 1��b (���b+1; 1)��(b) = ��b ��b(��b�1 + ��b + �) (��b + ��b+1 + �)d(b+ 1) = 1� �(b)d(b)Figure 2: Critical cost parameters computation.Lemma 9 Suppose Assumptions 2 and 3 hold. Then,(a) g(b) ~vb+1;b+1 = ~vb;b + ���b+1 � c��b ; for b � 1;with ~v1;1 = (��1 � c)=(��0 + ��1 + �):(b) Sequence f�~�b;bgb�1 is positive, and satis�esg(b)�~�b+1;b+1 = �~�b;b + ���b+1��b ; for b � 1;with �~�1;1 = (��1)=(��0 + ��1 + �);(c) Sequence f�~Lb;bgb�1 is positive, and satis�esg(b)�~Lb+1;b+1 = �~Lb;b + 1��b ; for b � 1;with �~L1;1 = 1=(��0 + ��1 + �):Proof(a) By Lemma 8(a) we have(��b + ��b+1 + �) ~vb+1;b+1 = ��b ~vb;b+1 +���b+1 � c; (33)(��b+1 + �) ~vb+1;b = ��b ~vb;b +���b+1 � c: (34)Solving for ~vb;b and ~vb;b+1 in these equations, and substituting in (29) yields the result.The identities in parts (b) and (c) follow from (a). The result that �~�b;b > 0 and �~Lb;b > 0,for b � 1, follows by induction on b, since g(b) > 0. 2The following result is precisely Lemma 6.1 in Chen and Yao (1990).Lemma 10 Under Assumptions 2 and 3,(a) limb!1 g(b) = g <1 and g � 1 + limb!1 ���b ;(b) if limb!1 ��b =1, then limb!1 ��b [g(b)� 1] = �:19



The next lemma adapts and extends Theorem 6.2 of Chen and Yao.Lemma 11 Suppose Assumptions 2 and 3 hold;(a) if limb!1 ��b = ��1 <1, then(a.1) limb!1�~�b;b = 0;(a.2) lim infb!1�~Lb;b > 0;(b) limb!1 �~�b;b�~Lb;b = 0:Proof(a.1) By Lemma 9(b) and Proposition 15(b) we have0 < �~�b;b < 1; for b � 1.Hence, 0 � lim supb!1�~�b;b � 1 <1 and, taking lim sup on both sides ofg(b)�~�b+1;b+1 = �~�b;b + ���b��b ;(which holds by Lemma 9(b)) yieldsg lim supb!1 �~�b;b = lim supb!1 �~�b;b;(remember limb!1���b = 0, by Assumption 2), where g = limb!1 g(b).By Lemma 10(a), g � 1 + �=��1 > 1. It thus follows that lim supb!1�~�b;b = 0 which,together with 0 � �~�b;b proves the result.(a.2) By Lemma 9(c) we know that �~Lb;b > 0 for each b � 1, and hence lim infb!1�~Lb;b � 0:Hence, taking lim inf on both sides ofg(b)�~Lb+1;b+1 = �~Lb;b + 1��b ; (35)(which holds by Lemma 9(c)) yieldsg lim infb!1 �~Lb;b = lim infb!1 �~Lb;b + 1��1 :Since g > 1 and lim infb!1�~Lb;b � 0 the result follows.(b) This result corresponds to Theorem 6.2 in Chen and Yao's paper. What follows mirrorstheir proof: In the case limb!1 ��b <1, the result follows from part (a).Consider now the case limb!1 ��b < 1. Suppose the result did not hold. Since, by Lemma31(b, c), we have �~�b;b;�~Lb;b > 0, there would exist c > 0 such that �~�b;b � c�~Lb;b > 0, for allb � 1. Now, by de�nition of ~vb;b, this condition translates into ~vb;b > 0, for all b � 1. Rewritingnow Lemma 31(a) as��b �~vb;b � ~vb+1;b+1� = ��b [g(b)� 1] ~vb+1;b+1 + c����b+1;and taking lim inf on both sides of this identity (using Lemma 10(b)), we obtainlim infb!1 ��b �~vb;b � ~vb+1;b+1� = � lim infb!1 ~vb;b + c� c > 0:Therefore, it would be ~vb;b > ~vb+1;b+1 for b large enough and, since we assumed ~vb;b > 0, itwould follow that limb!1 ~vb;b <1, and hence the telescopic seriesP1b=1 �~vb;b � ~vb+1;b+1� wouldconverge. But this leads to a contradiction, as in the proof of part (b), completing the proof. 2We present next a new technical Lemma which is essential to our proof of Lemma 15 below.Lemma 12 Suppose Assumptions 2 and 3 hold. Then, for any b � 2 and 1 � k � b � 1 thereexist numbers k;b; �k;b � 0, with k;b + �k;b < 1, such that�~�k;b = k;b�~�k+1;b + �k;b:
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ProofOur proof is by induction on k.Case (I) k = 1. We have, by Lemma 8(b),�~�1;b = ��1��0 + ��1 + � �~�2;b + ��1��0 + ��1 + �;whence the result holds for k = 1, since ��1 � ��0. For b = 2, this proves the result.Case (II) 1 � k � b� 1, where b � 3. We apply induction on k. The case k = 1 was provenabove. Assume now the result holds for some 1 � k � b�2. Let thus k;b and �k;b be nonnegativenumbers, with k;b + �k;b < 1, satisfying�~�k;b = k;b�~�k+1;b + �k;bNow, again by Lemma 8(b),(��k + ��k+1 + �)�~�k+1;b = ��k+1�~�k+2;b + ��k�~�k;b +���k+1:Substituting for �~�k;b in this last identity we obtain(��k + ��k+1 � ��k k;b + �)�~�k+1;b = ��k+1�~�k+2;b + (��k �k;b +���k+1):Now, let us de�ne k+1;b = ��k+1��k + ��k+1 � ��k k;b + �;and �k+1;b = ��k �k;b +���k+1��k + ��k+1 � ��k k;b + �:Now, under Assumptions 2 and 3 it is clear that k+1;b; �k+1;b � 0, and, furthermore,��k (�k;b + k;b � 1) < 0 < ����k+1 + �:These inequalities imply (by adding ��k+1 + ��k+1 on both sides) that��k+1 + ��k �k;b +���k+1 < ��k + ��k+1 � ��k k;b + �;i.e., �k+1;b + k+1;b < 1, which completes the induction proof. 2Basic inequalitiesThe following elementary result will simplify our subsequent proofs.Lemma 13 Let a; b; c; d; p; q > 0. Then the following inequalities hold:(a) if a > p and b > q, then a� pb� q < ab () ab < pq () a� pb� q < pq ;(b) a+ pb+ q < ab if and only if pq < ab :Lemma 14 Suppose Assumptions 2 and 3 hold. Then,(a) �~�1;1�~L1;1 = ��1;(b) for b � 2 and 1 � k � b, ���b < �~�k;b�~Lk;b � ��1:
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Proof(a) This part follows directly from Lemma 9(b, c).(b) Let 1 � k � b. Let us write A = (akl) = (I�Bb)�1, and dk = ��k�1+ ��k+�. Then, from(25), (23) and ~vbk = �~�k;b � c�~Lk;b;it follows that �~�k;b = ak1d1 ���1 + � � � + akbdb ���band �~Lk;b = ak1d1 + � � �+ akbdb :Now, we know that, under Assumptions 2 and 3, A is a positive matrix. Therefore, �~�k;b=�~Lk;bis a convex combination of ���1; : : : ;���b. The result now follows from Assumption 2(i) and thefact that ab1 ��1 > 0. 2Lemma 15 Suppose Assumptions 2 and 3 hold. Then, for b � 1,(a) �~�b;b � ��b��b�1 + ��b + �:(b) �~�k;b < 1; for 1 � k � b.Proof(a) We apply induction on b � 1. The case b = 1 follows from the identity�~�1;1 = ��1��0 + ��1 + �:Suppose now that, for a given b � 1,�~�b;b � ��b��b�1 + ��b + �:Now, we have, by Lemma 9(b), the induction hypothesis and inequality (31), respectively,g(b)�~�b+1;b+1 = �~�b;b + ���b+1��b (36)� ��b��b�1 + ��b + � + ���b+1��b (37)� g(b) ��b+1��b + ��b+1 + �; (38)which, since g(b) > 0, completes the induction proof of (a).(b) By backwards induction on k = 1 : : : b. The case k = b follows from part (a).Suppose now the result holds for some k with 2 � k � b, i.e., �~�k;b < 1. We notice that, byLemma 12, there exist numbers k�1;b; �k�1;b � 0, with k�1;b + �k�1;b < 1, such that�~�k�1;b = k�1;b�~�k;b + �k�1;b:Therefore, by the induction hypothesis and the fact that k�1;b+�k�1;b < 1, respectively, we have�~�k�1;b = k�1;b�~�k;b + �k�1;b� (k�1;b + �k�1;b)< 1;which completes the induction proof. 2Our next result presents the linear constraints satis�ed by auxiliary performance measures.Lemma 16 The following linear constraints hold, for any policy u 2 U, initial state L(0) = kand l � 0:(a)[Input capacity constraints] ~�k;ul � ��l ~pk;ul � 0;22



(b)[Output capacity constraints] ~�k;ul � ��l ~pk;ul � 0;(c)[Flow balance constraints] ~�k;ul+1 � ~�k;ul + � Xm>l ~pk;um = � 1fl < kg;(d)[Probability constraint] 1Xl=0 ~pk;ul = 1:ProofFirst we notice that the auxiliary performance variables can be represented equivalently as follows:Let �� be a random time, distributed as an exponential random variable with rate �, independentof the system evolution. Then, we can write~pk;ul = PufL(��) = ljL(0) = kg;~�k;ul = E [�(��) 1fL(��) = lgjL(0) = kg]and ~�k;ul = E [�(��) 1fL(��) = lgjL(0) = kg] :(a)-(d) follow now easily as follows:(a) We have, since �(��) 1fL(��) = lg � ��k 1fL(��) = lg,~�k;ul = E [�(��) 1fL(��) = lgjL(0) = kg]� ��k PufL(��) = ljL(0) = kg = ��k ~pk;ul :(b) Similarly as in part (a), since �(��) 1fL(��) = lg � ��k 1fL(��) = lg,~�k;ul = E [�(��) 1fL(��) = lgjL(0) = kg]� ��k PufL(��) = ljL(0) = kg = ��k ~pk;ul :(c) This is a ow balance identity on the system state (number-in-system). For each timet � 0 let Al(t) (resp. Dl(t)) denote the cumulative number of upward transitions from state kinto k + 1 (resp. downward transitions from state l into l � 1) up to and including time t. Weconsider Al(0) = Dl(0) = 0. Now, we can write the ow balance identity for state l � 0 at therandom time �� as Al(��) + 1fL(0) > lg = Dl+1(��) + 1fL(��) > lg:Taking expectations in this identity, with respect to policy u and under initial state L(0) = k givesthe equality constraint in (c), since �Eu[Al(��)jL(0) = k] = ~�k;ul ; �Eu[Dl(��)jL(0) = k] = ~�k;ul ;and �Eu[1fL(��) = kgjL(0) = k] = ~pk;ul :(d) This follows since f~pk;ul gl�0 = fPufL(��) = lgl�0 is a probability measure. 2References[1] Baccelli, F. and P. Br�emaud (1994). Elements of Queueing Theory: Palm-Martingale Calculusand Stochastic Recurrences. Springer-Verlag, Berlin.[2] Bertsimas, D. and J. Ni~no-Mora (1996). Conservation laws, extended polymatroids and multi-armed bandit problems; a polyhedral approach to indexable systems. Math. Oper. Res. 21257-306.[3] Chen, H. and D.D. Yao (1990). Optimal intensity control of a queueing system with state-dependent capacity limit. IEEE Trans. Automat. Control 35 459-464.[4] Glasserman, P. and D.D. Yao (1994). Monotone optimal control of permutable GSMPs.Math.Oper. Res. 19 449-476. 23
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