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Abstract

We provide an overview of adaptive learning in strategic form games. We
define a general class of adaptive learning rules and show liow this class covers
most rules studied 1 the literature. We also show how evolutionary mod-
els can be integrated i this general framework. Finally, following Marimon
[60], we analyze the asymptotic behavior of adaptive learning algorithms and
characterize the equilibria that these algorithms select.




1 Introduction

In most economic and game theoretical models, agents have perfect knowl-
edge of the consequences of their actions. In order to gain this knowledge,
agents are typically informed about the actions of other players or about a
probability distribution over those actions. What happens when an agent
does not have all of this information? Consider, for instance, a decentralized
economy where agents only know their own choice sets and payoff functions.
How does an agent choose the strategy that maximizes his expected payoff
under these circumstances?

In this paper we provide an overview of the adaptive learning approach to
answering this type of question. More specifically, we study infinitely played
strategic-form games where agents behave myopically. We assume that the
players do not consider the strategic consequences of their actions. We define
a general class of learning algorithms and relate their asymptotic behavior
to known and new solution concepts. The properties of these adaptive learn-
ing algorithms can be interpreted as providing a behavioral foundation for
equilibrium theory.

An alternative approach that also attempts to provide a foundation for
equilibrium theory is the rational choice-theoretical approach. Consider, for
instance, a set of players that behave as Bayesian decision-makers. In this
case, players postulate some distribution over the unknown elements affecting
their payoffs. Further assumptions are needed, however, to reach an outcome
in which agents’ beliefs are fulfilled. For example, Aumann[4] has shown that
if players are Bayes-rational in every state of the world and if they share a
common prior, then the resulting outcome is a correlated equilibrium. All
possible joint actions that might affect the payoffs of a player are included
in the set of states over which the prior is defined.

A weaker requirement on prior coordination is that the structure of the
game and the rationality of the players are common knowledge.® If this re-
quirement is satisfled and if it is common knowledge that the players act
independently, then they will only use rationalizable strategies. That is, the
agents will only play strategies that survive the process of successive elim-

1For example, in a two player game, common knowledge of rationality means that
player one is rational and knows that player two is rational, that player two is rational
and knows that player one is rational, that player one knows that player two knows player
one to be rational, and so on ad infinitum.




ination of strategies that are not a best response to the opponents’ play.
Assumptions such as common knowledge of rationality can be used to re-
duce the set of possible outcomes, but they might not suffice to eliminate
nonintuitive outcomes. Joint restrictions on beliefs or mutual knowledge of
opponents’ strategies are needed. However, any form of joint restriction, such
as a common prior, requires a degree of coordination that might not exist in
a decentralized environment.?

If a game is played repeatedly, players might form their beliefs about
the unknown elements of the game based on their experience. Common
experience can help to coordinate agents’ beliefs and, asymptotically, the
game can have a well-defined outcome. Furthermore, in many environments,
relatively simple decision rules can be good proxies for optimal behavior.

Milgrom and Roberts [68], and Gul [36] have explored the relationship
between adaptive learning and rational choice. They show that when agents
use adaptive learning rules, they play only rationalizable strategies in the
long run. This result is remarkable in that it shows how repeated myopic
learning achieves the same result that, in a static context, requires a rational
deductive process. Furthermore, the inductive learning process does not
require the strong common knowledge assumptions needed by the rational
deductive process.

In this paper we follow the adaptive learning approach. We define a
large class of adaptive learning rules, which includes most of the learning
algorithms discussed in the literature but excludes some of the less intuitive
ones considered by Milgrom and Roberts. The class of adaptive learning
algorithms defined in this paper has three basic properties. First, every player
is most likely to use the pure strategy with the best recorded performance
at any point in time. We call this property adaptation. Second, every player
experiments with every strategy in his strategy set with positive probability.
We call this property ezperimentation. Third, the agents’ learning processes
must be imperfectly correlated. This last condition is achieved when every
player continues to play the mixed strategy played in the last period with
positive probability. We call this last property inertia.

One of our aims in providing a general characterization of the adaptive
learning algorithms is to relate and integrate different results reported in the

2For a more complete treatment of the decision-theoretic approach to game theory see
Brandenburger [10] [5].




rapidly emerging literature on learning®. In addition to Milgrom and Roberts
[68], some of the current work on adaptive learning includes Fudenberg and
Kreps [30], Krishna [58], Arthur [1] [2] [3], Jordan [40] [41] [42] [43], Brock
[11], Crawford [18] [19] [21], Miller [69], Blume [7], Blume and Easley [8],
Kalai and Lehrer [45] [46] [47], and Nyarko [75] [74]. In this paper, we do
not attempt to survey all of this work, but we do point out some elements of
adaptive learning algorithms shared by most of the learning models cited. Of
the Bayesian learning models, we only discuss those that can be integrated
with adaptive learning. We do show, however, how models of evolutionary
dynamics can be integrated in a general adaptive learning framework. In
this way, we relate adaptive learning with the expanding literature on evolu-
tionary game theory and more specifically with the recent papers of Young
[95] [24], Kandori, Mailath and Rob [50] [51] and Fudenberg and Harris [32].
Other related studies of evolutionary dynamics include Friedman [27], Can-
ning [15], Fudenberg and Levine [31], Matsui and Rob [65], Samuelson [79]
[80] [81], Cabrales and Sobel [14], Dekel and Scotchmer [22], Swinkels [86]
[87], Nachbar [72], Selten [83], Ellison and Fudenberg [23], Robson [77] and
(78] and Gilboa and Matsui [35].

We build on the work of Marimon [60], who refines the results of Milgrem
and Roberts [68] by showing that when players use adaptive learning rules
with inertia and experimentation, either the strategies played converge to a
robust equilibrium or they cycle around a set of correlated strategies that be-
long to a robust-recurrent set. These robust-recurrent sets are proper subsets
of the set of rationalizable strategies, and in games, such as the battle of the
sexes®, where the entire game is rationalizable, the only robust-recurrent sets
are the two pure strategy equilibria. In such a game, the play of adaptive
learners converges, with probability one, to one of the pure strategy equilib-
ria. In this paper, we illustrate these convergence results and we show that,
within our general class of adaptive learning rules, the evolution of play is
sensitive to the specific algorithm used and to its parameterizations.

The paper is organized as follows. In Section 2 we discuss some general
features that characterize adaptive learning. In Section 3, we formalize our
general class of learning algorithms. In Section 4, we show how evolutionary

31n taking this approach, we follow David Kreps’s advice [57] contained in his comments
to our earlier paper on learning using Holland’s Classifier Systems [61].
4See Section 2 for a description of the battle of the sexes game.




environments in which agents are matched can be mapped into the framework
described in Section 3. In Section 5, we analyze the relationship between
the asymptotic dynamics of adaptive learning and the refinements of Nash
equilibria; we illustrate this relationship with different simulated examples.
Finally, Section 6 concludes the paper.

2 General Features of Adaptive Learning

Before proceeding with the specifics of the learning algorithms, we illustrate
some aspects of adaptive learning with a simple example. Game 1, 'y, is the
strategic form game commonly known as the battle of the sezes. The payoff
matrix for I'y is described below, where @ > 1. In this game, coordination is
achieved either by an explicit mechanism or by learning from past experience
when the game is repeated.

F] %) bg
a1 | a1 0,0
b |00 1,2

Milgrom and Roberts [68] consider a class of learning algorithms that
converge to the serially undominated strategy profile. In the battle of the
sexes example, every strategy is serially undominated. Milgrom and Roberts’
class of algorithms is described as “adaptive” because players only assign
positive weight to strategies that are the best response to strategies observed
during a finite past history of the game.’ They show that this is enough to
guarantee that only rationalizable strategies will be played asymptotically.
Further, if the sequence of play converges to a pure strategy profile then this
profile must be a Nash equilibrium. This not withstanding, the class of rules
that Milgrom and Roberts consider also includes some algorithms that can
hardly be called adaptive in the sense of conforming to the best response.
Consider, for example, that player 7 observes his opponents’ play and uses the
following rule: in period t, player 2 checks the past history of his opponents’
plays, {¢_it-m,---,C_it-1}, Where c_;, is the pure strategy profile played
by i’s opponents in period t. Player z then assigns uniform weight to every

SAn alternative definition of the adaptive learning analyzed in this paper is provided
in Section 3.




strategy which is a best response to some strategy profile previously played
in the given finite history of the game. This rule is adaptive in the Milgrom-
Roberts sense, but it postulates a form of behavior that may not conform
to the best-response map. Consider the battle of the sexes game, if player 1
observes that player 2 has chosen strategy a; m — 1 times out of the last m
plays and strategy b, only once, he still plays strategies a; and b; with equal
probability. It seems more reasonable to think that proper adaptive behavior
would assign a higher probability to a player repeating the strategies most
frequently played. This last type of behavior its more likely to coordinate
plays and beliefs.

But just conforming to the best response map may not be enough to
result in this coordination of plays and beliefs. For example, if both players
follow a rule that instructs them to play "best response to the previous play“
may result in lack of coordination or cycles. In the battle of the sexes if
the players start by choosing strategy (a, b2) the following period they will
play the best response to this strategy which is (a;,b1) to which they will
respond by playing again (a,, b;) and so on. As a result, they never coordinate
their responses and they always receive a payoff of zero. In this case, bcth
players are being extremely reactive to each other’s play but they are not
realizing that they are being continuously misled. The problem, however. is
not that the players are overreacting in the sense that they are only taking
into account the previous period play. If they were to respond to a frequency
distribution of plays, the same lack of coordination could also arise (see, for
example, [95] and [43]).

Further, this lack of coordination is robust to perturbations as long as
both players revise their strategies concurrently. To illustrate this point,
consider the following modification of the Cournot rule. In period ¢, player 2
plays, the (pure) strategy that he played the previous period with probablhty
1 — p¢, and he revises his strategy with probability p;. Whenever he revises
his strategy, he chooses the best response to the opponents’ last move with
probability (1 — ¢) and any other available strategy with probability ;.
In this algorithm, 1 — p; denotes the player’s inertia and parameter ¢ the
experimentation rate. Table 1 shows the transition probabilities that obtain
in the battle of the sexes when both players follow this modified Cournot

rule. The states are the four possible joint plays ( c7) where ¢ is the state
in which player 1 plays strategy ¢ and player 2 plays strategy j.




Table 1. Transition probabilities for the modified Cournot rule in T;.

p(CUlckI) Cll Cl? c21 622
(1—pe)?
'l +2p,(1— pi)(1 = &) pi(1— pr)e pi(1 — pe)e
+oi(1 — &) toie(l—e) | +ple(l - e) pied
(1-pe)?
ct? pe(l—p)(1—€) | +2p(1 ~ pr)e; pe(l — pe)(1 — €)
+pie(l — &) +oiel pi(l—e)? +oie(l — e)
(1-pe)?
c?! Pt(l—Pt)(l “‘ft) +2Pt(1—Pt)€t Pt(l —Pt)(l—ft)
+oie(l — e)? pi(l — e)? +oie; +pie(l — &)
(1-pe)?
c?? pe(1 — pr)e pe(1 — pi)e +2p:(1 = pe)(1 — &)
i g thall—q) | +plallmea) | +al—e)?
- p(e7]) (1~p)? + 0} (I=p)+0] | 1=p) + 0} (1-p)" + 4}
+4p:(1 — p)(1 —€) | +4pe(1 — pe)er | +4pe(1 — pr)er | +4p:(1 — pi)(1 — €)

Notice that in the case where there is no inertia, i.e., where p, = 1,
the four states occur with equal asymptotic probability and both players
get an average payoff of (a + 1)/4. While this result is better than the one
obtained without experimentation, the players are still not learning to fully
coordinate their actions. This result arises because both players are revising
their strategies simultaneously and, as a result they are being systematically
misled. However, when there is some degree of inertia i.e., where p, < 1, the
play will converge to one of the two pure strategy Nash equilibria (ay, b;) or
(as, by) with probability one.

Inertia is a particular form of what we call “imperfectly correlated learn-
ing.” This feature of learning algorithms results in a weak form of station-
arity in the environment. If the players constantly change their strategies,
no player can devise “tests” to find a strategy that performs well. Inertia
introduces stationarity by guaranteeing that with positive probability, the
(mixed) strategies of player i’s opponents remain fixed in the period imme-
diately following a revision of i's strategy with positive probability.

There are other forms in which stationarity can be introduced in the
model. Young [95], for example, assumes that players learn on the basis of
a sample of previous plays. That is, players take a sample of length k of the
last m plays (k < m). A low enough k/m ratio introduces inertia in Young’s
algorithms.




In the learning environment that generates the transition probabilities de-
scribed in Table 1, experimentation plays only a minor role in preventing the
coordination problem. In general, however, the choice of the sequence {&} is
an important determinant of both the learning dynamics and the resulting
strategy profiles. Experimentation guarantees that all possible strategies are
tried and may enable the players to find the global maximum between mul-
tiple local maxima. Experimentation is especially important when players
do not know their payoffs at the outset or when they do not observe their
opponents’ play.

In summary, the battle of the sexes highlights the three properties that
are needed in this class of learning algorithms to ensure convergence to one
(strict) Nash equilibrium in these simple coordination games. First, the
learning rules must be adaptive in the sense that they conform to the best
reply map. Second, there must be some experimentation. Third, the players’
learning processes must be imperfectly correlated in order to allow for some
degree of stationarity. In the next section we formalize these properties and
define our general class of learning algorithms.

3 Adaptive learning algorithms

In this section we characterize a general class of learning algorithms that
have the three stated properties: adaptation, experimentation, and imperfect
correlation. We then discuss three specific subclasses which encompass most
learning algorithms discussed in the existing literature. These subclasses have
different formulations of adaptation, experimentation and imperfect correla-
tion and different assumptions about agents’ information of the past history
of play.

Before stating formal definitions, we introduce some notation. A strategic
form game is denoted by I' = {(C},n;),7 € I}, where C; is the set of pure
strategies of player 7 and 7, is his payoff function. Player ¢ receives a payoff
of m;(¢ei,c—i) when he plays ¢; and his opponents play c_;. Unless we state
otherwise, I is a finite set of players. Let n; = #|C;| be the number of pure
strategies for player ¢; C = () x ... x Cr is the set of joint strategies;
A(C;) is the set of mixed strategies for ¢; and A(C') is the set of correlated
strategies. Then, E, 7, is the expected payoff for 1 if the correlated strategy o
is played. If player i's opponents play o_;, then his best response is By(o_;),




where
B,’(G’_,') = {G’,‘E A(C,) : E(,‘.,,,_‘.)W,'(C,‘, C__,') > E(&‘.',_‘.)W,'(C,', C_,'), V&, ¢ A(C,)}

We consider infinitely played games, I'o,. Let F; be the o—field generated
by all possible sequences of play of I'o, up to period t. In particular, if ht
denotes a sequence of play up to period ¢, then h* = (T, 00, co, .., 0¢~1, Ct—1)-
That is, h* describes all the information that may be available up to period
t. In general, players have limited information about the game being played
and F;. represents the information known by player ¢+ at the beginning of
period t. We assume perfect recall; F;, includes at least player 2’s past
history of play, although, as we will see, specific algorithms may only use
finite memory. We are also interested in computing finite frequencies of play.
Let fii(coio,-.-,C-im-1) be the frequency of the opponents’ joint strategy

1,m

profile, ¢_;, in the last m plays of the game. That is, f,—,:(c—.‘,o, ey Coimet)
= (1/m)¥r=m ! xe_(c_in), where xz_,(-) is the indicator function of the
strategy profile ¢_,. The vector of frequencies for player : over m plays 1s,
therefore, fim : C™ — A(C_,).

An adaptive rule 1s defined by a sequence of behavioral strategies which
are measurable with respect to a player’s available information.

Definition. A process A; = {4;.}{2, defines an adaptive rule if:
i. Aig: Foo — A(C;), and

1. A, 1s measurable with respect to F;,
We can now provide a formal characterization of adaptive learning rules.

Definition. An adaptive rule 4; is said to be consistent with adaptive
learning with experimentation if,

i. (Ezperimentation) there exists {€;,}, €¢ € (0,1),3 2, €y = +00
such that, for every ¢, 0,4(ci) > €y, Ve, € Cy, and

it. (Adaptation)  for every h' there exists m such that, if ¢ ¢

Bi(fim(ceigy- - yccitrm-1)) and & € Bi( fim(city-- -y Coittm—1))
then

HI

Oit+m(C:)

Titrm(E:)

p[Zem el ] <

1

>

Oit+m+1

whenever 0; 4 1m(&) > €it4m




This definition implies that the adaptive rule must move in the direction of
the best response map, given past frequencies of play. It does not require the
players to choose the best response. As we will see, this general definition
defines a wide class of learning algorithms, including most of those studied
in the existing literature. The function f;,, in the definition of adaptive
learning with experimentation need not be the frequency map €.

As we argued in Section 2, the above class may be too large. For example,
it includes the possibility that too much coordination in the learning process
may lead to too little coordination of actions and beliefs. If the starting point
1s one in which players make decisions in a fairly uncoordinated fashion, it
1s not a strong restriction to assume that learning rules must be imperfectly
correlated. The following condition imposes the necessary stationarity in the
environment.

Stationarity Given a player ¢, there exist positive numbers {7, ;}, satisfying
S iegmie = oo, such that for every ¢ and history of play, up to period ¢,
and for every c;,
PTOb{U—i,tH :O'—i,c} > Nig

We can, alternatively, define a condition in terms of inertia of a single
agent learning process®. Formally,

Inertia Given a player 1, there exist positive constants, v, ¢, 372, 'y{'t = +o0,
such that for every ¢t and history of play, up to period t, and for every
C_it
PTOb{O'i,tH :O'i,t} > Vit

Notice that i) inertia implies stationarity, and that 1) ezpertmentation does
not imply inertia. Experimentation only requires that every pure strategy,
and in particular the last period strategy, must be played with probability at
least €. In contrast, inertia bounds the probability that the player changes
his mixed strategy.

5We could alternatively consider some arbitrary strictly monotone order statistic, e.g.
a map fim : C7 — A(C.;) such that ff,:n is strictly increasing with respect to xz_..
For the algorithms studied in this paper, there is no loss of generality in considering the
frequency map.

10




Definition. An adaptive rule A4; is said to be consistent with adaptive
learning with inertia and experimentation if it is consistent with
adaptive learning with experimentation and satisfies the inertia condi-
tion.

We now consider three subclasses of adaptive learning rules and in Sec-
tion 4 we show how most evolutionary learning algorithms can be mapped
into adaptive learning algorithms. The difference between subclasses i1s the
specification of information set of a player 7 at ¢, F,, and the process by
which this player chooses o;;. A particular learning algorithm is defined
by a specification of (F;, €i¢, pit,0i¢). As we will see, most of the learning
algorithms studied in the literature are specific elements of these subclasses.

3.1 Best-Reply Learning

This subclass includes variants of Cournot’s rule, fictitious play, and Bayesian
learning. The following information structure (F;.) is assumed. Agents
know their own payoffs but not necessarily the payoffs of their opponents.
They observe the realized actions of their opponents. Given that the playzrs
observe their opponents’ past history of play, they can use these frequencies
of play as a basis to form their expectations.

Consider first the choice of strategies for player 1. For a sequence of
numbers, {a;,}, oy € [0,1], and a mixed strategy z; € A(C_;), define the

sequence of vectors z;, € A(C_;) recursively by zf_, = Z¢,
mf,t = mf,t——l + ai.t(Xf(C—i.t) - mf—,t—l)
where zf, is the element of z;, associated with strategy ¢ and xc is an in-
dicator function such that x:(¢) = 1. The vector z;, can be thought of as
player ¢’s beliefs about his opponents’ mixed strategies in time ¢. The class
of best-reply learning algorithms is defined as follows. Player i chooses his
behavioral strategy at ¢ according to the following rule:

e with probability p,,, choose 6;; € Bi(zi¢—1) and let

€t if 6;4(c) < €y
o(ci) = Fie(ci) (1 = ¢ therwise
Z{&‘, .(é;)>¢;,¢}5""(5‘) ( E..t) otherwi

where € = €;¢ X #{0: (&) < €} and

11




of g; and not its arguments. This class of problems includes many of the
environments for which we have experimental evidence.”

In the previous subsection we have discussed the special case where £ =
C_; and g; is the identity function. Therefore, we can define a class of learning
algorithms for this class of games as in the previous subsection. Briefly, let
Fi . represent all the information available to player : up to period t, which
now includes his own payoffs, his own history of play, and the history of the
public outcome. Define a sequence of vectors z; € A(E), for a given sequence
of numbers, {a,}, ;¢ € [0,1], and a Z; € A(E), by z{_, = &}

mf,t = mf,t—l + ai.t(Xé(ei.t) - mf,t-—l)

where mf’, 1s the element of z,; associated with the public outcome € and ¥,
is an indicator function such that xz(e) = 1.

In this case, player z forms beliefs about the outcome e, in period t. The
definition of competitive learning assumes the same behavioral strategy as
in best-reply learning with the best response map defined over the sequence
of vectors z; € A(E) instead of z; € A(C_;). Lemma 1 has the following
corollary.

Corollary. Assume 32,0t = 400, Y2g €t = +00, Ysoo(l — pit) = +00
and that i’s payoffs can be represented by =, : C; x E — IR where
gi 1s some function, g; : C — E and E is a finite set. Competitive
learning rules are consistent with adaptive learning with inertia and
experimentation.

Example 5. Coordinating Efforts. Set gi(c;,c-i) = min(c;,c—;), a;¢ and
z;, as in Examples 1-4, and let E be a finite set of possible production
outputs.

Example 5 is an example studied by Bryant [13]. Each player chooses a level
of effort in production of a public good. The payoffs to : depend on i’s own
level of effort and the amount of the good produced. In this case, the number
of goods produced is equal to min(c,, c_;) where ¢; is the input of 7 and c_;
are the inputs of ¢’'s opponents.

"See, for example, van Huyck et al. [91] [92], Cooper et al. [17] and Friedman [28].
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3.3 Adaptive Evolutionary Learning

By adaptive evolutionary learning, we mean a class of learning algorithms
that assumes players have minimal information about the evolution of the
game. Here we assume that players know their own number of pure strategies
and can observe their own realized payoffs. They do not observe the actions
or payofls of their opponents. These informational assumptions are captured
by the sequence {F;.}: for each player 1.

Players assign a measure of performance to each strategy based on its past
payoffs. We call this measure the “strength” of a strategy. The term strength
has been used in describing optima found by applying genetic algorithms;
genetic algorithms rely on the ideas of genetics to find global solutions to
optimization problems. Let S;:(c;) be the strength or value assigned by
player @ to strategy ¢; in period t. The strengths are updated using the
average realized payoffs as follows:

Siale) = { Sii—1(c) — m(s,-,t_l(ci) — m(c, c_,-)> if 7 plays ¢;

Sit—1(c) otherwise.

The function 7, 4(c;) is the number of times that strategy ¢, was played be-
tween the period of the last revision of 7’s mixed strategy (i) and pericc t.
The “clock” is updated as follows:
Tit—1(c;) +1 if 7 plays ¢; at ¢
mi(ci) = : . ;
7ie-1(ci) otherwise.

The strengths are used by the agents to evaluate and revise their different
strategies. In particular, we assume that mixed strategies evolve as follows:

. . Sie—1(si) : .
- {U,,t—1(c,) T et ()5 (@) with prob. p;,

Gi4(ci) =
oii-1(c) with prob. 1 — p;;.

The sequence {p;.} determines whether or not player @ revises, or, in the
language of genetics, reproduces, his current strategy. If player : does revise
his mixed strategy in period ¢, all of the clocks are reset, i.e. 7::(c;) = 1, for
all ¢;.

There is some probability that player : experiments with different strate-
gies. As in the previous algorithms, the sequence of {¢;,;} governing experi-

14




mentation is such that

{ €t if &i,t(ci) < €t

Ui,t(C.‘) =

&ie{ci) iR (1 —¢€,) otherwise
{8; ¢(&;)>e; 3 12N

where &, = €, X #{6.:(¢) < €4}, & € (0,1), and ¥, € = +o0.

Lemma 2. Assume Y2 €, = +00,3 so0(l — piy) = +00. Adaptive evolu-
tionary learning rules are consistent with adaptive learning with inertia
and experimentation.

A proof of Lemma 2 follows from the observation that for every h! there
exists a m such that if & ¢ Bi( fim(c_it, ..., coitsm-1)) and & € Bi( fim(c—ir,
.y Cit+m—1)) then

Si,t+m(5i) Us‘,t+m(5i)

p;,t+m+1 S{,,t+m(é") U"t+m(é")

Ui,t+m(éi)<0i,t+m(éi)
Oitem(G)  Oirm(&i)

+ (1 — P.’,t+m+1)

or Sit+m(€) < Sit4m(&). It 1s always possible to find an m satisfying this
inequality. Notice that if player ¢ revises his strategy in some period between
t and t + m, the above inequality is satisfied.

We can now describe several examples of adaptive evolutionary rules. We
first set some initial conditions. For example, let (o, 0(ci), 7i0(ci), Sio(ci)) =
(nii, 1,0) for all ¢, c;.

Example 6. Fzogenous Reproduction and Ezperimentation. Set p;, = 1/tP¢,
€t = l/tq‘, P <1, q < 1.

Example 7. FEzogenous Reproduction (m periods). Fix an integer m. Set
pit = p for some constant p € (0,1) if t = n - m, for some integer n,
and p,;, = 0 otherwise.

In all of the above examples, the algorithms have important parameters,
such as the probability of revising strategies, that are exogenously given.
In this sense, the algorithms are a fairly crude approximation to human
learning. It seems more reasonable to assume that learning parameters are
endogenously given. For example, one might think that “we change our
mind when our mind is at odds with reality.” The following algorithm tries
to capture this feature.

15




Example 8. FEndogenous Reproduction (or Entropy). The relative entropy
of v with respect to v 1s given by

k
H(v, v) = Zuk-logu—k > 0.
ko v

Notice that, H(v, v) = 0. Define p;; endogenously as follows:

H(Gi411, oiy)

14+ H(Gig41, i)

P(&i,t+17 Ui,t) =

where &;411(c,) 1s the new mixed strategy that would have had resulted
if player » would have changed his strategy, 1.e.,

Sie(ci)
& 0ie(6)Sie(&)

In other words, if the current play suggests that the strategy used by
player 2 should be very different from the one being played, then it
should be revised with very high probability. That is, the status quo
strategy is revised with high probability when the current test results
in a very different strategy.

Gier1(ci) = - (i)

4 Alternative Matching Environments and
Evolutionary Dynamics

We are interested in relating and integrating models of adaptive learning and
models of evolutionary dynamics for two main reasons. First, the Darwinian
dynamic process known as the “survival of the fittest” can also be viewed
as a process of social learning. Second, because both types of models have
similar underlying features and dynamic properties, they can be analyzed
with a common framework.

A standard evolutionary model consists of the following elements: ) a
payoff matrix; 7) a set of players, often identified by their strategy spaces;
i17) a matching technology that describes the interaction between players; 1v)
a specification for the “replicator dynamics” which determine the growth rate
of the population that is using a given strategy, i.e. in evolutionary models,
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the fraction of agents using a particular strategy grows or decays depending
on the performance of their strategy relative to that of the average strategy,
and these changes are reflected in the replicator mapping; and v) some form
of individual or social experimentation, such as mutation in genetic models.

Most evolutionary models complement these features with the assump-
tions that individual players are both atomistic and myopic. Players are
assumed to have no influence on the social outcome and to take no account
of the future evolution of the environment. That is, they do not take into
account the strategic effects of their actions.

The competitive assumption that players are atomistic has two main com-
ponents. The first component is behavioral or subjective and it strictly im-
plies that individual agents do not take into account the strategic effects of
their actions. The second component is environmental or objective and it
implies that the actions of individual agents do not have aggregate effects.

It is precisely this environmental component of the competitive assump-
tion that is sometimes used as a partial rationalization of the assumption
of myopic behavior. If a player cannot influence the social outcome, then
there is no strategic effect to take into account. In evolutionary and adaptive
learning models, however, myopic behavior is also taken to mean that agents
do not follow well-defined deductive processes in forming their expectations
about the future course of the economy or the game. But in rational ex-
pectations competitive equilibrium models, agents do not behave myopically
even though their individual actions have no effects on the social outcome.

In most evolutionary models, players are randomly matched before each
play of the game. On the other hand, in most learning environments, and
certainly in all environments considered in Section 2, this is not the case.
In spite of this difference, adaptive learning and evolutionary dynamic mod-
els have many features in common. We highlight the following. First, both
types of models assume that players behave myopically. While it can be
argued that in learning models with a small number of agents, individual
actions affect social outcomes and players have incentives to be more sophis-
ticated, it should be noted that this is also the case in evolutionary models
with finite populations. Second, in adaptive learning, agents tend to as-
sign higher probabilities to strategies with better recent performance. In
this sense, adaptive learning provides a foundation for replicator dynamics.
Third, by introducing a matching technology, the learning models described
in Section 3 become standard evolutionary models albeit with possibly finite
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populations. Finally, some matching technologies and some forms of social
experimentation in evolutionary models are isomorphic to some changes in
the inertia and experimentation parameters of learning models with a fixed
and constantly matched set of players. In this section we discuss these issues
briefly and in the process of doing so we comment on some recent work in
evolutionary game theory.

Before we proceed we need some additional definitions and assumptions.
In general, we consider games with I types of players. Two players are defined
to be of the same type, say type 1, if they have the same set of actions and the
same payoff functions, (C;,7;)®. Unless otherwise stated, we only consider
games with a finite number of types I and a finite number of players J. Let
r; be the fraction of players of type 7, then m; = J x r; is the number of
players of type I.

An additional assumption in the evolutionary context is the application of
the standard expected utility hypothesis. An implication of this assumption
1s that the interdependence of the players’ actions in their payoft functions
can be aggregated by player-types to obtain a simple and convenient form.
For example, the expected payoff for player j of type 1 playing c;; when his
opponents play c_(j1) s Leec, *** Lesec; Ha(c2) X - x pr(er) mi(esn, e-(i))
where 7 : C +— R for C = C; x ... x C, and where p;(c;) is the fraction of
players of type @ that play the pure strategy ¢;. In this case, therefore, the
fraction of agents playing a pure strategy c;, pi(c), in the evolutionary for-
mulation of the model, is isomorphic with the mixed strategy, o;(¢;), played
by agent z in the standard game theoretic formulation with I players.

Using this 1somorphism between fractions of players in evolutionary mod-
els and mixed strategies in standard games it is easy to see how adaptive
learning can provide a foundation for replicator dynamics. A standard prim-
itive of evolutionary models is that the fraction of players using a particular
strategy evolves according to a law of motion of the form

,U'i.t+1(E{) o h( E(E.'.U—;,c)"ri(ailc—i) )
pie(S) E(u.«,.,u_,-,.)m(ci, c_i)

where h : R — R is an increasing differentiable function with A’ > 1. The

above equation implies that, p;(&) has a positive growth rate as long as the

81t should be noted that in evolutionary models, a “type” or a “phenotype” usually
refers to the fraction of players of a specific game theoretical type who play the same pure
strategy. In this paper we use type in the game theoretic sense.
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expected payoff to strategy ¢; is greater than average. Moreover, if we take
h(z) = Bz, for some constant § > 1, then we obtain

pigr1(&) _ Eeo s 0Ti(Gh coi) pia()

pie1(&)  Eao;omi(&i,c-i) pie(&)

which satisfies our hypothesis of adaptive learning. Conversely, our hypothe-
sis of adaptive learning can be shown to result in a type of replicator equation
that determines a similar law of motion for the fraction of players.

In models with a continuum of players, where one player of each type
is randomly selected to play the I-players game, the above isomorphism
between fractions of players and mixed strategies is justified by the law of
large numbers. In this case, the expected payoffs of the randomly selected
players will be determined by the fractions of players of each type that would
be playing a given strategy. It could be argued, however, that when agents are
myopic they take into account current and past payoffs rather than expected
payoftfs. To justify the use of the expected payoff computation in this case,
consider the following cases. First, consider a modification of the above
model where players are randomly matched in samples of I distinct types and
then compute the average payoff of each sample. In this case, we would be
computing the expected payoff of a cross-section of myopic players. Second,
use this same modification of the model and compute the expected payoff
of the time-path of an individual that is constantly matched with random
independent samples of the same population. In this case, we would be
computing the expected payoff of the time series of an agent’s payoffs. The
first case corresponds to the standard analysis of evolutionary dynamics while
the second case is a study of individual learning as described in the previous
section (albeit simplified by the fact that the actions of any individual player
have no effect on the actions of the others).

To illustrate the isomorphism between the adaptive learning model and
the evolutionary model, consider two types of agents playing the battle of
the sexes game (I';). Suppose that we have a continuum of agents of each
type and that, every period, every agent of one type is randomly matched
with one player of the other type. Suppose further that every agent plays
the best response to the strategy played by his opponent in the previous
period. In this case, the evolution of the population strategies is deter-
mined by the transition probabilities of the learning algorithm described in
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Table 1. The probabilities of inertia and experimentation in the adaptive
model correspond, respectively, to the fraction of agents that do not change
their strategies and to the fraction of agents that experiment or “mutate” in
the evolutionary model.

In general, however, player populations are finite. Consider the case where
there are m players of each type, and where I players, one of each type, are
successively and randomly matched m times before they revise their strate-
gies. This model of matching and learning can be shown to correspond to
either one of Examples 2 and 7 of Section 3 depending on how players choose
to revise their strategies. The only difference between the examples of Sec-
tion 3 and this case is that, now, the strategy of an opponent is not a unique
mixed strategy but, rather, the average mixed strategy of the m players.
Since this average is also a mixed strategy, it follows that the dynamic anal-
ysis of this case is the same as in that of the adaptive learning examples.

The competitive models of Section 2, are yet another example of models
where evolutionary and learning dynamics can be easily integrated. Indeed,
taking population fractions as given is a very simple form of dependence of the
individual payoff functions on an aggregate statistic. Furthermore, macroe-
conomic applications of coordination problems often have the formulation
of random pairing of agents taking a particular action. By introducing th:s
random pairing in Example 5, for instance, we obtain a version of Diamond’s
search model.

While an evolutionary model with I types can be easily mapped into a
game with I players, many evolutionary models have only one population
or type. In this case the mapping requires symmetry of the payoff matrix.
Consider, for example, the “Hawks versus Doves” example. {See Maynard

Smith [66].)

Example 9. Hawks versus Doves. Consider the game, I';, with payoff ma-
trix given by

Fz a2 bz
a; | 1,1]42
by | 2,433

Hawks play a while doves play b. In this case, ] = 1 and the expected utility
for i playing ¢; is Y. .cc_, #(c_i)mi(Ci, c_i) where p(c_;) is the distribution
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over strategies of :’s opponents. If there are two populations of players re-
peatedly matched, then u(c_;) is the distribution for the population of 7’s
opponents. If there is one population, p is the distribution for the single
population. Therefore, in the case of a single population, the action of a
player affects his own distribution. As we show below, the nature of the
matching technology can play an important role in the outcome of the game.

Assume that players are randomly matched. In this case, the dynamics
of the model depend crucially on whether there are two populations repeat-
edly matched against each other or a single population from which pairs are
extracted and repeatedly matched. We attain convergence to one of the two
strict Nash Equilibria regardless of whether we have two fixed players re-
peatedly playing against each other or whether we have random matchings
of players extracted from two different and fixed populations. In the case
where there is only one population, there is convergence to the mixed strat-
egy equilibrium which is the unique evolutionary stable equilibrium of the
game. Figure 1, plots the frequency of play for strategy (b1,a;) for simu-
lations of the two alternative models. In the first model, there is only one
population of agents from which random matches are made and the game
is then played. The series denoted “one population” reports the frequency
of play in this case. The second model assumes that matches are made be-
tween agents extracted from two different populations. The series denoted
“two populations” shows that this economy converges to the Nash Equilibria
where player one becomes a dove (i.e., ends up only using the b strategy)
and player two becomes a hawk®. Note that although we are comparing two
environments which use a matching technology, we can also mimic the re-
sults of the two populations case with two fixed players who use the learning
algorithms described in Examples 2 and 7 of Section 3.

There are, however, some evolutionary models, that are not easily mapped
into the general learning model of Section 3. But, as we will argue, this re-
sult arises from some of the special assumptions made in those models. For
example, the special assumption that an evolutionary process is a stationary
Markovian process is very convenient because one can use the theory of sta-

91In our simulation, the single population has 50 agents. Experimentation and inertia
are described by ¢; ; = .l/t% and p;; = .99fort = 50n,n=1,2,...and p; ; = 0, otherwise.
The initial conditions are {0y o(c:), mi,0(ci), Sio(ci)) = (%, 1,0) for all %, ¢;. In the case of
the two populations, each of them has 50 agents of one type and set €, pi:, and initial
conditions are the same as in the single population case.
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tionary Markovian chains in the analysis of finite games. Unfortunately, this
assumption severely restricts the types of environments that can be studied.
We have already discussed a version of Markovian dynamics in our example
of the battle of the sexes. To make the environment stationary, it is enough
to assume that the probabilities of inertia and experimentation remain time
invariant. Unfortunately it is not so obvious why inexperienced players at
the beginning of playing the repeated game should play in the same way as
when they gain experience. To justify this form of stationary experimen-
tation Canning [15] and Fudenberg and Levine [31], for example, include a
fraction of newly born and inexperienced players who enter the game at every
stage.

The dynamics for learning models and evolutionary models with finite
populations are typically path-dependent. With a finite number of players,
even when there is random matching, the experience of every player depends
on the pure strategies played by each of his opponents. The particular sample
or realization that a player experiences affects his behavior and, therefore,
the social outcome. In this way, play becomes naturally correlated. To
make a model Markovian, one must somehow eliminate this source of path
dependence.

Having a very large but finite number of agents does not, in general,
eliminate path-dependence!®. To make their model stationary Markovian,
Kandori et al. [50], [51] assume, in addition to constant inertia and experi-
mentation rates, a complete matching of the players. In other words, after
m periods, every player has played against all the players each of whom uses
a pure strategy that remains unchanged throughout the m periods. On the
other hand, Young [95] assumes that players behave as statisticians taking
samples from their finite past histories. This randomization device, which as
we have seen in Section 2 introduces inertia into the model, can also suppress
the sources of path dependence and reduce the model to a stationary Marko-
vian model. Other ingenious devices, such as population renewal, have also
been tried. But, as is usually the case, the gain in analytical tractability is
obtained at the expense of restricting the environments.

The study general adaptive learning models that allow for path depen-

10As Boylan has pointed out in the context of evolutionary models, one must be careful
not to abuse the law of large numbers even in cases when there is a countable number of

players[9].
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dence is not as much an issue of elegance and generality. On the contrary, it
should be noted that the dynamics of learning and evolution can be crucially
sensitive to the choice of modeling technique. As we will see in the following
section, the predictions of a stationary Markovian model with experimenta-
tion that is constant through time (¢, = € for all t) do not correspond to the
predictions of the general adaptive model with time-dependent experimenta-
tion and with €; approaching to zero.

5 Learning and Equilibrium Selection

There are at least two reasons why we are interested in studying learning in
strategic form games. First, even we would like to determine the asymptotic
properties of learning in a larger class of economic environments, the simple
structure of strategic form games provides a good starting point. Second, in
games with multiple equilibria, we would like to be able to characterize those
equilibria that can be selected by the process of learning. In this section, we
study the asymptotic properties of the class of adaptive learning algorithms
studied in Section 2; for the most part, we follow Marimon [60]. We assume
here that the learning rules are consistent with adaptive learning with inertia
and experimentation. We also assume that experimentation decreases over
time, i.e. €, approaches 0.
We want to complete and make precise the following statements.

. If play converges to a strategy profile, then the strategy profile is

11. If a strategy profile 1s a
stable.

, then the profile 1s asymptotically

111. With probability one, play converges asymptotically to a set of
strategy profiles which is

w. If the game has
___ profile.

, then play converges with probability one to

Different learning processes will imply different results to be filled into the
above statements. Notice the difference between these statements. The first
characterizes the outcome that can emerge from learning. The second says
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that a particular profile has the following property: for some neighborhood
of this profile (in A(C)), learning processes with play in this neighborhood
converge to that profile. Statements 7 and 12 are local convergence results.
The third only guarantees that asymptotically play will remain in a certain
set (in C). The fourth statement provides a global convergence result for
learning by restricting the class of games under consideration. There are
known weak forms of these statements.

1. If play converges to a strategy profile, then the strategy profile is
a Nash equilibrium.

11. If a strategy profile is a strict Nash equilibrium then, it is asymp-
totically stable.

1. With probability one, play converges asymptotically to a set of
strategy profiles, which is the set of rationalizable strategies.

1. If the game is acyclic, has a unique Nash equilibrium and it is
strict, then play converges with probability one to the equilibrium
profile.

The first result has been labeled the folk theorem of the learning literature.
It appears, for example, in Milgrom and Roberts [68], and in Fudenterg and
Kreps [30]. For Bayesian learning, there are versions of statement 7in Jordan
[42], Kalai and Lehrer [47], and Nyarko [74]. It is also satisfied for our class
of adaptive learning algorithms. Notice that by the definition of adaptive
learning with experimentation, if o, — o+ then it must be that for all ¢,
strategy ¢, (or a mixed strategy with all weight on ¢;) is a best response (and
in B;(o*,)) whenever (c;) > 0. Otherwise there is a better response against
the opponents’ play and, given that other strategies are tried infinitely often,
the player will deviate to his best response. However, as Fudenberg and
Levine [31] have shown, this result does not have to be true in extensive
form games with more than two players, since some parts of the tree may
not be searched even when there 1s experimentation.

The resultin 7t is based on the fact that a strict equilibrium o* has the
property that for all 7, B;(c*,) is a singleton.!’ This fact not only precludes
mixed strategy equilibria (i.e., for some ¢* € C, o*(c*) = 1), but also says

1A version of this statement appears, for example, in Fudenberg and Kreps(30]).
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that small perturbations around this point are still mapped into this point
(i.e., ¢t € By(¢*,), where 6* is an arbitrary small perturbation of ¢*). From
this characterization it should be clear why asymptotic stability holds around
a strict equilibrium. Let the learning process start in the pre-defined small
neighborhood of the equilibrium and make the experimentation rates sufh-
ciently small, then adaptive learning guarantees convergence to the stricrt
equilibrium.

The third result is that of Milgrom and Roberts [68] discussed in the first
two sections. The fourth result is less obvious. It is based on the fact that
with enough experimentation the strategy profile of the players must visit
a neighborhood of the strict equilibrium and once in the neighborhood the
second result applies. This “visiting result” is based on the fact that play
can not get stuck somewhere else, for example in some cycle; and this uses

the fact that the equilibrium is unique*?. There are two alternative versions
of the fourth statement.

whb. If the game has two players and two strategies, then the beliefs
generated by fictitious play without ezperimentation converge to
the beliefs of a Nash equilibrium profile.

we. If the game has strategic complementarities and diminishing re-

turns, then players’ beliefs converge to the beliefs of a Nash equi-
librium profile.

It should be noted that both results are about convergence of beliefs. As
Jordan [43] has shown, we can have convergence of beliefs to a mixed strat-
egy equilibrium without having convergence of the strategies played to the
corresponding mixed strategy.

As we will see, generically, there 1s no convergence of play to mixed strate-
gies (see also [19]). That is, if one considers a two-by-two game satisfying the
properties of (ivc) with a unique Nash equilibrium which is a mixed strategy
equilibrium and players use algorithms in our class of adaptive algorithms
with experimentation, play does not converge to the mixed strategy equi-
librium even if beliefs may converge. The result in (ivbd), which appears in
Miyasawa [70], generalizes the same result for zero-sum games due to Robin-
son [76]. A famous example of Shapley[84] shows that this result does not

12 A more precise definition of cycles is provided below.
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generalize to games with more than two strategies.!® The result in (ivc) is
due to Krishna [58]. His assumptions require that strategies can be naturally
ordered in a way that each player’s best response is increasing in the other
players’ strategies and that his own strategies have diminishing returns.

In this section we discuss versions of the above statements and we also
show by means of examples why further sharpening of the results requires us
to restrict the class of learning models.

Example 10. Risk Dominance and Optimality in Coordination Games.

Consider the game, I';, with payoff matrix given by

Iy a3 bs
a; 2,2 0,0
b, 00111

As in the battle of the sexes (I'1), all of the strategies in I'; are rational-
izable. Thus, statement %2 above has no predictive power. The game satisfies
the conditions of (ivc), but it also has the property that deviations frorm
the equilibrium strategy are more costly at the Pareto optimal equilibrium
since the Pareto optimal Nash equilibrium risk dominates the suboptimal
equilibrium. For this class of games a stronger version of statement four 1s
available.

wd. If the game has two players, two strategies, and two pure strategy
equilibria ranked by risk dominance then the himiting distribution
of evolutionary dynamics converges to a risk-dominant Nash equi-
Librium profile.

By the limiting distribution of evolutionary dynamics it is usually under-
stood the limit distribution that arises in a stationary Markovian process
as the noise due to experimentation converges to zero. That is, assume the
process governing experimentation is constant (i.e. ¢ = € > 0 for all t) and
that the matching technology is such that the evolutionary process can be
characterized as a stationary Markovian process. Then we get a unique limit
ergodic distribution, which is a function of €. The limiting distribution is the

13We return to Shapley’s example below.
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limit of these ergodic distributions as € converges to zero. In a the class of
games characterized in 2vd, the distributions concentrate most of their mass
in the two pure strategy equilibria and there is a positive probability to move
from one equilibrium to the other. However both transitions (from the good
equilibrium to the bad and from the bad to the good) are not equally likely;
they depend on the costs from deviations. Therefore, the € ergodic measure
is more concentrated in the risk dominant equilibrium and as € approaches
zero the limit ergodic distribution concentrates all the mass in this equilib-
rium (see Kandori, Mailath, and Rob [50] [51], Young [95], and Samuelson
[81].) The results of Kandori et al. also generalize to other pure coordination
games where the selected equilibrium is the efficient one [51]. In their case,

This selection result of Young [95] and Kandori et al.[50] is remarkable.
Nevertheless, as we have discussed in Section 4, relies on the particular struc-
ture of the evolutionary model. '* In fact, Fudenberg and Harris [32] have
shown, in a continuous time model with a continuum of players, that if one
makes different assumptions on how noise is introduced into the model, then
the above result of a unique selection it may not be satisfied for certain
parameter specifications.

We can also see why the result of Kandori et al.[50] is too strong to be
satisfied for our class of adaptive learning algorithms. Consider adaptive
evolutionary rules applied to '3 in Example 10 with ¢, = .1/t%, pit = .5/t%,
and initial conditions (o;0(<), nio(c), Sio(ci)) = (%, 1,0) for all 1, ¢, t. For
one realization of the processes governing experimentation and inertia, we
found the following mixed strategies being applied:

Period | o1(a) | 01(b) || o2(a) | o2(b)
0} .500 | .500 }| .500 | .500

1] .333 | .667 || .500 | .500

10 | .484 | .516 || .727 | .273

25| .053 | .947 || .055 | .945

100 | .040 | .960 || .040 | .960
1000 | .025 | .975 | .025 | .975

The results for period ¢, t > 1000, also show that player ¢ chooses b; with
probability 1 — € ;. Furthermore, follows from statement 12 above that for

4For risk dominance, van Damme [90] shows how an inductive process will also select
the risk dominant equilibrium in 2 x 2 games. The inductive process is similar to the
evolutionary dynamics argument concerning the cost from deviations.
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a set of initial conditions, play will converge with high probability to the
inefficient outcome. As we noted in Section 4, the difference between our
result and that of Kandori et al.[50] is that we let €; approach zero.

Example 10 can also be used to study the role that different parameters
play in our class of learning algorithms. For example, if reproduction is low
enough and € converges to zero at a slow enough rate, then one can obtain
convergence to the Pareto optimal equilibrium. Like simulated annealing
algorithms for optimization, the learning algorithms can be parameterized
in such a way that they achieve the global maximum.!® In some sense, we
would be mimicking the results of Kandori et al. Of course, if one is willing
to impose a uniform prior and low enough reproduction, then it is easy to
show that there is convergence to the Pareto optimal outcome. In this case,
the uniform distribution is in the basin of attraction of the Pareto-optimal
equilibrium for a large set of parameters.

Before we proceed with our examples it is convenient to properly define
different equilibrium concepts which differ in the types of perturbations that
are allowed. The following are well known concepts'®:

Definition. ¢* is a perfect equilibrium if 3{c"}, o7(¢;) > 0Y¢; € C, such
that o™ — o* and Vio! € B;(a™;).

“~

Definition. o*is a strict equilibrium if 3¢ > 0 such that V& with |¢--o*
€, Vi, 0! € Bi(6_;).

Definition. & is an e-proper equilibrium if 5,(¢;) > 0V¢,; € C; and if for
every pair of pure strategies &, & if B, »_mi(&, c—i) < B o_ymi( &, i)
then 5}'(6,’) S 65','(6{).

Definition. ¢* is a proper equilibrium if 3{¢"},{6"} such that ¢* —
0

, 0™ — o* and for every n, " is a €" proper equilibrium.

Definition. A closed set of Nash equilibria © is K-M stable if it is minimal
with respect to the following property. Ve, 3€ such that Ve; € (0, €) and
Vi and A; € A(C;), with A(¢;) > 0Ve € Ci, the perturbed game Tz
in which o of T is replaced by (1 — ¢)o; + € A; has a Nash equilibrium
which is € close to O.

15For a very readable introduction to simulated annealing, see Kirkpatrick[53].
16gee, for example, Myerson[71].
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Notice that a strict equilibrium is robust to all possible perturbations.
For this reason, games with a unique Nash equilibrium which is a mixed
strategy equilibrium, such as matching pennies, have no strict equilibria. A
perfect equilibrium 1s robust to an open set of perturbations if the equilib-
rium is a pure strategy profile. However, if it 1s a mixed strategy profile, then
perfection imposes no restrictions. This guarantees the existence of a perfect
equilibrium but does not guarantee that every equilibrium profile is robust to
an open set of perturbations. In games, such as matching pennies (I'¢), it is
not. In a learning context, perturbations are present due to experimentation.
However, not all perturbations are necessarily present; one must take into
account open sets of perturbations. But, the corresponding restriction may
be too strong. If players experiment independently, then their experimenta-
tion does not necessarily cover an open set of perturbations in A(C). That
is, with experimentation players may test all of their own available options,
but these individual experimentations may not amount to considering all
possible collective (correlated) options. The robustness concepts introduced
in Marimon [60] are aimed at capturing these subtleties.

Definition. Let M C I be a subset of players. A set N C A(C) is an
M-open neighborhood of & € A(C) if Vo € N, Ve > 0, Jet, 0 < ¢ < ¢,
such that (Ga,5_pm) € N whenever |G — Tp] < €.

Let M,, = {M C I: #|M| < m} be the set of subets of n players,

where n < m.

Definition. Let ¢* € A(Cy) x--- x A(Cy). ¢* is a m-robust equilibrium
if VM € M,,, 3 an M-open neighborhood of ¢*, N/, such that Vo € A/
with o, € A(C,), and Vi € I, o € B,‘(&-,‘).
Below we use the term robust equilibrium to mean a 1-robust equi-

librium. A strongly robust equilibrium is the term used for (I —1)-
robust equilibrium.?

Notice that in a two-players game an equilibrium is robust if and only
if it is strongly robust and if and only if it is a perfect pure strategy equi-
librium. However, a mixed strategy equilibrium, such as the equilibrium of

171t seems that Okeda used the term robust to refer to a point which is robust to all
possible perturbations not just an open set of I-perturbations. However, here we use the
term as defined in Marimon [60].
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the matching pennies game, can be perfect and not robust. This also shows
that a robust equilibrium may not exist. A pure strategy perfect equilibrium
1s robust and a strong robust equilibrium is robust, but, as the following
example shows, in games with more than two players, a robust equilibrium
may not be perfect.

Example 11. Perfect Equilibrium.  Consider the game, 'y, with payoff
matrix given by

I az b,
a; | 1,1,1 1 0,0,0
b, 0,0,0 { 0,0,0

az

a1 ] 0,0,0]0,0,0
b, | 0,0,0 | 1,1,0

bs

In T'y'® there is a perfect pure (proper) and efficient equilibrium, name.y
(a1, a2,a3). Considered as a coordination game, this is the good equilibrium.
There is a set of Nash equilibria consisting of {(b1, b2, 03(a3)); o3(as) € [0, 1]}
of which only (b1, bz, a3) is perfect (and proper). All of these equilibria are
robust. To see this, consider the equilibrium (b1, bz, b3). It is not perfect
since for player 3 strategy a; dominates strategy b3, but it is only strictly
better when both players 1 and 2 jointly experiment and move from (b;, b;)
to (a1,a;). Robustness only considers individual experimentations and not
perturbations that require jointly correlated actions.

We now illustrate with a few examples the relation between the above
equilibrium concepts and the asymptotic dynamics of adaptive learning.

Example 12. Stable Equilibrium. Consider the games, I's and I's, with
payoff matrices given by

8Game I'y has been discussed by Kalai and Samet [48].
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I's | a; b, l

a1 122122

b [3,0]0,1
and

Fs ag bz

ay | 1,-1]-1,1

ENESER!

Swinkels[87] shows that one can strengthen a modified version of state-
ment 2 by replacing “strict” with “Kholberg — Mertens stable”. It cannot
be the same statment 12 with a relabeling of terms since not all K-M stable
equilibria are asymptotically stable. For example, in the matching pennies
game, ['g, the unique mixed strategy equilibrium is K-M stable but it is not
asymptotically stable. In our context, Swinkels’ result says that if there is a
set which is asymptotically stable under adaptive learning then it contains
a K-M stable subset (provided that the set has enough convexity). In the
example, ['s, the stable component has player 1 using his top strategy and
player two playing right with at least 1/3 probability. Notice that every ele-
ment of the stable component is a robust equilitbrium. In Figure 2, we see how
player two’s strategy can remain a mixed strategy of the stable component.

Example 13. FRobust Equiltbrium.
Consider the game, ['7, with payoff matrix given by

7| az | by | ¢ | da
e | 221110000
by (11| 1,012,020
& 1001025005
4, 001020515,

Example 13 shows that stability i1s a too strong requirement; even for
pure strategy equilibria. The game has a strict equilibrium, (a4, a,), and a
robust and perfect (but not K-M stable) pure strategy equilibrium, (b;, b2). In
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Figure 3, we show that there can be convergence to the (b, b;) equilibrium.®

We plot the frequency of play for strategies (ai, a;) and (b, b2); the strategy
being used after 25000 periods is (b, b;). In this case, the experimentation
of strategies ¢ and d reinforces convergence to strategy b.

As we have discussed before, in games with more than two players, robust
equilibria may not be perfect. Consider again Example 11. The following
realizations suggest that there can be convergence to any robust equilibrium.
For example, if players 1 and 2 assign most weight to their b strategies, then it
will require joint experimentation to test (a1, a;). Evenif Y52, €¢,, = 400, Vi,
we might have 72, €1 462 < 00. Thus, (a1, a;) is not tested infinitely often,
i.e., there is a positive probability that play will remain among the set of
robust equilibria which are not perfect. Furthermore, notice that even if
(a1,a2) is tested infinitely often (i.e., Y52, €14€2¢ = +00), this does not
guarantee that play will converge to the efficient perfect equilibrium. It
1s enough to guarantee that player 3 will assign most weight to strategy
a3. But if player 3’s probability of experimentation is high enough, then the
experiments of player 3 may reinforce players 1 and 2 to play their bstrategies.
For example, with an adaptive evolutionary algorithm in which players do
not observe the point (a1, a3, a3), play may converge to the strongly robust
equilibrium (by, b3, a3). For example, player 1’s strengths after a long phase
without reproduction, Sy ¢(a;) = €4(1 —€3,) and S1,4(b1) > €3,(1 — €3,¢), ard
if €54 < €34, then player 1 will tend to assign more weight to strategy &;.
Of course, one could simplify the analysis by assuming €;; = €,Vz and t, as
it 1s often done in the literature of evolutionary learning, but this 1s not an
assumption that follows from adaptive individual learning.

Finally, we look at some examples where play does not converge, but
follows cyclical patterns.

Example 14. Correlated Equilibria and Cycling.

Consider the games, I's and I'g, with payoff matrices given by

I's!| a; | by | ¢
a; | 0,0(4,5154
by | 5,4 10,0|4,5
¢ | 4,515410,0

191n this case, two populations of 50 agents each are randomly matched each period. In
period t, we set €; , = .l(em_o:"J +1/tT1s) and p; . as in Example 8 for each 1.
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and

I's | a, by Ca d,

a; 10,0,0(1,9119,1,011,0,9
b; | 9,1,10,0,0}1,9,1]0,0,0
¢ |19119,1,1]0,0010,0,0

as
a; 10,00] 1,1,0 10,1,919,0,0
b 1,10 ] 2,2,2]1,1,0]0,0,0
a 1,101 1,1,0 [9,0,110,9,1
bs

Game T'g is a famous example that Shapley [84] used to show that state-
ment wb on convergence of beliefs in 2 x 2 games does not generalize to
games with more than two strategies. In I'g there i1s a unique mixed strategy
equilibrium with o;(z;) = 1/3 and expected payoff 3. As in Shapley’s ex-
ample with fictitious play, algorithms from our general class follow a cyclical
pattern with most of the frequency of play outside the diagonal. Play cycles
around as follows: (a;, b;) to (¢, b2) to (1, az) to (by,az) to (b1, c2) to (ai, c2)
and back to (a1, ;). Thus, we find an average payoff greater then 3.

Cyclical behavior can be fairly complex, and it does not occur because
there are no pure strategy equilibria in a game. I'g, for example, has a
strict equilibrium (b;, b5, b3) and yet a cyclical pattern involving twelve strat-
egy profiles may emerge. Figures 4a — 4d show the frequency of play of a
repeated play of I'g.?° Because of the complexity of these patterns, we illus-
trate the 12-stages of the cycle in four plots. Notice that the unique pure and
strict strategy equilibrium, (b1, by, b3), is not played. This type of asymptotic
pattern emerges from a large set of initial conditions.

Cyclical behavior has been studied in the context of evolutionary dynam-
ics by Gilboa and Matsui [35]. However, their concept of social stability im-
poses conditions on the adjustment process of the replicator dynamics which

%n this case, we set p; ; as in Example 8 and €; ; = .1(e 15505 + 1/t'/%). Initial conditions
are (0i,0(ci), mi,0(ci), Sijo(ci)) = (ni, 1,0) for all %, ¢;.
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do not have to be satisfied for the general algorithms that we consider here.
Marimon extends the concept of robust equilibrium to encompass cycling
sets of strategies. Cycling behavior can emerge when, through the learning
process, players correlate their strategies. This phenomena suggests a refine-
ment of correlated equilibrium. In fact, the robustness concepts provide a
natural refinement of correlated equilibrium.

We first recall the definition of a correlated equilibrium.

The set of correlated strategies with full support in D € C is defined by
S(D) = {c € A(C) : supp{c} C D}. Given o € A(C) and ¢; € supp{c},
the conditional correlated strategy is defined by

U(Ci) )

(1)) = == e

€ A(CL)

Definition. The conditional best response map B(:|) is defined, for all
c €supp{o}, by

B(olc) = {5 €C: W,Y¢ € G, Egleymi(&i, coi) > E(o|c;)7ri(éinc—i>}

Definition. ¢* is a correlated equilibrium, denoted ¢* € CE(T), iff for
all ¢ € supp{c*}, c€ B(o*|c).

Definition. ¢* is a m-robust correlated equilibrium if VM € M,,, 3 an
M-open neighborhood of o*, A, such that V& € A and Vi € I and
c; € C,’ with 0'(6,’) > 0, c; € B,(&Ic,)
We define a robust correlated equilibrium as a 2-robust correlated

equilibrium and a strongly robust correlated equilibrium as a I-
robust correlated equilibrium.

As with robust equilibria, robust correlated equilibria may not exist and
therefore may be too strong of a requirement to characterize asymptotic be-
havior. Furthermore, as Shapley’s example [84] shows, a cyclical pattern
does not imply that the frequency of play converges to a well defined ergodic
distribution. These facts suggest that we should not be looking at the cor-
related distributions but rather at their supports. The following definitions
relax the requirements of robust correlated equilibrium.
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Definition. Let D C C. The set of m-admissible correlated strategies
for D is defined by,

T.(D) = {o€ A(C):Vce D,o(c) > 0,and VM € M,
3 an M-open neighborhood ofo, N s.t.
Ve € N, B(slc)N D # 0}

Definition. A set E D D is said to provide a robust justification for D
if (D) n S(E) # 0.

Definition. Let RJ(D) be the collection of minimal sets that provide a
robust justification for D

Definition. A set D is said to be robust self-justified if RJ(D) = {D}.

Definition. A set D C C issaid to be a robust-recurrent set of I', denoted
RR(T), if it is a minimal robust self-justified set.

In [60] it is shown that a robust-recurrent set exists in any strategic form
game?!. Furthermore, robust-recurrent sets are either points or define a cycli-
cal pattern of the conditional best response map. For example, in example
I'; the set of robust-recurrent sets, denoted RR(I'), consists of the two points
(a1,a2) and (by, b2) and the cycle {(c1, ¢2), (¢1,d2), (d2,d1), (c2,d1)}. In [60] it
1s also shown that the first statement can be strengthened to include robust
equilibria and that if ¢ ¢ RR(I") then o,(c) — 0 with probability one.

We are now in a position to make the final statements relating adaptive
learning and equilibrium selection.

1b. If play converges to a strategy profile, then the strategy profile is
a robust equilibrium.

21K alai and Samet define a persistent set to be a set of mixed strategies which is minimal
with respect to the property of being robust to all possible perturbations; where these
perturbations are defined as in the definition of strict equilibrium . They define, however,
a persistent equilibrium to be any Nash equilibrium in a persistent set. A pure strategy
persistent equilibrium is a strict equilibrium. The concept of Robust- Recurrent set is a
weakening of the concept of persistent set in a similar way that the concept of robust
equilibrium is a weakening of the concept of strict equilibrium (see also, [6]).
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itb. If a strategy profile is a strict Nash equilibrium then, 1t is asymp-
totically stable.??

1i1b. Asymptotically, play converges (v-ith probability one) to a set of
strategy profiles which is a robust-recurrent set.

ive. If the game has the property that all the robust-recurrent sets are
singletons then play converges with probability one to a robust
equilibrium.

These four statements provide a fairly complete characterization of the asymp-
totic properties of adaptive learning. They also show the sense in which a
learning process may select among equilibria.

6 Concluding Remarks

In this paper we provide a fairly thorough overview of adaptive learning in re-
peatedly played strategic form games. In doing so, we cover a fair amount of
new ground. First, we define a general class of adaptive learning algorithms
which include most of the rules studied in the existing literature on learning.
Second, we show how evolutionary theory and adaptive learning can be :n-
tegrated in a natural way. Third, we discuss how different parameterizations
of our class of learning algorithms affect the equilibrium outcomes. Finally,
we analyze the asymptotic properties of learning algorithms and we relate
them to known and new refinements of Nash equilibria.

There 1s an aspect of learning behavior that we do not directly explore,
but it 1s present in our discussion. There is tradeoff between conservative and
reactive behavior that characterizes most learning processes. This tradeoff
1s a tradeoff between two goals that are contradictory. In order to gain
experience, a player must be conservative and change his strategies only
infrequently. On the other hand, in the rapidly changing environment that
1s typical in the context of games, a player must be reactive in order to
take advantage of the new options and opportunities. In our algorithms the
tradeoff between conservative and reactive behavior is typically captured by
the different probabilities of reproduction and experimentation. In many of
the examples of Section 5, we show how the outcomes of the games respond

22This statement is true for certain specifications of inertia and experimentation.
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to different assumptions about both the conservative or reactive behavior of
players.

As is usually the case in the study of dynamic systems, the understanding
of the asymptotic behavior often sheds little light on the transitional dynam-
ics. Unfortunately, in learning environments, players spend most of their
time in transition. We hope that the development of a general framework
to study adaptive learning will eventually allow us to address this issue. In
Section 4, for example, we describe how some differences in matching tech-
nologies can be isomorphic to some variations in the parameters of learning
models and we show how some of these differences affect the final outcome
and also the process of convergence.

Economic experiments performed with evolutionary games tend to con-
firm most of the general theoretical results discussed in this paper. The
findings of these experiments, however, highlight the importance of assump-
tions such as the type of matching environment or the number of players.
They suggest that we should direct our attention not only to the underlying
game, but also to the interaction of players and the learning process that
takes place across different games. Van Huyck et al., for example, report
important group size effects in their experiments with the Stag Hunt game
(Example 5 of Section 3). Friedman [26] has detected runs in which play fluc-
tuates around an unstable mixed strategy equilibrium, albeit only after the
same subjects have been playing a game with a unique stable mixed strategy
equilibrium. Path dependence is also an important aspect of the findings of
Marimon, Spear and Sunder in their experiments with monetary economies
with multiple equilibria23.

In spite of the increasing interest in learning and evolution among game
theorists and economists, we are still laying down the basic elements of a
theory. In a sense, the asymptotic theory is close to being complete. If we
are only interested in a few asymptotic properties and equilibrium selection,
then all of the recent work in the area provides a fairly complete account
of these issues. But, if we want to achieve a better understanding of how
agents learn and interact, of the role that economic institutions or social
norms play, and of the impact that different learning environments have on
achieving alternative social outcomes, then the theory is still in an early
stage.

#3See references [91), [92], [18], [28], [62], [63], [64].
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Figure 1. Frequency of (b1,a2) (during last 100 plays).
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Figure 2. Frequency of play (during last 100 plays).
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Figure 4a. Frequency of play (during last 130 plays).
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Figure 4c. Frequency of play (during last 100 plays).
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