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1 Introduction

Estimating the speed of convergence has been one of the central issues of

recent empirical literature of economic growth. At some point, it seemed like

there was a general consensus among economists on this issue: economies

do converge to their respective steady states, but at a very slow rate. How-

ever, many of the recent studies cast doubt on this view and conclude that

the speed of convergence is actually very fast. It is important to resolve

this controversy because di�erent speeds of convergence have very di�erent

implications for an economy that deviates from its steady state. On one

hand, cross section estimation of speed of convergence generally yield the

estimated speed of about two percent (Barro and Sala-i-Martin (1992), for

example). This speed means a half life of deviation from one's steady state

of about 34.3 years. On the other hand, panel data estimation of the speed,

the approach that has been employed by many recent authors, almost always

produce much higher estimates, ranging from 4 to 20% For example, De la

Fuente (1996) applies OLS with Fixed E�ects to the Spanish regional data

and comes up with the estimated speed of about 12%. Canova and Marcet

(1995) apply their Bayesian estimation method to the regional data from

Western Europe and countries in Europe, and come up with the estimated

speed of about 20% for the former and 10% for the latter (though the values

vary depending on the precise speci�cation). Islam (1995) applies OLS with

Fixed E�ects as well as the minimumdistance estimation method to the Sum-

mers Heston data set and comes up with estimates of between 4% and 9.3

% depending on the method and countries included in the regression. Also,

Casselli, Esquivel and Lefort (1996), Evans (1995), and Knight, Laoyza and

Villanueva (1993) apply di�erent methods of panel data estimation to the

Summers Heston data set and come up with estimated speed of convergence

much higher than 2%. A speed of 10% (which seems to be more or less the

mean of these estimates) would mean a half life of deviation from one's own

steady state of about 6.6 years. Di�erent estimates have very di�erent impli-

cations for growth theories as well. The neoclassical growth model of Solow

(1956) and Swan (1956), when one takes a narrow view on capital stock and

identi�es it solely as physical capital, implies a speed of 5-6 % (Barro and

Sala-i-Martin (1995)). Hence, if the results from cross section regressions are

to be trusted, the de�nition of capital stock in the model must be extended

to include human capital or some other types of capital. On the other hand,

if the mean of the panel data estimates of about 10% is to be trusted, there

is no way the neoclassical growth model alone can explain such a high speed

of convergence, as the speed of 10% implies a negative share of capital if the
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neoclassical growth model is taken literally (De la Fuente (1996))1.

This paper criticizes the panel data estimation of convergence with non-

instrumental variables approach for being seriously biased. I will argue that

the true speed of convergence is likely to be much closer to the ones found

in the cross section regressions. My investigation will concentrate on OLS

with Fixed E�ects of De la Fuente (1996), as analytical results are easy to

derive in this case. I plan to write a companion paper that deals with the

method of Canova and Marcet (1995), but there I will have to rely heavily

on Monte Carlo experiments. That these estimates are biased itself is well

known. There are two types of biases. First, these estimates are subject to

small sample biases. Second, they are subject to measurement error biases.

They both tend to bias the estimated speed of convergence upwards. The

extent of the latter type of biases depends on the standard deviation of the

measurement error relative to that of the true shocks. It has customarily been

argued that this type of bias cannot be too serious, as errors in measurement

of income or output in developed countries cannot be so large compared to

true shocks to the economy (Canova and Marcet (1995)).

However, this argument is not su�cient to reject the importance of the

measurement error biases when we are talking about estimating long run

tendencies of economies using annual panel data. A typical exercise in this

literature is to estimate the following model:

yit = (1� �) � yit�1 + �i + uit (1)

where yit is output per capita of region i in year t relative to, say, the mean of

the whole country, � is a parameter that is called the speed of convergence,

that is common across regions and periods (j1 � �j < 1), �i is the region

speci�c �xed e�ect term, uit is shock to the true output per capita with mean

0 and variance �2u which is assumed to be serially and spatially independent.

The main point is that this is a growth model. In other words, this model

is meant to capture long run movements in output per capita. When Solow

wrote his paper on growth, for example, he did not mean his model to be

a representation of year-to-year behavior in output. Hence, yit should be

interpreted as long run output per capita, net of short run movements such

as business cycle elements and temporary shocks (e.g. a bad harvest, a

temporary increase in oil prices, e�ects of having an expo in one year and

thus getting millions of tourists and zillions of governmental subsidies, etc.).

The error term uit should also be interpreted as representing shocks to the

1On the other hand, if one takes the lower bound estimate of 4%, this value is consistent

with the neoclassical growth model with the narrow de�nition of capital stock.
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long run level of output. It is true that, by taking deviations from the country

means, this approach reduces the business cycle elements in regional output

per capita to some extent, but, as regional business cycles are not perfectly

synchronized, and as some regions tend to have more share of sectors that

are sensitive to business cycles than others, it would not completely take out

business cycle elements. From this viewpoint of growth theory, all these short

run components in output per capita should be considered as �measurement

errors� in a broad sense of the word. Once we take this broad view of

measurement errors, it is not clear anymore if these errors can be considered

small compared to true shocks.

The question is, then, how to know the extent of biases due to mea-

surement errors in the broad sense. This paper proposes a simple approach

based on the �skipping estimation�. There is nothing fancy about this. All

it means is that, instead of using the whole yearly data in output, we use

data from every m years, where m is equal to or greater than two. It will

be shown that, if the measurement error biases are trivial, this skipping

should push the estimated speed of convergence upwards compared to the

non-skipping estimate. This is because skipping worsens the small sample

bias. Only when the measurement error biases are serious, skipping pushes

the estimated speed of convergence downwards. This is because skipping

lessens the measurement error bias. Hence, by looking at e�ects of skipping

on the estimated speed of convergence, we can infer the extent of biases due

to measurement errors (in the broad sense).

I present evidence from the US states, the Japanese prefectures, and

OECD countries. In all the cases, it is shown that skipping lowers the esti-

mated speed of convergence or at least has no sizable e�ect, for m not too

large. Hence, these results suggest that the measurement error biases are

serious, not trivial. It is shown that, in some cases, the measurement errors

may be biasing the estimates upwards by as much as 20%.

Before I proceed to the main text, let me clarify what this paper does

NOT say. The purpose of this paper is not to promote panel data estimation

of convergence WITH instrumental variables. It is true that the instrumen-

tal variable estimator of Anderson and Hsiao (1981), which was employed

by Evans, yields consistent estimates even in the presence of measurement

errors if one takes enough number of lags in picking up instruments. How-

ever, I found that this method is way too ine�cient to draw any meaningful

conclusion: when I applied this method to the US states, the point estimate

for the speed of convergence varied between -4.6% and 8.4%, its standard
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errors being between 13% and 19%. In other words, in none of the cases

could I reject the null hypothesis of the true speed being zero. On the other

hand, the GMM approach of Arellano and Bond (1991), the technique used

by Caselli, Esquivel and Lefort (1996), yields a much more e�cient estimate.

The problem with this method is that the number of instruments needed in-

creases very quickly as the sample size increases in the time dimension. This

makes use of yearly data impossible in cases where data spans for more than

15 years or so, due to constraints on computer ability. One has to take data

from every few years in order to avoid crushing a computer. In other words,

the very nature of the method forces one to do the skipping.

The rest of the paper is organized as follows. Section 2 explains how the

extent of the biases depends on various parameters. Section 3 explains how

skipping a�ects these biases. Section 4 presents empirical results and argues

that OLS with Fixed E�ects produces serious biases. Section 5 concludes.

2 Biases in the OLS with Fixed E�ects

It has been established that, even in the absence of measurement errors, that

is, even if the model in equation (1) is a correct one, the OLS with �xed

e�ect estimator for �, which will be denoted by �̂ here, is subject to small

sample bias. Let's say there are N regions (i = 1; 2; :::; N) and the sample

last for T periods (t = 1; 2; :::; T ). Then, as N goes to in�nity with T �xed,

�̂ does not converge to the true �. Nerlove (1971) shows this using Monte

Carlo experiments. Nickell (1981) derives the precise analytical expression

for the bias:

�̂ � � = B1=B2

where

B1 =
1

T 2
�

(T � 1) � T � (1� �) + (1 � �)T

�
2

B2 =
1

1� (1 � �)2
�

(
1�

1

T
�

2 � (1� �)

�
2 �

(T � 1) � T � (1� �) + (1� �)T

T 2

)
:

These expressions are shown in Hsiao (1986). The bias is positive unless T is

too small. Hence, the estimated speed is biased upwards. For a reasonably

large value of T , the above bias is approximately

�̂ � � � (2� �)=(T � 1)
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(Nickell (1981)). Note that, even if we are fortunate enough to have T as

large as 100 (which is almost unheard of in the literature of convergence

regressions), for a reasonable value of � (say between 0:001 and 0:1), the

upward bias is about two percent2. If what we are interested in were the

value of the AR(1) coe�cient, 1� �, this bias would not look that big. But

here what we are truly interested in is the value of � and thus the bias of

two percent could have a signi�cant consequence. For example, if the true

speed of convergence is two percent as many economists who work on cross

section regressions claim, then, the bias of two percent would mean that the

estimated speed of convergence would on average be double the true speed.

The two percent convergence implies a half life of deviation from steady

state of 34.3 years. The four percent convergence implies a half life of 17.0

years. Thus the economic interpretation of the result would be substantially

di�erent. As T goes to in�nity, this bias disappears.

When the measurement error is present, the model has to be rewritten

in the following way. Let yit be the observed output per capita of region i in

period t, relative to the country mean in that period. Assume that yit can

be described by the following model:

y
�

it = (1� �) � y�it�1 + �i + uit

and

yit = y
�

it + vit

where y�it is the �true� long run output per capita and vit is the measurement

error with mean 0 and variance �2v which is also assumed to be serially and

spatially independent. Distributions of both uit and vit are assumed to be

space- and time-invariant. The model in equation (1) is equivalent to the

above model with vit = 0 for all i and t. If the measurement errors are

present, it can be shown that the above expression for the asymptotic bias

for N = +1 is modi�ed to:

�̂ � � = (B1 +B3)=(B2 +B4)

where

B3 =

�
(1� �)� (1� �) �

1

T
+
T � 1

T 2

�
�

�
�v

�u

�2
2A beauty of the small sample bias is that it is not very sensitive to the true value of �.

Therefore, as long as one can assume that the true � falls in some �reasonable� range, a

likely range of values for this bias can be narrowed down fairly well. This, unfortunately,

is not the case for the measurement error bias.
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and

B4 =

�
1 +

1

T

�
�

�
�v

�u

�2
:

Note that B3 is positive for any T > 1, and B4 is always positive. Hence,

the whole bias is still positive. It now depends on three things: the true �,

T , and the ratio between the standard deviation of measurement errors and

that of the true shock, �v=�u. To measure the contribution of measurement

errors to the whole bias, note that, as stated before,

B1=B2 � (2� �)=(T � 1)

while

B3=B4 � 1� �

hence, for a reasonably large T , B1=B2 < B3=B4. It follows that the presence

of measurement errors tends to worsen the upward bias in the OLS with �xed

e�ects estimator for the speed of convergence.

The question is how important the worsening of the bias is. Table 1 shows

the asymptotic bias for di�erent values of T and �v=�u. Note that these are

biases for the speed of convergence, �, rather than the AR(1) coe�cient 1��.

Hence, a positive value means that the estimated speed is biased upwards,

and therefore that 1� � is biased downwards. Moreover, the numbers are in

percentages. Table 1A corresponds to the case where the true speed � is two

percent and in Table 1B the true speed � is set to 10%. First, look at the

�rst column in each of the tables. In this column, the standard deviation of

measurement errors is set to zero. Hence, in this case, only the small sample

bias exists. It can be seen that the bias is severe even for high values of T such

as 60 or 120. Next, look at the last row in each table. Here, T is set to +1.

Hence, in this case, there is no small sample bias and only the measurement

error bias exists. Note that the measurement error bias really kicks in only

when the ratio �v=�u is fairly large. For � = 2%, the bias becomes large

only for the ratio greater than 0.5. For � = 10%, the bias becomes large for

the ratio much greater than 0.2. As pure measurement errors are expected

to be much smaller than the true shock term, if we take the narrow view of

measurement errors, the bias cannot be that important. This is the reason

why the measurement error bias has not been considered as a big problem in

the literature. But if we take the broad view of measurement errors, values

such as �v=�u = 0:5 or even 1 are quite possible. And in such a case, bias

due to these errors could be serious. Moving to the other rows of the table,

it can be seen that the measurement error bias is even more serious when
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the sample size is �nite. For example, compare the last row of Table 1A

(T = +1) with the fourth row (T = 60). In the last row, in the absence of

the small sample bias, increasing the ratio �v=�u from 0 to 0.5 increases the

upward bias in the speed of convergence by less than 1 percent. However, in

the fourth row, even if T is as large as 60, increasing the ratio �v=�u from

0 to 0.5 increases the upward bias in the speed of convergence by almost 3

percent. Hence, there is no simple relationship between the small sample

bias and the measurement error bias such as (total bias) = (small sample

bias) + (measurement error bias). On the contrary, when the sample size

is �nite, the two types of bias reinforce each other to often create a

huge bias. For example, for the case where the true speed is 2%, T = 60

and �v=�u = 0:50, the total bias is as large as 7.40%, so the estimated speed

of convergence will be on average 9.40%. Hence it is important to know the

extent of measurement errors, to pin down the likely amount of bias.

Table 1: Biases in Estimated Speed of Convergence: �̂ � �

in percentage

A: When the True Speed � is 2 %
Tn�v

�u
0 0.1 0.2 0.5 1 2

10 26.65 27.07 28.30 35.69 51.77 71.89

20 13.74 14.01 14.81 19.99 33.96 59.60

40 6.83 6.99 7.47 10.70 20.52 44.27

60 4.47 4.59 4.95 7.40 15.16 36.16

120 2.11 2.19 2.42 4.03 9.34 25.66

1000 0.21 0.25 0.38 1.26 4.30 14.76

+1 0.00 0.04 0.15 0.96 3.73 13.40

B: When the True Speed � is 10 %
Tn�v

�u
0 0.1 0.2 0.5 1 2

10 24.32 24.76 26.03 33.58 49.29 67.69

20 11.96 12.29 13.27 19.42 34.86 59.45

40 5.63 5.88 6.63 11.49 24.94 50.98

60 3.60 3.82 4.49 8.86 21.34 47.24

120 1.70 1.90 2.48 6.35 17.75 43.14

1000 0.19 0.37 0.88 4.34 14.76 39.38

+1 0.00 0.17 0.68 4.08 14.37 38.86
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3 the Skipping Estimation

This paper tries to investigate the extent of the measurement error bias

using the skipping estimation. The idea is to use the data from every m

years, instead of every single years. Hence, the estimated equation is

yit = (1� �)m � yit�m +
h
1 + (1� �) + � � �+ (1 � �)m�1

i
� �i + emit

where

emit = uit + (1� �) � uit�1 + � � �+ (1 � �)m�1
� uit�m+1:

This model can be estimated with standard OLS with �xed e�ects:

yit = 
m � yit�m + �im + emit (2)

where 
m is an empirical counterpart of (1��)m. Let its estimated value be


̂m. Then I recover estimated � by the formula

�̂m = 1� 
̂
1=m
m :

The bias of this estimator can be derived analytically. Appendix A presents

this derivation. The bias is computed numerically under various di�erent

assumptions in Table 2 and Table 3. Table 2 deals with the case where

T = +1, or the case when there is no small sample bias. Table 2A shows

the case in which the true speed of convergence is 2%, and Table 2B shows

the case in which the speed is 10%. Di�erent rows correspond to di�erent

values of m. The values of m is chosen for the sake of comparison with the

later results. It is clear that, in this case, the bias decreases with m. In other

words, skipping reduces the measurement error bias.

Table 2: Biases in the Skipping Estimation

When T is in�nite(in percentage)

A: When the True Speed � is 2 %
mn�v

�u
0 0.1 0.2 0.5 1 2

1 0.00 0.04 0.15 0.96 3.73 13.40

2 0.00 0.04 0.15 0.94 3.66 13.13

3 0.00 0.04 0.15 0.92 3.59 12.87

4 0.00 0.04 0.15 0.90 3.51 12.61

5 0.00 0.04 0.14 0.89 3.44 12.36

6 0.00 0.04 0.14 0.87 3.37 12.11

10 0.00 0.03 0.13 0.80 3.11 11.17

12 0.00 0.03 0.12 0.77 2.99 10.73

15 0.00 0.03 0.12 0.72 2.81 10.10

20 0.00 0.03 0.11 0.65 2.54 9.13
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B: When the True Speed � is 10 %
mn�v

�u
0 0.1 0.2 0.5 1 2

1 0.00 0.17 0.68 4.08 14.37 38.86

2 0.00 0.15 0.61 3.67 12.93 34.98

3 0.00 0.14 0.55 3.31 11.64 31.48

4 0.00 0.12 0.49 2.98 10.48 28.33

5 0.00 0.11 0.45 2.68 9.43 25.50

6 0.00 0.10 0.40 2.41 8.49 22.95

10 0.00 0.07 0.26 1.58 5.57 15.06

12 0.00 0.05 0.21 1.28 4.51 12.20

15 0.00 0.04 0.16 0.93 3.29 8.89

20 0.00 0.02 0.09 0.55 1.94 5.25

Table 3 deals with the case where T is �nite. Table 3A and 3B correspond

to the case when T is 60, and Table 3C and 3D correspond to the case when T

is 40. In Table 3A and 3C, the true speed of convergence is set to 2%, and in

Table 3B and 3D it is 10%. Note, �rst, that, when there is no measurement

error (the �rst column in each panel), the bias worsens with m. That is,

skipping worsens the small sample bias. When both the small sample

bias and the measurement error bias are present, the result becomes a mixture

of the two extreme cases. When measurement errors are unimportant, say

when �v=�u is 0.1 (the second column in each panel), skipping always worsens

the bias. The bias-correcting e�ect of skipping starts to appear as �v=�u

increases. With �v=�u = 0.2 (the third column), there is a minor reduction

in the bias only when m is increased from 1 to 2. As m is increased further,

the bias worsens. Note that, when the true � is high (namely when it is

10%) the bias worsens drastically for a large m. With �v=�u = 0:5 (the

fourth column), there is a sizable improvement in the bias till m reaches 4

or 5 and then the bias starts to worsen. Again , the worsening is drastic

when � is large. With �v=�u = 1.0 (the �fth column), the bias reaches its

trough when m is much larger (10 in Table 3A, 6 in Table 3B, 8 in Table 3C

and 5 in Table 3D). The conclusion is that, if measurement errors are

really unimportant, skipping should worsen the bias, not improve

it. Hence, by studying if skipping increases the estimated � (a symptom

of worsening bias) or decreases it (a symptom of improving bias), one could

know the extent of the measurement error bias.
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Table 3: Biases in the Skipping Estimation

(in percentage)

A: T = 60; � = 2%
mn�v

�u
0 0.1 0.2 0.5 1 2

1 4.47 4.59 4.95 7.40 15.16 36.16

2 4.56 4.62 4.80 6.03 10.04 21.88

3 4.66 4.70 4.82 5.64 8.33 16.46

4 4.77 4.80 4.89 5.50 7.51 13.64

5 4.89 4.91 4.98 5.47 7.06 11.94

6 5.01 5.03 5.09 5.49 6.81 10.81

10 5.67 5.68 5.71 5.93 6.64 8.72

B: T = 60; � = 10%
mn�v

�u
0 0.1 0.2 0.5 1 2

1 3.60 3.82 4.49 8.86 21.34 47.24

2 3.86 3.97 4.30 6.53 13.21 29.26

3 4.16 4.24 4.46 5.96 10.53 21.97

4 4.52 4.58 4.75 5.88 9.37 18.25

5 4.96 5.00 5.14 6.06 8.89 16.19

6 5.49 5.52 5.64 6.42 8.84 15.09

10 9.83 9.85 9.94 10.55 12.45 17.97

C: T = 40; � = 2%
mn�v

�u
0 0.1 0.2 0.5 1 2

1 6.83 6.99 7.47 10.70 20.52 44.27

2 7.01 7.09 7.33 8.95 14.05 27.77

4 7.43 7.47 7.58 8.37 10.88 17.80

5 7.68 7.71 7.80 8.41 10.36 15.68

8 8.68 8.69 8.74 9.05 10.03 12.52

D: T = 40; � = 10%
mn�v

�u
0 0.1 0.2 0.5 1 2

1 5.63 5.88 6.63 11.49 24.94 50.98

2 6.08 6.20 6.58 9.05 16.28 32.58

4 7.30 7.36 7.55 8.80 12.52 21.35

5 8.15 8.20 8.35 9.36 12.36 19.47

8 13.30 13.33 13.43 14.09 16.02 20.61
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4 Evidence from the Skipping Estimation

Evidence from the US states

Skipping requires a reasonably long series. Perhaps the longest existing

series that has been used in the literature of convergence is the US state per

capita personal income. BEA has collected data every year from 1929. The

latest year for which the data was available at the time of this research was

1996. This means that there is data for 68 years, for the 48 contiguous state.

Using the values for 1929 as the initial values (yi0), we are still left with

T = 67 years of data. Thus the US states data seems to be the most ideal

place to start with. Table 4 shows the estimated speed of convergence � from

OLS with Fixed E�ects estimation for di�erent values of m. Unfortunately,

67 is not as nice a number as 60: it cannot be divided by too many integers.

Hence, the sample size is di�erent for di�erent values of m. De�ne Tm as the

largest integer that is equal to or smaller than 67 and that can be divided by

m. Then Tm is the sample size for that particular value of m. The second

column shows this sample size, and the third column shows the implied last

period of the sample. For example, for m = 2, the largest integer that is

smaller than 67 that can be divided by m is 66, so the sample period starts

from 1929 (for t = 0) and ends in 1995 (t = 66). The fourth column is

the estimated speed of convergence � in percentage, and the last column is

the standard error of the estimate, also in percentage (see Appendix B for

the formula). All the data sources used in this paper are summarized in

Appendix C.

The table shows that, when m = 1, that is, when there is no skipping,

the estimated speed of convergence is 8.6%. This result of fast convergence

is comparable to the �ndings of De la Fuente (1996) and Canova and Marcet

(1995). The question is if this is because � is truly large, or it simply re�ects

a bias that is in�ated by the presence of measurement errors. Going down the

rows, the table shows the general tendency for the estimated � to decrease

with m for smaller values of m and then to rise with m for larger m's. That

is, the bias improves as skipping becomes larger, at least for smaller m's.

This could not happen if measurement errors were truly negligible. In fact,

the estimate reaches its bottom at m = 11, which suggests that measurement

errors are actually quite large. In Table 3 in the previous section, Panel A

(in which T is set to 60) shows that, if the true speed is 2%, the bias reaches

its minimum at m = 10 only when the ratio �v=�u is as large as 1.0. In

such a case, Table 3A indicates that the non-skipping estimate of the speed

(the case where m = 1) is biased by as much as 15%. Even if we take a

conservative stance and assume that �v=�u is 0.5, the non-skipping bias is
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still over 7%. Hence, the estimated speed of convergence is subject to a

serious upward bias.

Table 4: Evidence from the US States

the estimated speed is in percentage

m Tm end year �̂m std.

1 67 96 8.64 0.67

2 66 95 7.48 0.63

3 66 95 6.67 0.59

4 64 93 7.33 0.64

5 65 94 6.84 0.61

6 66 95 6.20 0.57

7 63 92 6.02 0.58

8 64 93 5.73 0.53

9 63 92 6.37 0.61

10 60 89 5.21 0.55

11 66 95 3.90 0.44

12 60 89 4.72 0.52

13 65 94 5.07 0.52

14 56 85 5.28 0.58

15 60 89 7.06 0.68

16 64 93 6.36 0.58

Evidence from the Japanese prefectures

Data for the Japanese per capita Prefectural Income is available for 1950-

1990. As I was particularly concerned with the quality of the 1950 data (see

Appendix C), I use the 1951 values for initial values (t = 0). There are

currently 47 prefectures in Japan but data on Okinawa is not available for

earlier years as it was under US occupation till 1972. Hence the sample size

is T = 39 and N = 46. The result is summarized in Table 5 in the same way

as in Table 4. First, note from the �rst row that the non-skipping estimate

suggests a very high speed of convergence of 16:9% per year. However, going

down the rows, there is a broad tendency for the estimate to decrease with

m (with a notable exception of the case m = 2) for smaller m and then to

increase with m. The bottom is reached at m = 6. Table 3C and 3D (in

which T is set to 40) suggest that this can happen only if the ratio �v=�u

is greater than 0.5. Moreover, the reduction in the estimated speed due to

skipping is very large: between m = 1 and m = 6, the estimated speed goes

down by more than 6%. A further analysis showed that such a large drop

can happen only when �v=�u is between 0:7 and 0:8. In such cases, the bias
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bottoms at m = 5 (if the true � is 2%) or at m = 4 (if the true � is 10%

and �v=�u is 0:7), which is broadly consistent with the �nding in Table 5.

Assuming that �v=�u is 0:7, the non-skipping estimate (the case in which

m = 1) is biased upwards by 14.11% (if the true � is 2%) or by 16.38% (if

the true � is 10%). This can be seen from the �rst rows of Table 3C and 3D.

Hence, in either case, it can be concluded that the non-skipping estimate is

biased upwards by almost 15%.

Table 5: Evidence from the Japanese Prefectures

the estimated speed is in percentage

m Tm end year �̂m std.

1 39 90 16.88 1.18

2 38 89 18.65 1.34

3 39 90 12.00 1.00

4 36 87 13.69 1.13

5 35 86 12.84 1.14

6 36 87 10.27 1.02

7 35 86 11.02 1.09

8 32 83 12.59 1.27

9 36 87 12.56 1.29

Evidence from OECD countries

Data on GDP per capita for 24 OECD countries is taken from the Summers-

Heston data set. The data is available for the period from 1950 to 1990.

Hence, using the values for 1950 as initial values, in this case, N = 24 and

T = 40. The result is summarized in Table 6. There is no clear tendency

for the estimated speed to either go up or go down with m. In fact, given

the relatively large standard errors, it could reasonably concluded that the

estimate is more or less invariant to m. Hence, the result is not as clear

cut as the previous two cases. But looking at Table 3C and 3D suggests

that, as long as �v=�u is small, say less than 0.2, one should �nd a clear

pattern of the estimated speed increasing with m. Hence, the result suggests

that �v=�u should be at least larger than 0.2 even in this case. Even if it

is 0.2, the non-skipping estimate would still be biased upwards by around

7% (the �rst rows in Table 3C and 3D). Hence, the conclusion is that the

non-skipping estimate for OECD countries is likely to be biased upwards by

at least around 7% even in this case.
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Table 6: Evidence from OECD countries

the estimated speed is in percentage

m Tm end year �̂m std.

1 40 90 5.72 0.74

2 40 90 6.05 0.79

3 39 89 6.01 0.75

4 40 90 5.77 0.76

5 40 90 5.07 0.68

6 36 86 6.16 0.76

7 35 85 6.10 0.77

8 40 90 5.18 0.67

9 36 86 6.20 0.78

10 40 90 5.12 0.67

5 Conclusion

This paper has shown that the speed of convergence estimated by OLS with

Fixed E�ects is subject to a large upward bias, not only because of the small

sample bias but also because of the measurement error bias.

Researchers who use the panel data approach to study convergence crit-

icize the cross sectional approach for not using all the data available, and

thus throwing away a lot of potentially important information that is there.

They argue that the panel data approach is superior because it makes use

of all the information in the data. However, the convergence equation is a

growth theory equation. It is not supposed to explain year-to-year behaviors

in output per capita. The measurement error bias, when measurement er-

rors are de�ned in the broad sense, is a bias that comes from using too rich

information for a simple model. Use of a rich data set would require a rich

modelling of economies that goes beyond a simple convergence equation that

can be derived from, for example, the Solow-Swan model.

Appendix

A Biases in the Skipping Estimation

To derive the bias in the estimated coe�cient 
m, the AR(1) coe�cient in

the skipping estimation, note �rst that equation 2 is no di�erent from the
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usual OLS with �xed e�ects model except that the length of each period is m

instead of 1. So, the formula for the biases in OLS with Fixed e�ect, which

is presented in Section 2 of the text, can be directly applied. All one needs

to do is to replace �T� in the original formula by �T=m�. Also, 1� � has to

be replaced by 
m, and �u, the standard deviation of the true shock, has to

be replaced by �em. Then one obtains


̂m � 
m = �(Bm1 +Bm3)=(Bm2 +Bm4)

where

Bm1 =
1

(T=m)2
�

(T=m� 1)� (T=m) � 
m + 
m
T=m

(1� 
m)
2

B2 =
1

1� 
m
2
�

(
1�

1

T=m
�

2 � 
m
(1� 
m)

2
�

(T=m� 1)� (T=m) � 
m + 
m
T=m

(T=m)2

)

Bm3 =

 

m � 
m �

1

T=m
+
T=m� 1

(T=m)2

!
�

�
�v

�em

�2

and

Bm4 =

 
1 +

1

T=m

!
�

�
�v

�em

�2
:

In the above, �2em is the variance of emit which is

�
2
em =

1 � (1� �)2m

1� (1 � �)2
� �

2
u:

As I estimate the AR(1) coe�cient by taking

�̂m = 1� 
̂
1=m
m

and noting that

� = 1� 

1=m
m ;

the bias in the estimated � is

�̂m � � = � [(1� �)m � (Bm1 +Bm3)=(Bm2 +Bm4)]
1=m + (1� �):



Convergence in Panel Data:Evidence from the Skipping Estimation 16

B Standard Errors for the Skipping Estimator

The original (non-skipping) model is

yit = � � yit�1 + �i + uit

where � is de�ned as 1��. De�ne ~yi as the deviation of yit from its regional

(country) mean. Then the above model can be rewritten as

~yit = � � ~yit�1 + uit: (3)

This model can be estimated by OLS, which is equivalent to maximum like-

lihood. The skipping model can be written as

~yit = 
 � ~yit�m + eit (4)

where


 = �
m (5)

and

eit = uit + � � uit�1 + �
2
� uit�2 + � � �+ �

m�1
� uit�m+1: (6)

Equation (4) can be estimated by OLS to yield 
̂ and �̂
2
e, and they are

their respective maximum likelihood estimators. Note that maximizing the

likelihood with respect to 
 and �2e is equivalent to maximizing it with respect

to � and �2u. Hence, by using equations (5) and (6) on 
̂ and �̂
2
e, we can derive

the maximum likelihood estimators for � and �
2
u which I will denote �̂ and

�̂
2
u:

An asymptotic variance for �̂ is given by

AVAR (�̂) = �

"
@
2 lnL

@(�)2

#
�1

�=�̂;��2
e
=�̂�2

e

where lnL is the log likelihood function of the model (4). The question is

what the derivative inside the bracket is. Applying the chain rule for the

second derivative,

@
2 lnL

@(�)2
=

2
4@2 lnL
@(
)2

�

 
@


@�

!2

+
@ lnL

@

�

@
2



@(�)2

3
5

+

2
4 @2 lnL
@ (�2e)

2 �

 
@ (�2e)

@�

!2

+
@ lnL

@ (�2e)
�

@
2 (�2e)

@(�)2

3
5
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When evaluated at the maximum of the likelihood function, the second term

inside each of the squared brackets is equal to zero, so the above expression

simpli�es into

@
2 lnL

@(�)2
=

@
2 lnL

@(
)2
�

 
@


@�

!2

+
@
2 lnL

@ (�2e)
2
�

 
@ (�2e)

@�

!2

: (7)

I will �rst deal with derivatives of 
 and �2e with respect to �. From equation

(5), the �rst one is given by

@


@�
= m � �

m�1
:

Next, from equation (6),

�
2
e =

h
1 + �+ �

2 + �
4 + � � �+ �

2�(m�1)
i
� �

2
u:

Hence,

@ (�2e)

@�
=

1

�
�

"
m�1X
i=1

2 � i � �2�i
#
� �

2
u

=
1

�
�

"
m�1X
i=1

2 � i � �2�i
#
�

2
4 mX
j=1

�
2(j�1)

3
5
�1

� �
2
e:

For the second derivatives of the log likelihood function with respect to 
 and

�
2
u in equation (7), evaluated at the maximum of the likelihood function, I

approximate them by the negative of the inverse of their estimated variance:

�

"
@
2 lnL

@(
)2

#
�1

�=�̂;��2
e
=�̂�2

e

= AV AR (
̂) �
^

V AR (
̂)

and

�

"
@
2 lnL

@(�2e)
2

#
�1

�=�̂;��2
e
=�̂�2

e

= AV AR

�
�̂
2
e

�
�

^

V AR

�
�̂
2
e

�
=

2 � �̂4e
N � Tm

:

Hence,

AVAR (�̂)
�1

=
h
m � �̂

m�1
i2
�

^

V AR (
̂)
�1

+
N � Tm

2
�

8><
>:
1

�̂
�

"
m�1X
i=1

2 � i � �̂2�i
#
�

2
4 mX
j=1

�̂
2(j�1)

3
5
�1
9>=
>;
2

:
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C Data Sources

US data

The original data is all from Bureau of Economic Analysis (BEA). For

1929-1992, I downloaded the data from Xavier Sala-i-Martin's home page. I

combined the two series that appear in his �le using the growth rate. For

1992-1996, I downloaded the data from the home page of BEA. I linked this

series with the previous series using the growth rate.

Japanese Data

The original data is almost entirely from the Economic Planning Agency

(EPA) of Japan, Prefectural Economic Accounts. However, between 1950 and

1955, values for some prefectures are missing from the o�cial data. Miyohei

Shinohara et. al., Chiiki Kozo no Keiryo Bunseki (Econometric Analysis

of Regional Structure, in Japanese) estimates these missing values. I use

these estimated numbers whenever the o�cial numbers were not available. I

linked slightly di�erent series using the growth rates at: 1965, 1975 and 1980.

Note on the data for 1950: The 1950 value for Tokyo, the wealthiest of the

prefectures, appeared to be problematic. In 1950, its total prefectural income,

according to the data, was 565.5 (in billions of yen). In 1951, it went down to

513.2, while the rest of Japan grew at the rate of 26.3% (nominal). Between

1951 and 1952 no such obvious anomaly was found. Hence, I concluded that

the data for 1950 was distorted, perhaps due to a typing mistake, and decided

not to use it. Hence, the whole analysis for Japan starts in 1951.

OECD data

All the data is taken from the Summers and Heston data set, available

from the home page of the University of Toronto. I used the series coded

RGDPL, real GDP per capita. I excludedmember countries that participated

OECD recently, for the sake of comparison with other research and also for

the sake of data availability. The 24 countries in my sample are: Canada,

USA, Austria, Belgium, Denmark, France, Germany, Greece, Iceland, Ire-

land, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden,

Switzerland, Turkey, UK, Japan, Finland, Australia, and New Zealand.
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