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1 Introduction

We discuss three basic properties characterizing adaptive learning: adaptation,
ezperimentation and inertia. These properties are shared by suitable modifi-
cations of most learning models and have their counterparts in evolutionary
dynamics (reproduction, mutation and conservation). Furthermore, in the con-
text of strategic form games, we also characterize the asymptotic behavior of
the class of learning algorithms defined by these properties. The asymptotic
behavior is characterized by strategy sets which are robust to individual per-
turbations. The corresponding equilibrium concept, that of robust equilibrium,
provides a characterization of limit points of the learning process. The exten-
sion of this concept to a set theoretical formulation allows us to characterize
the asymptotic behavior of all sequences of play, not only the convergent ones.
This paper follows the theoretical treatment of Marimon (1992) which has
been further explored in Marimon and McGrattan (1992).

1.1 From specific algorithms to a more general theory:
the problem in defining optimal adaptive learning.

In standard decision theory (i.e., Savage) the set of possible aétions and the
corresponding payoffs are well defined. Under standard assumptions, optimal
decisions exist. Nevertheless, the problem of finding an optimal ection may
not be trivial. The computational problem of a rational decision maker can be
viewed as a learning problem. If tht: decision maker has an exhaustive list of
all possible actions and their consequences, then rationality implies optimality
and the computational problem does not exist. Unfortunately, this is seldom
the case.

In developing a theory of learning, we would like first, to isolate and char-
acterize basic features defining a broad class of algorithms (Kreps (1990} force-
fully makes this point), and second to have a measure of success for such a
class of algorithms. This is not an obvious task. A similar problem arises in
artificial Intelligence. Consider, for example, an Ezpert System designed for
a very specific task. Success can be relatively easily measured. We may, for

example: 1) compute the average number of times that the system performs



the task within some acceptance limits; 2) estimate the time and computer
capacity required to perform every task, and 4} count the initial starting costs
of setting up the system, and its possible maintenance costs.

In the context of not tailored designed algorithms, however, it is more
difficult to define appropriate measures of success or to characterize optimal
learning. One must take into account not just a specific algorithm but a more
general class, not just a specific problem but a more general range of problems.
There exist a trade off between the generality of the class of algorithms and
the class of problems on one hand, and the efficiency requirements imposed on
learning rules on the other. Up to which point can we have strict efficiency
criteria and generality of rules and problems at the same time? Furthermore,
learning algorithms, in contrast with a computational algorithms, have some
underlying behavioral assumptions and part of a “measure of success” may be
if they capture actual learning by human subjects.

We do not attempt to define an explicit metric that takes all these di-
mensions into account, but we confine ourselves to a broad class of learning
algorithms that has some interesting asymptotic properties within a general
class of multi-agent decision problems; i.e., strategic form games. This class
includes algorithms with minimal information requirements. We do not con-
sider questions of speed or computational requirements which are linked to
specific algorithms. Similarly, we do not consider the optimality of a learning
algorithm along the path using, for example, some discounted expected utility

criteria.
¢

1.2 Learning by a single agent

Consider first a single agent decision problem. There is a finite set of ac-
tions, C, and payoffs are given by 7(c,w), where w is an exogeneous stochastic
shock with distribution p on the finite set 2. The agent can choose a mixed
strategy o € A(C) with a corresponding expected payoff E,,7(c,w). If C,p
and =(-,-) are known, then the maximization problem is trivial. We want
to define a class of learning algorithms including algorithms using as initial
inputs C (or a enumeration of C) and as recurrent inputs the realized pay-

offs m,; where 7, = m(cn,wn). Genetic algorithms are of this type. A min-
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imal -asymptotic- requirement is that learning algorithm should not choose
-infinitely often- dominated actions, i.e., an action & such that, for all w,
and some o, T(é,w) < Egyn(c,w). Of course, a better requirement is that
asymptotically only optimal strategies are chosen. That is, if ¢* is chosen
infinitely often then ¢* € B(p), where B(-) is the best response map; ti.e.,
B(p)={c € C: E,mi(c,w) >

Eymi(c,w), VEEC}

In this single agent context, an adapiive rule defines an action or strat-
egy -possibly a mixed strategy- for every history of actions, shocks and real-
ized payoffs, {{n, tn, Wn, T(cn,wn)); (C, Q, p, 7(-,-))}, given the information
available to the decison maker at every point in time. For example, if only
the set of actions, past strategies and realized payoffs are observed, then a
learning algorithm defines an action at period ¢ only using this information,
i.e., {{(On;Tn)}imo; C}. F: represents the information known by the agent at
the beginning of period £. The following two properties characterize adaptive
learning in single-agent contexts. Furthermore, it can be shown that, when
these two properties are satisfied, only optimal strategies are played asymp-

totically.

Experimentation If the agent does not know the consequences of his actions
then it is important that he experiments with all his options infinitely
often, otherwise he may not be able to make the right inference about

the value of his different options. Formally,

o There exists {e:}, & € (0,1), X2 & = +oo such that, for every 2,
oi(c) > &, Vce C.

Experimentation alone is a powerful element in order to obtain asymptotic re-
sults. Consider, for example, that the agent observes the pure actions that he
plays and satisfies the ezperimentation hypothesis. The exogeneous stochas-
tic process is i.i.d., (identically, independently distributed), therefore if the
agent’s beliefs about the consequences of his actions are based on computing
the average payoffs obtained from each strategy he will eventually -with prob-

ability one- discriminate which strategy has the highest expected payoff. This



result can be derived applying the Ergodic theorem (Marimon (1992)). Notice,
however, that this only defines how the agent plays asymptotically.

Adaptation This property requires that choices of strategies should move in
the direction of the best response map, according to the beliefs based
on observed frequencies. It does not assume that the agent observes the

exogeneous shock. Formally?,

e For every i there exists m such that, if

1 n=t4+m 1 n=titm ( )
ne=ifm XeTlCn,wy) < pps XeT{Cn, Wn
En=:+ XE(CH) ngt ( ’ ) n;:+m XE(Cn) ngt ! !
then B[ Ztmti @ ] o GemlE)

Ttim+1(E) Tttm(E)

<
whenever gy m(Z) > €4m

Most learning rules in the literature satisfy these two conditions if they are ap-
propriately modified to include experimentation (see, Marimon and McGrattan
(1992)). Therefore, we have characterized a broad class of adaptive learning
algorithms which for a relatively large class of individual decision problems
has the property that optimal cutcomes are chosen asymptotically -with prob-
ability one- even when the agent has very limited information. Milgrom and
Roberts (1991) have a somewhat weaker condition to characterize adaptive
learning. With their definition only dominated actions are eliminated and

asymptotic outcomes may not be optimal.

2 Adaptation, experimentation and inertia

In multiagent decision theory, the problem of evaluating a decision or learning
procedure is more complex, since an agent’s optimal action is a function of
the other agents’ actions and these may be changing over time. Following the
analogy with individual decision theory, one can choose as a minimal require-
ment that a learning algorithm should not choose -infinitely often- strategies
which are not a best response to the strategies played by other players. If this
is true for all players, then an iterative process will end up in agents choos-

ing among rationalizable strategies. This is the result obtained by Milgrom
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and Roberts (1991). Unfortunately, some rationalizable strategies are far from
being optimal decisions.

In fact, a rationalizable strategy profile can be a non-optimal response for
all players. The well known example of the baitle of the sezes illustrates this
point (see ['y, where z € (0,1]). The pair of actions (a;, b;) are rationaliz-
able, but no player is using a best response strategy against the other player’s
strategy. As in the case of individual decision maker, this requirement is too
weak and we can still define a broad class of adaptive learning rules having
stronger asymptotic properties. Before we proceed we want to show that, in
order to obtain stronger asymptotic results, it is not enough to satisfy the

two hypothesis of ezperimentation and adaptation. Again, I';, provides a good

example.
P] ’ g bz
a, | x,1|0,0
by | 0,0 | 1,x

Suppose that both players follow a rule that instructs them to play “best
response to the previous play”; i.e., the “Cournot rule”. This may result in
lack of coordination or cycles. In the battle of the sexes, if players start by
choosing strategy {ai, b2) the following period they will play the best response
to this strategy which is (a3, ) to which they will respond by playing again
(a1,b2) and so on. As a result, they never coordinate their responses and
they always receive a payoff of zero. In this case, both players are being
extremely reactive to each other’s play but they are not realizing that they are
being continuously misled. The problem, however, is not that the players are
overreacting in the sense that they are only taking into account the previous
period play. If they were to respond to a frequency distribution of plays, the
same lack of coordination could also arise (see, for example, Young (1991}).
Further, this lack of coordination is robust to perturbations or experimentation
as long as both players revise their strategies concurrently. To illustrate this
point, consider the following modification of the Cournot rule. In period ¢,
player i plays the (pure) strategy that he played the previous period with
probability 1 — p;, and he revises his strategy with probability p,. Whenever

he revises his strategy, he chooses the best response to the opponents’ last move
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with probability (1—e¢;) and any other available strategy with probability ;. If
there is no inertia, .e., where p; = 1, the four strategy profiles occur with equal
asymptotic probability and both players get an average payoff of (a + 1)/4.
However, when there is some degree of inertia i.e., where p; < 1, the play will
converge to one of the two pure strategy Nash equilibria (a1, b;) or (aq, b;) with
probability one.

Inertia introduces a crucial degree of stationarity in the sequence of play.
In contrast with the single agent framework, where an agent’s action does not
change the exogeneous stochastic process, multiagent decisions can create cor-
relations through the play. Even if players act myopically, in the sense that they
do not take into account the social effect of their actions, this effect is present
and may distort the information gathered through the process of experimenta-
tion. As in the indeterminacy principle in physics; a player’s experimentation
can trigger a reaction from other players. The following condition imposes the

necessary stationarity in the environment.

Stationarity Given a player i, there exist positive numbers {7; .}, satisfying
oteo Mt = 00, such that for every ¢ and history of play, up to period ¢,
and for every c;;

Prob{o_ipr1=0_is} > iy

We can, alternatively, define a condition in terms of inertia of a single

agent learning process®. Formally,

Inertia Given a player i, there exi‘st a positive constant, =;, such that for

every t and history of play, up to period ¢, and for every c_;;

PT‘Ob{U‘{J.}.] = O"',:} 2 i

Notice that i) inertia implies stationarity, and that i) ezperimentation does
not imply inertia. Experimentation only requires that every pure strategy,
and in particular the last period strategy, must be played with probability at
least €;;. In contrast, inertia bounds the probability that the player changes
his mixed strategy.

Adaptation can be appropriately defined in this context. For example, for

player 7 it is enough to change the exogeneous stochastic process, {w}, by
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the endogeneous stochastic process {c_i:} generated by his opponents mixed
strategies. What appears as a trivial notational change is however a non trivial
mathematical change: from an environment characterized by an 1.1.d. process
we move to one where, in general, the stochastic process is not stationary.
Simple ergodic theorems do not apply, but using the additional inertia prop-
erty it is still possible to obtain strong asymptotic results (see Section 5). A
very large class of adaptive learning algorithms satisfy the three properties of:
Ezperimentation, Adaptation and Inertia (see Marimon and McGrattan (1992)

for a description of these algorithms).

3 Reproduction, mutation and conservation

Evolutionary models have a similar structure. A standard evolutionary model
consist of I types of agents, corresponding to the I players of the above learning
model. Agents are of the same type if they share the same set of actions and
payoffs. That is, type ¢ is characterized by (C;, ;). In the learning model
gi4(c;) denotes the probability that player : assigns to strategy ¢; at ¢; in an
evolutionary model, y;(c;) denotes the fraction of agents of type 1 playing the
pure strategy c; at t. With this translation we can map learning environments
with evolutionary environments; as long as T > 1. An additional element
defining the evolutionary environment is how a particular agent is matched.
More precisely, whether an agent pla:ys against the population distribution or
against some random sample, and whether this agent’s action may have an
effect on the distribution. As long as there is a finite number of agents of each
type, there will be a feed-back effect similar to the one described above. Agents
of type ¢ gain collective experience by being matched and playing against the
other types of agents. A finite m sample from the population of type t’s
opponents, fi:, in an evolutionary environment, plays the same role than a
m finite realization of a player i's opponents play, (-it—m+1,--- ,0-i¢) in the
learning environment; provided that there is enough inertia. -

In addition to this map between environments, we can also see that the

three basic properties that characterize adaptive learning also have thei;’ trans-

tation takes

lation in three basic features of evolutionary models. Ezperimen




the form of mutation {(and cressover in genetic algorithms) guaranteeing that
every population’s type experiments with all its possible alternatives. Adap-
tation is satisfied as long as some form of the Darwinian replicator equation
describes the evolution of the fraction of agents of a given type using a specific
strategy. More precisely, Darwinian dynamics specifies that y;(&;) has a posi-
tive growth rate as long as the expected payoff to strategy & is greater than
average. Using specific formulations of this rule, one can see that, in general,
the corresponding evolution of u, satisfies the adaptation hypotesis. Finally,
inertia takes different forms that we can label conservation. Nature, as human
learners, can overreact, but some degree of conservation is needed to evalute
which characteristics have higher than average payoff. Evolutionary models
capture this feature by, for example, having only reproduction of a fraction of
the population at any point in fime. 7

It should be noticed that a fairly general feature of learning and evolution-
ary models is their path dependence. The specific experience of players and
species can have a long lasting effect. Nevertheless, it is common in the litera-
ture on evolution to postulate stationary maerkovian models (see, for example,
Kandori et al. (1992) and Young (1991)). This, in general, is achieved by im-
posing strong assumptions on how agents are matched, and on the form that
ezperimentation an.d mutation takes place. For example, constant experimen-
tation rates and constant inertia allow for more stationarity in the model. On

the other hand, they may preclude convergence.

4 Robust equilibria and asymptotic behavior

In this Section we briefly describe the type of asymptotic results that are
achieved in multi-agent problems when our behavioral assumptions are satis-
fied. There are two main types of results: i) to characterize the limit point of
converging sequences of play, and #i) to characterize the set of outcomes that
are asymptotically attained. Previously known versions of these two state-
ments are: i’) If oy — o then o* is a Nash equilibrium, and ii’) Asymptot-
ically, only rationalizable strategies are played. i’) is a Folk Theorem in the
learning literature, i1’} is due to Milgrom and Roberts(1991). Marimon (1992)
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obtains further results. The following concept of rebust equilibrium provides a

characterization of limit points.

Definition The strategy profile o* is a robust equilibrium if, for every
player i, there exists an open set N, of perturbations, such that for every

&;E€N;, and for every player j # 1, o} € B;{i,07 ;)

That is, a robust equilibrium requires that player’s best replies remain best
replies even when single players perturb their strategies. In a two players game
a pure strategy perfect equilibrium is a robust equilibrium, while games with
a unique mixed equilibrium (i.e., perfect, by definition), such as the matching
pennies game, do not have a robust équilibrium. However, robust equilibrium
is not a refinement of perfect equilibrium since in games with more than two
players there may be robust equilibria which are not perfect (see Marimon and
McGrattan (1992)). The concept of robust eguilibrium can be extended to a
set theoretical concept providing a more general solution concept. The basic
idea is that the conditional best response map should be robust to individual
perturbations. In other words, given a random mechanism that correlates
players’ actions, it is required that incentive constraints are satisfied with strict
inequality within a given set of actions. Minimal sets with this property are
called robust-recurrent sets. For example, in the battle of the sezes game, I'y,
the only robust-recurrent sets are the two pure strategy Nash equilibrinm and
in the matching pennies game the set of all the pure strategies defines a robust
recurrent set.

These robustness concepts provi.de a characterization of the asymptotic
behavior of the class of adaptive learning algorithms (or evolutionary algo-
rithms) that satisfies the above properties of adaptation, ezperimentation and
inertia (reproduction, mutation and conservation). In particular we have: i”
if play converges to a strategy profile, then the strategy profile is a robust equi-
librium. - %i") asymptotically, play converges (with probability one) to a set of
strategy profiles which is o robust-recurrent set, and iii) if the game has the
property that all the robusi-recurrent sets are singletons then play converges
with probability one to a robust equilibrium. These results are obtained in

Marimon (1992) and further discussed in Marimon and McGrattan (1992).
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! This paper is part of a research project with Ellen McGrattan and some
of the ideas here presented are more fully developed in Marimon and
McGrattan (1992). I also want to thank Giorgia Giovannetti for her
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comments and the NSF for financial support.
? The indicator function of action € is denoted xz(-).

3 We use standard notation for games: I is the set of players; C; is the finite
set of pure strategies for player i; 0;; denotes the mixed strategy of plyer

1 at ¢, and o_;; the profile of mixed strategies of the opponents of 2.
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