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Abstract

We o�er a formulation that locates hubs on a network in a competitive en-

vironment; that is, customer capture is sought, which happens whenever the

location of a new hub results in a reduction of the current cost (time, distance)

needed by the tra�c that goes from the speci�ed origin to the speci�ed desti-

nation. The formulation presented here reduces the number of variables and

constraints as compared to existing covering models. This model is suited

for both air passenger and cargo transportation. In this model, each origin-

destination 
ow can go through either one or two hubs, and each demand

point can be assigned to more than a hub, depending on the di�erent desti-

nations of its tra�c. Links (\spokes" have no capacity limit. Computational

experience is provided.
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1 Introduction

In many transportation or telecommunications networks, the cost of carrying

a unit of tra�c between two points, decreases as the capacity of the link

joining the two points increases. Because of this fact, it is often convenient to

design networks in which tra�c is concentrated on high capacity links, even

if this tra�c must travel longer distances. In order to concentrate tra�c,

each point i o�ering tra�c is connected to a transshipment or switching point

through a link. This link carries all the tra�c originating at the point i,

no matter what its destination is, as well as all the tra�c whose destination

is point i, no matter what its origin is. Thus, a �rst level of concentration

takes e�ect. The transhipment points, called hubs, are in turn interconnected

by high-capacity links. Airline passenger 
ow and cargo delivery networks

are examples of networks utilizing hubs. Hubs can be also found in local

area computer networks. In large telecommunications networks, switches,

concentrators and multiplexers, hubs are found as well.

In spite of its importance, the location of hubs on a network has received

a limited attention in the literature (Campbell, 1995; Aykin, 1995) . As

opposed to other location problems, in this problem an interaction occurs

between the facilities to be located. The interaction maymake the formulation

non-linear (see, for instance, O'Kelly, 1986a; O'Kelly, 1987 or Aykin, 1988) .

Alternatively, the interaction squares the number of integer variables, when

non-linear products in the objective are replaced by a large number of new

variables, (see O'Kelly and Lao, 1991). Simpler versions of the problem are

often considered, such as the star-star concentrator location problem. This

model assumes a particular class of networks, namely the star-star topology

network (Gavish, 1991; Pirkul and Nagarajan, 1992; Pirkul, Narasimhan, De,

1988; Marianov et al, 1995) ,. In this type of network, the hubs are not

2



connected to each other, but instead, they are connected to a central point.

Thus, there is no interaction between them, and the problem becomes simpler.

Several di�erent forms of hub location problems have been studied in the

literature. Planar hub location problems (where hubs can be located anywhere

on the plane, but demand is concentrated at discrete points) have been stud-

ied by O'Kelly, 1986a; Aykin, 1988; Aykin, 1995. The p-hub-median problem

on a network (O'Kelly, 1986b; Klincewicz, 1991) locates a pre-speci�ed num-

ber p of hubs on nodes of a network, and allocates the demand points to

them. The uncapacitated hub location problem seeks the location of hubs at

nodes of a network, and the allocation of demand points to them, so that the

sum of investment and operation costs are minimized (O'Kelly, 1992). For

reviews of these, as well as other integer programming formulations of discrete

hub location problems, see Campbell (1995). Most of the models seek cost

minimization. An exception are Campbell's (1995) maximal covering models,

that seek the location of p hubs, so as to maximize the coverage (by pairs of

hubs) of weighted demand (represented by origin-destination pairs).

In this paper, we o�er a formulation that locates hubs on a network in

a competitive environment; i.e. customer capture is sought, which happens

whenever the location of a new hub results in a reduction of the time or

distance needed by the tra�c generated by the traveller to go from origin

to destination. The formulation presented here, also reduces the number of

variables and constraints as compared to published models. For example,

Campbell's 1995 maximal covering model uses 2n2m2+n2+1 constraints and

n2 +m2 +m variables, where n is the number of demand points, and m the

number of potential locations. In both, the same number of variables need to

be declared integer.

This model is better suited for air passenger and cargo transportation,
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among others, in the following situations: 1) an airline has chosen certain

airports as hubs, sometime ago. The passenger (or cargo) tra�c matrix has

changed since the time the hubs were chosen. The airline's management

wishes to study the possible relocation of some hubs, given that there are

also some competitors. This model can be used considering the existing hubs

of the airline, plus the competitor hubs, as competition. New locations can

be found that improve current operating costs. b) A small airline wishes

to capture some passenger tra�c from large companies, by reasoning that

large companies optimize their total costs using tra�c �gures that are very

large (corresponding to a very high market share). Thus, there must be some

percentage of customers that are not well served (their travel time is longer

thatn it could be or, said di�erently, their optimum is not the optimum of the

majority). The model we present is well adapted to these situations.

Another �eld of applications is express mail services where delivery time

is most important. Firms that achieve a lower delivery time than others o�er

a better service and therefore \capture" more customers.
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2 The Hub Location Competitive Model (HuLC)

In the model we present, each origin-destination volume is assigned to exactly

one path containing one or two hubs, through which it 
ows. This assign-

ment results in the allocation of each demand point to possibly more than one

hub, although an allocation of each demand point to possibly more than one

hub, although an allocation of each demand to a unique hub is possible, by

analysis after a solution is found. If this single-hub allocation is forced, the

costs obviously increase as compared to the multiple-hub assignment situa-

tion. Allocation of demand points to more than one hub have been addressed

by O'Kelly and Lao, 1991 and Hall, 1995. We assume that tra�c originating

at demand point i and having as destination point j, can be routed from i to

j either through a single hub k, or through two hubs k and l. We do not allow

paths with three or more hubs, as did Fotheringham and O'Kelly, 1989. Links

("spokes") have no capacity limit. The cost per unit of distance of carrying

a unit of tra�c on an interhub link is � times the cost of carrying the same

unit on a demand-hub link, or on a link joining two demand nodes, where �

is smaller than one. The � value is used to account for economies of scale.

The 0-1 linear formulation is:

maxZ =
X

i2I

X

j2J

aijyij (1)

Subject to:
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wkl � xk k 2 K; l 2 K (2)

wkl � xl k 2 K; l 2 K (3)

yij �
X

(k;l)2Nij

wkl i 2 I; j 2 J (4)

X

k2K

xk = p (5)

yij 2 f0; 1g i 2 I; j 2 J

xk; wkl 2 f0; 1g k 2 K; l 2 K

where:

i; I = index and set of origin nodes

j; J = index and set of destination nodes

k;K = index and set of candidate nodes

aij = tra�c, or 
ow, from i to j

cij = cost of carrying a unit of tra�c from node i to node j

Cij = current competitor's cost of carrying a unit of tra�c from node i to node j

where the Cij applies to the lowest cost of all competing airlines

� = cost reduction factor for 
ows between hubs

Nij = f(k; l)kcik + �ckl + clj � Cijg

that is, Nij is the set of pair of points k; l such that,

if hubs were located at them, capture of tra�c between

i and j result, because the cost of carrying that tra�c

would increase as compared with the current cost;

p = total number of available hubs

xk = 0,1; 1, if there is a hub in node k; 0, otherwise

wkl = 0,1; 1, if there is a hub in nodes k and l; 0, otherwise

yij = 0,1; 1, if the 
ow from i to j is captured; 0, otherwise

The objective (1) maximizes the sum of captured 
ows. Constraints (2)
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and (3) de�ne the variable wkl, which is zero unless hubs are located at k

and l. Constraint (4) allows demand or tra�c between nodes i and j to be

captured, only if hubs are located at k and l where k and l are in the \capture

set" Nij. By \capture set" we mean the pair of potential locations (k; l) such

that the cost of going from i to j through at least one of them is less than

the current cost of going through competitor's system. In order to allow the


ow to go through only one hub, the pair (k; k) is also included in the set,

with the variable wkk being allowed as well. Finally, constraint (5) sets the

number of hubs to be located.

The HuLC model �xes the number of hubs to be located. If the number of

hubs is not pre-speci�ed, and if there is information about annual amortized

opening and continuing costs fj for each potential hub location j, constraint

(5) can be dropped, and a new objective can be structured as follows:

maxZ =
X

i2I

X

2J

rijyij �
X

k2K

fkxk

where rij is the expected annual revenue from 
ow (i; j). This objective

could stand along side the capture objective or replace it.

As was already mentioned, this model can be used for the relocation

and/or addition of hubs. In order to do so, it can be slightly modi�ed. Let po

be the current number of hubs, and Ko the index set of their locations. Let

ps be the number of hubs that are to stay at their current location, pr the

number of hubs to be relocated and pn the number of totally new hubs. Thus,

po = ps+pr. Then, constraint (5) is replaced by the following two constraints:

X

k2K

xk = ps + pr + pn (5a)

X

k2Ko

xk = ps (5b)

The �rst of these constraints states that the total �nal number of hubs will
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be po + pn. The second one forces ps hubs to stay at their current positions.

A further modi�cation is possible. In the previous model, a 
ow is either

captured or not captured, depending on the new cost of carrying it as com-

pared to the competitor's cost of carrying the same 
ow from its origin to

its destination. It is possible to de�ne capture in a less granular form. For

example, three levels of capture might be de�ned as follows:

� Level 1: if 0:9Cij < cik + �ckl + clj � 1:1Cij then a 50% of the 
ow is

captured;

� Level 2: if 0:7Cij < cik + �ckl + clj � 0:9Cij then a 75% of the 
ow is

captured;

� Level 3: if cik + �ckl+ clj � 0:7Cij then a 100% of the 
ow is captured;

Using the same principle, more than three levels can be de�ned. For each

level, a capture set and a capture variable is de�ned. In the example, the

following sets are de�ned:

N50
ij = fk; lj0:9Cij < cik + �ckl + clj � 1:1Cijg;

N75
ij = fk; lj0:7Cij < cik + �ckl + clj � 0:9Cijg;

N100
ij = fk; ljcik + �ckl + clj0:7Cijg;

together with the variables

y50 = 1, if the 
ow from i to j is 50% captured, 0 otherwise

y75 = 1, if the 
ow from i to j is 75% captured, 0 otherwise

y100 = 1, if the 
ow from i to j is 100% captured, 0 otherwise

The model takes the form:
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maxZ =
X

i2I

X

j2J

aijy
100
ij + 0:75aijy

75
ij + 0:50aijy

50
ij (6)

Subject to:

wkl � xk k 2 K; l 2 K (2)

wkl � xl k 2 K; l 2 K (3)

y100ij �
X

(k;l)2N100

ij

wkl i 2 I; j 2 J (7)

y75ij �
X

(k;l)2N75

ij

wkl i 2 I; j 2 J (8)

y50ij �
X

(k;l)2N50

ij

wkl i 2 I; j 2 J (9)

y100ij + y75ij + y50ij � 1 8i 2 I;8j 2 J (10)

X

k2K

xk = p (5)

yij 2 f0; 1g i 2 I; j 2 J

xk; wkl 2 f0; 1g k 2 K; l 2 K

In this formulation, the objective re
ects the di�erent levels of capture,

while constraints (7), (8) and (9) de�ne each level. Constraint (10) forces

each 
ow to be captured at one level only.

The previous HuLC formulation presented envolves a large number of vari-

ables and constraints. For a network of 20 nodes, where all nodes are demand

nodes and possible hub locations, and adding up tra�c in both directions be-

tween each pair of nodes, there are 820 variables and 801 constraints. On the

other hand, as it will be shown in the section corresponding to computational
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experience, the problem is not integer friendly. In the next section we propose

a meta-heuristic to solve this combinatorial problem.

3 A Tabu Heuristic to Solve the Model

Several heuristics for the solution of the hub problem have been studied by

O'Kelly (1987), Skorin-Kapov and Skorin-Kapov (1994), Aykin (1994) and

Klincewicz, (1989, 1991). In order to solve the HULC problem a meta-

heuristic is presented, based on the well-known Teitz and Bart (1968) one-opt

heuristic, improved by Densham and Rushton (1992), and modi�ed with some

Tabu search.

The 
ow process has three phases. In the �rst phase, an initial solution

is obtained using a greedy adding heuristic where at each iteration a hub is

located in the node than gives the best marginal improvement in the objective

without violating the constraint set. Phase one is over when p hubs are

located. Then, in the second phase, a Teitz and Bart heuristic is used. At

each iteration a hub is moved from its current position to another potential

hub location. The objective is computed and the new set of positions is

kept as the current solution if the move has improved the objective. If the

objective is not improved, the solution before the one-opt trade is restored.

If at the end of a complete cycle of all trades the objective has not improved,

the heuristic is over. Otherwise, the process is restarted. Of course, the

solution obtained with this heuristic may not be optimal. In the third phase

a tabu process is used, with its initial solution the one found in the second

phase. Essentially, the tabu heuristic explores a piece of the solution space

through a repeated examination of all solution neighbors. The search my

move to a neighboring solution even if the objective value at this neighbor

has a worse value of the objective (Glover 1977,1989, 1990). This approach
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aids in avoiding being trapped in a local optimum. In order to avoid cycling

solutions that have recently been examined, solutions are inserted in a tabu

list that is constantly updated.

This method has been successfully applied to a wide variety of optimization

problems (see, for example, Skorin-Kapov (1990), Gendreau et al. (1994) and

Glover and Laguna (1993).

A more detailed description of the algorithm follows. Let Wt be the set of

locations wj; wj > 0.

Phase 1

1. Set W0 := ; and p := 1.

2. Set Wp := Wp�1 [ vk, where vk represents the index of the node that

gives the largest increase in 
ow capture:

max
vk2V

[z(Wp�1 [ vk)� z(Wp�1)]

Set p := p+ 1 a repeat step 2. Stop when p = �p

Phase 2

1. Set W � := Wp and z�W := z(Wp)

2. Set t := 0, z0W = z�W .

3. Set Wt :=Wt�1 � vk + vl, where vk 2 Wp and vl 2 (V �Wt�1).

4. If z(Wt) > z�W ; W � := Wt and z�W := z(Wt), repeat step 2 until all

nodes and hubs have been exchanged.

5. If z�W > z(W0), set z
0
W := z�W and repeat step 2. Otherwise, go to phase

3.
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Phase 3

1. Set again t := 0.

2. Set z0W := z�W . No node is tabu.

3. Consider all solutions of adjacent nodes W i
t ofWt, obtained by exchang-

ing a hub from node v0i 2 Wt to node v
00

i 62 Wt. Relabel the solutions

W i
t in decreasing order of z(W i

t ). Relabel all vertices accordingly. Set

i := i+ 1.

4. If z(Y i
t ) > z�W or if v

00

i is not tabu, set Wt+1 = Wt, z
�

W := z(Wt),

declare v0i tabu until t+ �, where � is a pre-�xed value, and go to step

5. Otherwise, set i := i + 1. If i is larger than the number of adjacent

solutions, set i equal to the index of the vertex v
00

i with the lowest tabu

tag t+ � and lift the tabu status of v
00

i . Repeat step 3.

5. Set t := t+ 1. If t is less than a pre-�xed upper bound T , go to step 2

of phase 3. Otherwise, set p := p+ 1 and go to step 2 of phase 1 if the

solution found is feasible. If in the last iteration no feasible solution is

found, stop.

In step 2 of phase 3, the tabu status can be canceled if this implies an

improvement in the objective. This rule is known as aspiration criterion.

In the following section some computational experience is presented.

4 Computational Experience

All numerical tests were carried on a PC-pentium 75 with a 24Mb RAM

memory. The algorithm was coded in FORTRAN. We used both LINDO and

MINOS 5.1 for solving problems. The computational comparisons are based
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randomly generated networks as well as the AP (Australian Post) data set

(Ernst and Krishnamoorthy 1996).

First, 20, 25 40 and 50 networks from the 200-node AP data set (which is

available at http://mscmga.ms.ic.ac.uk) were generated following Ernst and

Krishnamoorthy's method. The locations of the competitor hubs were the

optimal solutions obtained by Ernst and Krishnamoorthy for the uncapaci-

tated multiple-allocation p-hub median problem (Ernst and Krishnamoorthy,

forthcoming).

We �rst tried to solve the model using linear programming relaxation and

branch and bound, but with little success even for small networks. For a 10

node network the model took on average 20 minutes to obtain the optimal

solution, and for a 20 node network the execution was aborted without reach-

ing an optimum after 8 hours. We also tried to solve the model by replacing

constraints (2) and (3) by the following:

X

l2K

wkl � jKjxk 8k 2 K

X

k2K

wkl � jKjxl 8l 2 K

where jKj is the cardinality of K, that is, the number of elements in K,

but no improvement in the computing times were obtained. In this sense,

this model belongs to the INP class (Integer Nasty Programming). We used

complete enumeration on these small problems to obtain optimal solutions

and compared them to the solutions obtained by the heuristic. Results are

presented in Table 1.
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Table 1: Results, AP data

n p; q Loc. A Loc. B OBJ. A OBJ. B % Share Opt. Imprv. Time

20 2 14,15 14,16 1543 2436 39% yes no 2s

3 7,14,15 6,12,14 1718 2261 43% yes no 5s

4 7,13,14,15 2,6,12,14 2079 1850 52% yes no 11s

5 7,9,14,15,19 2,6,12,13,14 2000 1978 50% yes no 22s

25 2 7,19 8,18 1486 2493 37% yes no 3.24s

3 17,18,19 2,8,18 1981 1998 50% yes no 9.28s

4 7,16,18,19 2,8,17,18 1765 2214 44% yes no 19.32s

5 2,8,14,17,19 2,8,17,18,20 2770 1209 70% yes yes 37s

40 2 28,29 12,18 1617 2362 41% yes no 7.46s

3 27,28,29 12,23,28 1757 2222 44% yes no 23s

4 12,17,28,29 12,23,26,28 1728 2251 43% yes yes 53s

50 2 15,36 14,35 1654 2325 41% yes no 13.24s

3 6,32,36 14,28,35 1615 2364 40% yes yes 41.58s

4 6,33,35,36 14,28,32,35 1633 2346 41% yes yes 89s

In the �rst and second columns the number of nodes and the number of

hubs for each �rm are presented respectively. A is the entering �rm and B

is the �rm in place. The �nal locations for the entering �rm obtained by the

heuristic are shown in the third column. In the fourth column the location of

the competitor's hub are also presented. The �nal 
ow capture for both �rms

are presented in absolute terms in columns 4 and 5, and in the sixth column

the percentage capture by Firm A is shown. The seventh column indicates

if the solution of the heuristic is optimal. The eighth column indicates if

the third phase of the heuristic improved the solution obtained so far by the

second phase. Finally, computer times for the heuristic are shown in the last

column.

The heuristic obtained optimal solutions in all the test runs. 90% of

these solutions were obtained by phase II. In general, the 
ow capture by the

entering �rm was below 50%, even though the same number of hubs as the

competitor �rm was used. This is due most probably to the good positioning
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of the competitor hubs and to the fact that, in case of ties between both �rms,

the 
ows were fully assigned to the original competitor �rm.

An example of 
ow capture is presented in �gure 1 for n = 20 and p; q = 3.

Competitor hubs are located in nodes 6, 12 and 14 and the entering hubs

are located in nodes 7, 14 and 15. The arrows denote the assignments for

departures in the top picture and arrivals in the bottom picture.

5 Conclusions

In this paper a new Hub location model has been formulated. This model

locates hubs so as to maximize the 
ow capture when there are competitors

already operating in the market. A heuristic to solve the problem has been

proposed and tested in diferent networks. Its performance in the test runs is

quite satisfying.

The model assumes that, if the cost cij for the entering �rm of going

from i to j is lower than any of the competitors (Cij), then its 
ow is fully

captured. This assumption can be modi�ed to assume that the 
ow capture

is a function of the di�erence between the cost of the entering �rm and the

competitor's cost. For example, it can be assumed that if cij = Cij , then the


ow is equally divided among both �rms, and if cij is x% lower than Cij, then

the 
ow capture of the entering �rm is equal to 50% + x% of the 
ow from i

to j. While in the mathematical formulation of the problem this would lead

to a non-linear problem, it can be easily incorporated in the heuristic when

the capture objective is computed in each iteration.

it is also shown how it is possible to change this assumption, allowing

di�erent percentages of capture, depending on the relation between costs of

using the entering �rm or the competitor. So, there can exist several di�erent

levels of capture. This situation can be also easily incorporated in the heuristic
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when the capture objective is computed in each iteration. The model can also

be adapted to relocate or add hubs to an existing network.
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Figure 1: Example with n = 20 and p; q = 3
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